估算与近似值的区别
近似值与估算

近似值与估算在计数、度量和计算过程中,得到和实际情况丝毫不差的数值叫做准确数。
但在大多数情况下,得到的是与实际情况相近的、有一定误差的数,这类近似