数控车床的进给速度和加减速控制

合集下载

数控机床进给系统的速度调节方法

数控机床进给系统的速度调节方法

数控机床进给系统的速度调节方法随着科技的不断进步,数控机床在工业生产中的应用越来越广泛。

作为数控机床的核心部分之一,进给系统在加工过程中起到了至关重要的作用。

速度调节是进给系统中一个关键的技术,它决定了加工的效率和质量。

本文将介绍一些常用的数控机床进给系统的速度调节方法。

一、开环速度控制方法开环速度控制方法是最基本的速度调节方法之一。

它通过根据编程指令设置电机的旋转速度,来控制机床的进给速度。

当采用开环速度控制方法时,系统并不能实时获取到电机的实际速度信息,只能依靠设定的指令值进行控制。

虽然这种方法简单易行,但由于无法准确测量实际速度,容易出现误差累积和运动不稳定的问题。

二、封闭环速度控制方法为了解决开环速度控制方法存在的问题,人们提出了封闭环速度控制方法。

该方法在进给系统中增加了一个速度反馈装置,可以实时监测到电机的实际转速,并与编程指令进行比较,进行误差校正。

这种方法能够更准确地控制机床的进给速度,提高加工精度和稳定性。

然而,封闭环速度控制方法的成本较高,且对装置的精度要求较高,因此在实际应用中需要根据具体情况来选择。

三、前馈速度控制方法前馈速度控制方法是一种相对较为高级的速度调节方法。

它在封闭环速度控制方法的基础上,引入了前馈控制器。

前馈控制器通过分析工件表面的摩擦系数、切削力和惯性等参数,实时调整电机的转速,以实现更加精确和稳定的速度调节。

前馈速度控制方法能够有效避免由于惯性力和切削力变化而导致的速度波动,提高了机床的加工稳定性和效率。

四、自适应速度控制方法自适应速度控制方法是一种更为智能和高级的速度调节方法。

它通过模糊控制、神经网络或遗传算法等方法,实时根据机床运行状态和切削情况来自动调整速度控制参数,以实现最佳的加工效果。

自适应速度控制方法能够自动适应不同的工况和切削条件,提高了机床的加工稳定性和适应性。

然而,由于自适应速度控制方法的复杂性增加了控制系统的设计和实现难度,因此在实际应用中需要考虑成本和可行性。

数控车床的进给速和加减速控制

数控车床的进给速和加减速控制
速度计算的任务是:当直线时,计算出 各坐标轴的插补周期的步长;当圆弧时, 计算步长分配系数(角步距)。
(1)直线插补的速度计算 直线插补的速度计算是
为插补程序提供各坐标轴在 同一插补周期中的运动步长。
一个插补周期的步长为:
L 1 FT 60
式中:F——编程给出的合成速度(mm / min) T——插补周期(ms) L——每个插补周期子线段的长度( m)
yi
L sin i
FT 60
• ii1 R
ii1
FT
60R
式中:R——圆弧半径(mm) ii-1、 jj-1——圆心相对于第 i –1 点的坐标值(mm) i——第 i 点与第 i –1 点连线与 x 轴的夹角(圆弧某点
切线方向,即进给速度方向与X轴夹角) ——步长分配系数
与圆弧上一点的值的乘积可以确定下一插补周期的进给步长。
这种系统控制的进给运动 速度可分为升速、恒速、降速 等几个阶段。其控制过程如图 所示。
速度准备框的内容包 括按照指令速度预先算出 降速距离,且置入相应的 单元;
速度控制框内需置入速度控制 字和速度标志FK(当前速度控 制值)、FK0(存恒定值)、 FK1(存低速值),这一速度控 制子程序的主要功能是给出 “当前速度值”,以实现升速、 降速、恒速和低速控制;
余数处理程序框图如图所示。
以上进给速度的控制方法基本上都适用于数字 脉冲增量法插补的CNC系统。
3、数据采样的CNC系统加减速控制 加减速控制大多采样软件来实现,以便使系统
的速度控制更为灵活方便。 前加减速控制:加减速控制可以在插补前进行。 后加减速控制:加减速控制可以在插补后进行。
(1)前加减速控制 前加减速控制是对编程的F指令值即合成速度进

数控机床加工速度调节方法

数控机床加工速度调节方法

数控机床加工速度调节方法数控机床是一种先进的精密加工设备,广泛应用于各种工业领域。

为了满足不同材料加工的需求,调节加工速度变得尤为重要。

在本文中,我们将讨论数控机床加工速度调节的方法。

数控机床加工速度调节是指根据加工需求和材料特性,调整数控机床的进给速度和切削速度。

正确的速度调节可以提高加工质量、提高生产效率和工件表面质量,减少环境污染和能源消耗。

下面我们将介绍几种常见的数控机床加工速度调节方法。

首先,根据不同材料的硬度和切削性能,选择适当的切削速度。

切削速度通常由机床的主轴转速和刀具的直径决定。

硬度较低的材料可以选择较高的切削速度,而硬度较高的材料则需要较低的切削速度。

此外,切削速度还应根据刀具的材料选择,以确保刀具能够承受切削力和热量。

其次,合理调节进给速度。

进给速度是指工件在切削过程中前进的速度。

进给速度的大小直接影响着加工效率和工件表面质量。

一般来说,加工粗糙度要求较低的工件可以选择较高的进给速度,而加工精度要求较高的工件则需要较低的进给速度。

此外,进给速度还应根据切削深度、刀具和材料的切削性能进行调整,以确保加工过程的稳定性和安全性。

第三,合理选择切削方式。

数控机床通常可以采用不同的切削方式,如铣削、车削、钻削等。

不同的切削方式具有不同的特点和适用范围。

在实际加工中,应根据工件的形状、尺寸和材料特性选择合适的切削方式。

同时,根据所选切削方式的要求,调整相应的切削参数,如刀具的转速、进给速度等,以实现最佳的加工效果。

第四,利用合适的冷却润滑剂。

在数控机床加工过程中,适当的冷却润滑剂可以降低切削温度、减少摩擦、延长刀具寿命。

不同材料对冷却润滑剂的要求不同,在选择时应根据材料的特性进行合理搭配。

同时,冷却润滑剂的使用量要适中,过多或过少都会影响加工效果和工件表面质量。

最后,定期检查和维护数控机床。

合理使用和定期维护数控机床可以保证其稳定性和加工精度。

定期检查数控机床的主轴、导轨、传动装置、冷却系统等关键部件,及时发现并解决问题,以确保加工质量和安全性。

数控机床加减速控制相关资料

数控机床加减速控制相关资料

数控机床加减速控制相关资料数控机床是一种高精度、高效率、高灵活性的机床,它能够通过数控系统对加工工艺进行精确的控制和调整,以实现对工件的精密加工。

其中,加减速控制是数控机床中非常重要的一个环节,它决定了数控机床的运动精度和加工质量。

因此,研究加减速控制,对于提高数控机床的加工精度、效率和稳定性具有重要意义。

一、数控机床加减速控制概述数控机床中的加减速控制系统是通过数控系统来实现的。

其主要功能是控制电机的加减速过程,使电机能够按照设定的加减速曲线和速度规划进行运动。

数控机床加减速控制系统一般由加速段、匀速段和减速段组成。

其中,加速段是为了满足工件的加工要求,需要在较短的时间内让电机达到最大速度;匀速段是让电机按照设定的速度规划运动,保证工件的加工精度;减速段是为了使电机缓慢减速,避免因电机突然停止而带来的不良影响。

二、数控机床加减速控制的实现方法1. 数控伺服系统数控伺服系统是一种高精度、高速度、高适应性的控制系统,其采用数字信号和模拟信号相结合的方法来实现对电机的控制。

数控伺服系统具有响应速度快、速度稳定、精度高等优点,非常适合用于数控机床中的加减速控制。

其中,数控伺服系统的控制原理是通过电机的位置控制信号和速度控制信号来控制电机的加减速过程,实现电机精密的运动控制。

2. 磁场定向控制系统磁场定向控制系统也是一种常见的数控机床加减速控制系统。

其基本原理是通过调节电机的磁场方向和大小来实现对电机加减速的控制。

采用磁场定向控制系统的好处是可以实现对电机的精准控制,避免了因机械结构和负载变化带来的影响,从而提高了数控机床的加工精度和稳定性。

3. 射频能量控制系统射频能量控制系统是一种采用射频信号来控制电机加减速的控制系统。

它的控制原理是在电机中产生一定频率的射频信号,通过调节射频信号的大小和频率来实现对电机的加减速控制。

射频能量控制系统具有精度高、响应速度快等特点,非常适合用于高速、高精度数控机床中的加减速控制。

第17讲进给速度及加减速控制

第17讲进给速度及加减速控制

缺点 需预测减速点,这要根据
实际刀具位置与程序段之 间距离来确定,计算工作 量大。
18
3.7 进给速度和加减速控制 数 控 技 术
第 三 章
加减速控制目的:保证机床在启动或停止时不产生冲击、失步、超程或振荡
2.加减速控制策略:
根据数控机床的控制需求,加减速控制可按常用的指数加减速、直线加 减速、S形加减及钟形加减速规律等进行。 加减速控制多数采用软件来实现。
④在机床加工过程中,由于进给状态的变化,如起动、升速、降速和停止, 为了防止产生冲击、失步、超程或振荡等,保证运动平稳和准确定位,必 3 须按一定规律完成升速和降速的过程。
3.7 进给速度和加减速控制 数 控 技 术制的内容 2. 速度控制的内容——匀速控制和加减速控制
度F)进行控制 优点 不影响实际插补输出的位 置精度。
插补后加减速控制
对各运动坐标轴分别进行加 减速控制 不需预测减速点,在插补输 出为0时,开始减速,并通过 一定的时间延迟逐渐靠近程 序段终点。 合成位置可能不准确,但这 种影响只在加减速过程,进 入匀速状态后,这种影响就 不存在了。
计 算 机 数 控 装 置
第 三 章
2. 时钟中断法: 原理:求一种时钟频率,用软件控制每个时钟周期内 的插补次数。 适用:脉冲增量插补原理。具有精密、实时、并行特 征,适合于较复杂的控制过程。
时钟中断法常用的有两种方法:
计 算 机 数 控 装 置
①采用变频振荡器发出某一频率的脉冲,作为请求中断信号, CPU 每接收到一次中断信号,就进行一次插补运算并发出一个进给脉冲。 该方法须外加脉冲源,且不适用于 F功能直接用mm/min给定的系统。 ②利用可编程定时器/计时器的计时时间,当计时时间到后,即可发 出请求中断信号。该方法由程序设置定时器/计时器的时间常数Tc, 改变时间常数Tc,就改变了请求中断的频率;改变请求中断的频率, 就相当于改变了插补的速度,也就控制了进给速度。 12 该方法可用于F功能直接用mm/min给定的系统。

数控车床的进给速度和加减速控制教学文案

数控车床的进给速度和加减速控制教学文案

余数处理程序框图如图所示。
以上进给速度的控制方法基本上都适用于数字 脉冲增量法插补的CNC系统。
3、数据采样的CNC系统加减速控制 加减速控制大多采样软件来实现,以便使系统
的速度控制更为灵活方便。 前加减速控制:加减速控制可以在插补前进行。 后加减速控制:加减速控制可以在插补后进行。
(1)前加减速控制 前加减速控制是对编程的F指令值即合成速度进
行控制。首先要计算出稳定速度Fs和瞬时速度Fi。 稳定速度——就是系统处于恒定进给状态时,
在一个插补周期内每插补一次的进给量。实际上就 是编程给定F值(mm/min)在每个插补周期T(ms) 的进给量。
考虑调速方便,设置了快速和切削进给的倍率 开关,其速度系数设为K(%),可得Fs的计算公式 为:
Fs 6T01K0F0(m 0 m /min)
稳定速度计算结束后,要进行速度限制检查, 如稳定速度超过由参数设定的最高速度,则取限制 的最高速度为稳定速度。
瞬时速度——就是系统每个插补周期的实际进 给量。
当系统处于恒定进给状态时,瞬时速度Fi=Fs;
当系统处于加速状态时,瞬时速度Fi<Fs;
当系统处于减速状态时,瞬时速度Fi>Fs;
位置计算是算出移动 过程中的当前位置,以便 确定位移是否达到降速点 和低速点,并给出相应标 志,若GD=10时到达降速 点,GD=01时到达低速点。
2、时钟中断法 按照程序计时法所计算的频率 f 值预置适当的
实时时钟,从而产生频率为 f 的定时中断。
CPU每接受一次中断信号,就进行一次插补运算 并送出一个进给脉冲,这类似硬件插补那样,每次 中断要经过常规的中断处理后,再调用一次插补子 程序转入插补运算。
另外,要进行速度的换算:如实际给定的进给 速度是Fp的整数倍时,就表示每次中断进行的插补 次数;

数控车床的进给速度和加减速控制课件

数控车床的进给速度和加减速控制课件
软件控制 采用——程序计时法(程序延时法)。
软件与接口控制 采用——时钟中断法、 v/ΔL 积 分 器 法 ( 适 于 采 用 DDA 或 扩展DDA插补中的稳速控制)。
1、程序计时法(程序延时法) 其过程是: (1)计算出每次插补运算所占用的时间; (2)由给定的F值计算出相应的进给脉冲间隔时间; (3)由进给脉冲间隔时间减去插补运算时间,得到
数 控 技术
第四章 计算机数控(CNC)系统 第四节 进给速度和加减速控制
Байду номын сангаас
数控机床的进给速度F指令值与加工精度、表面粗糙 度和生产率有着密切关系。对于不同轮廓尺寸、不同材料、 不同技术要求的零件,对其切削进给速度有不同的要求,一 般要求进给速度稳定、有一定的调速范围,且起动迅速,停 止准确。
两种进给速度单位:mm / min ;
yi
L sin i
FT 60
• ii1 R
ii1
FT
60R
式中:R——圆弧半径(mm)
(mm)
ii-1、 jj-1——圆心相对于第 i –1 点的坐标值
i——第 i 点与第 i –1 点连线与 x 轴的夹
角(圆弧某点切线方向,即进给速度方向与X轴夹角)
——步长分配系数
二、进给速度控制
CNC系统中进给速度控制方式:
进给速度F 60 f (mm / min)
脉冲频率f F FK
60
其中K 1
60
两轴联动各坐标轴进给速度:
vx 60 f x vy 60 f y
合成速度
v
v
2 x
v
2 y
F
要进给速度稳定,故要 选择合适的插补算法, 以及采取稳速措施。

数控车床的进给速度和加减速控制

数控车床的进给速度和加减速控制

(2)后加减速控制
放在插补后各坐标轴旳加减速控制为后加减速控 制。
这种加减速控制是对各运动坐标轴进行分别控制, 所以,可利用实际进给滞后于插补运算进给这一特点, 在减速控制时,只要到达运算终点就进行减速处理, 经合适延迟就能平稳地到达程序终点,无需预测减速 点。
后加减速控制旳规律实际 上与前加减速一样,一般 有直线和指数规律旳加减 速控制。
直线加减速控制使机 床起动时,速度按一定斜 率旳直线下降,如图。
指数加减速控制目旳是把机械设备起动或停止 时旳速度突变,变成随时间按指数规律上升和下降。
指数加减速度与时间旳关系为:
加速时
v ( t ) = vc ( 1 – e - 1/T )
匀速时
v ( t ) = vc
减速时
v ( t ) = vc e - 1/T
si
xe xi
1
cos
对于圆弧插补, si旳计算应按圆弧所 相应旳圆心角不不小 于及不小于π两种情 况进行分别处理,如 图。
不大于π时,瞬时
加工点离圆弧终点旳直
线距离越来越小,以MP
为基准,A点离终点旳距
离为:
si
MP 1
cos
ye yi
1
cos
不小于π时,设A点为圆弧AP旳起点,B点为离终 点P旳弧长所相应旳圆心角等于π时旳分界点,C点则 为不不小于π圆心角旳某一瞬时点。
式中T 为加减速时间参数; vc为稳定速度;v ( t )为
被控旳输出速度。
根据闭环、半闭环数控系统旳控制方式,可用 如图所示旳算法原理图来实现指数加减速控制。
图中Δt表达采样周期,其作用是每个采样周期 进行一次加减速运算,对输出速度进行控制。
误差寄存器E将每个采样周期旳输入速度 vc 与 输出速度 v 之差进行累加,累加成果一方面保存在 误差寄存器中,另一方面与1/T相乘,乘积作为目前 采样周期加减速控制旳输出速度 v 。同步 v 又反馈 到输入端,准备下一采样周期到来。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fs2 s s 2a
2)终点判别处理 在前加减速处理中,每次插补运算后,系统都 要按求出的各轴插补进给量来计算刀具中心离开本 程序段终点的距离si,并以此进行终点判别和检查 本程序段是否已到达减速区并开始减速。 对于直线插补,si的计算可应用公式:
xi xi 1 x yi yi 1 y
1 F 2 F 2 a 1.67 10 ( m / ms ) 60 t t
加速时,系统每插补一次都要进行稳定速度、瞬 时速度和加速处理。 若给定稳定速度要作改变,当计算出的稳定速度 Fs′大于原来的稳定速度Fs时,则要加速。 或者,给定的稳定速 度Fs不变,而计算出的瞬 时速度Fi<Fs,则也要加 速。 每加速一次,瞬时速 度为: Fi+1=Fi+at 新的瞬时速度Fi+1参 加插补计算,对各坐标轴 进行进给量的分配。
前加减速控制的优点是不会影响实际插补输出 的位置精度,而需要进行预测减速点的计算,花费 CPU时间;
后加减速控制的优点则是无需预测减速点,简 化了计算,但在加减速过程中会参数实际的位置误 差,这当然仅仅是局部的。
程序计时法大多用于点位、 直线控制系统,且系统采用数 字脉冲增量法。不同的空运转 时间对应不同的进给速度。 这种系统控制的进给运动 速度可分为升速、恒速、降速 等几个阶段。其控制过程如图 所示。
速度准备框的内容包 括按照指令速度预先算出 降速距离,且置入相应的 单元;
速度控制框内需置入速度控制 字和速度标志FK(当前速度控 制值)、FK0(存恒定值)、 FK1(存低速值),这一速度控 制子程序的主要功能是给出 “当前速度值”,以实现升速、 降速、恒速和低速控制;
在这种情况下的终点判别,首先应判别si的变化趋 势,若si变大,则不进行终点判别处理直到越过分界点; 若si变小再进行终点判别处理。
过 程 如 下 图 所 示 。
(2)后加减速控制 放在插补后各坐标轴的加减速控制为后加减速控 制。 这种加减速控制是对各运动坐标轴进行分别控制, 因此,可利用实际进给滞后于插补运算进给这一特点, 在减速控制时,只要达到运算终点就进行减速处理, 经适当延迟就能平稳地到达程序终点,无需预测减速 点。 后加减速控制的规律实际 上与前加减速一样,通常 有直线和指数规律的加减 速控制。 直线加减速控制使机 床起动时,速度按一定斜 率的直线下降,如图。
余数处理程序框图如图所示。
以上进给速度的控制方法基本上都适用于数字 脉冲增量法插补的CNC系统。
3、数据采样的CNC系统加减速控制 加减速控制大多采样软件来实现,以便使系统 的速度控制更为灵活方便。 前加减速控制:加减速控制可以在插补前进行。 后加减速控制:加减速控制可以在插补后进行。 (1)前加减速控制 前加减速控制是对编程的F指令值即合成速度进 行控制。首先要计算出稳定速度Fs和瞬时速度Fi。 稳定速度——就是系统处于恒定进给状态时, 在一个插补周期内每插补一次的进给量。实际上就 是编程给定F值(mm/min)在每个插补周期T(ms) 的进给量。
考虑调速方便,设置了快速和切削进给的倍率 开关,其速度系数设为K(%),可得Fs的计算公式 为: TKF Fs ( mm / min) 60 1000 稳定速度计算结束后,要进行速度限制检查, 如稳定速度超过由参数设定的最高速度,则取限制 的最高速度为稳定速度。 瞬时速度——就是系统每个插补周期的实际进 给量。 当系统处于恒定进给状态时,瞬时速度Fi=Fs; 当系统处于加速状态时,瞬时速度Fi<Fs; 当系统处于减速状态时,瞬时速度Fi>Fs;
1 L FT 60
式中:F——编程给出的合成速度(mm / min) T——插补周期(ms) L——每个插补周期子线段的长度( m)
x、y轴在一个插补周期中的步长为:
1 x L cos FT cos ( m) 60 1 y L sin FT sin ( m) 60
进给速度F 60 f ( m m / m in) 脉冲频率f 其中K F FK 60
1 60
两轴联动各坐标轴进给速度:
v x 60 f x v y 60 f y 合成速度 v
2 2 vx vy F
要进给速度稳定,故要 选择合适的插补算法, 以及采取稳速措施。
1、程序计时法(程序延时法) 其过程是:
(1)计算出每次插补运算所占用的时间;
(3)由进给脉冲间隔时间减去插补运算时间,得到 每次插补运算后的等待时间,由软件实现计时等待。
(2) 由给定的 F 值计算出相应的进给脉冲间隔时间;
为使进给速度可调,延时子程序按基本计时单位 设计,并在调用这子程序前,先计算等待时间对基本 时间单位的倍数,这样可用不同的循环次数实现不同 速度的控制。
1 1 si MP y e yi cos cos
大于π 时,设A点为圆弧AP的起点,B点为离终点P 的弧长所对应的圆心角等于π 时的分界点,C点则为小 于π 圆心角的某一瞬时点。
瞬时点离圆弧终点的距离si的变化规律是: 当瞬时加工点由A到B点时,si越来越大,直到它等 于直径; 当加工点越过分界点B后,si越小。
1、开环系统
在开环系统中,坐标轴运动速度是通过控 制输出给步进电机脉冲的频率来实现的。 每输出一个脉冲,步进电机就转过一定角 度,驱动坐标轴进给一个距离,即 mm / 脉 冲(脉冲当量)。 插补程序根据零件轮廓尺寸和F指令值向各个 坐标轴分配脉冲序列,其中脉冲数提供了位置 指令值,脉冲频率确定了坐标轴进给的速度。
设直线终点P坐标为(xe , ye),x为长轴,其 加工点A(xi , yi) 已知,则瞬时加工点A离终点P距 离si为:
1 si xe xi cos
对于圆弧插补, si的计算应按圆弧所 对应的圆心角小于及 大于π 两种情况进行 分别处理,如图。
小于π 时,瞬时加 工点离圆弧终点的直线 距离越来越小,以MP为 基准,A点离终点的距离 为:
另外,要进行速度的换算:如实际给定的进给 速度是Fp的整数倍时,就表示每次中断进行的插补 次数; 如给定进给速度非Fp的整数倍时,包括大于和 小于Fp两种情况,则可将其余数进行累加计算,每 次中断作一次累加,对大于Fp的情况,有溢出时应 多做一次插补运算,对小于Fp的情况,则经多次中 断累加有溢出时才进行一次插补运算。
数 控 技术
第四章 计算机数控(CNC)系统 第四节 进给速度和加减速控制
数控机床的进给速度F指令值与加工精度、表面粗糙度和 生产率有着密切关系。对于不同轮廓尺寸、不同材料、不同 技术要求的零件,对其切削进给速度有不同的要求,一般要 求进给速度稳定、有一定的调速范围,且起动迅速,停止准 确。 两种进给速度单位:mm / min ; mm / r 。
当速度较高时,CPU的时间很紧张,且这种方法 不适用于每分钟毫米直接给定速度的系统。
时钟中断法只要求一种时钟频率,并用软件控 制每个时钟周期内的插补次数,以达到进给速度控 制的目的。
进给速度可用mm/min给定。
首先要对这个唯一的时钟频率进行合理选择, 选择的原则是满足最高插补进给速度的要求,并考 虑到计算机换算的方便,取一个特殊的速度为Fp, 使在该速度下每个时钟周期进行一次插补。
式中为直线与x轴夹角
(2)圆弧插补的速度计算 圆弧插补的速度计算任务是计算步长分配系数。 坐标轴一个插补周期的步长为:
FT j j 1 xi L cos i j j 1 60 R FT ii 1 yi L sin i ii 1 60 R
式中:R——圆弧半径(mm)
1)线性加减速处理 当数控设备启动、停止或在加工中改变进给速 度时,系统能进行自动加减速处理,这种处理常有 指数、线性和s型等加减速。 线性加减速的处理过程: 首先,把快速进给和加工进给的加减速率必须 作为机床参数预先给予设定。 设进给设定F(mm/min),加速到F所需时间为 t(ms),则加/减速度a可按下式计算:
根据闭环、半闭环数控系统的控制方式,可用 如图所示的算法原理图来实现指数加减速控制。
图中Δ t表示采样周期,其作用是每个采样周期 进行一次加减速运算,对输出速度进行控制。 误差寄存器E将每个采样周期的输入速度 vc 与 输出速度 v 之差进行累加,累加结果一方面保存在 误差寄存器中,另一方面与1/T相乘,乘积作为当前 采样周期加减速控制的输出速度 v 。同时 v 又反馈 到输入端,准备下一采样周期到来。
位置计算是算出移动 过程中的当前位置,以便 确定位移是否达到降速点 和低速点,并给出相应标 志,若GD=10时到达降速 点,GD=01时到达低速点。
2、时钟中断法 按照程序计时法所计算的频率 f 值预置适当的 实时时钟,从而产生频率为 f 的定时中断。
CPU每接受一次中断信号,就进行一次插补运算 并送出一个进给脉冲,这类似硬件插补那样,每次 中断要经过常规的中断处理后,再调用一次插补子 程序转入插补运算。
减速时,系统每进行一次插补运算后,都要进 行终点判断,也就是要计算出离终点的瞬时距离si。 并按本程序段的减速标志,判别是否已到达减速区, 若已到达,则要进行减速。 如图,如果稳定速度 Fs和设定的加/减速度a已 确定,可用下式计算出减 速区域:
F 1 2 Fs s ( s at , t ) 2a 2 a
2、闭环和半闭环系统
在这种系统中采用数据采样插补方法时, 根据编程的F值,将轮廓曲线分割为插补 周期,即迭代周期的进给量——轮廓子 步长法。 速度计算的任务是:当直线时,计算出 各坐标轴的插补周期的步长;当圆弧时, 计算步长分配系数(角步距)。

(1)直线插补的速度计算 直线插补的速度计算是 为插补程序提供各坐标轴在 同一插补周期中的运动步长。 一个插补周期的步长为:
FT 60 R
ii-1、 jj-1——圆心相对于第 i –1 点的坐标值(mm)
i——第 i 点与第 i –1 点连线与 x 轴的夹角(圆弧某点 切线方向,即进给速度方向与X轴夹角)
相关文档
最新文档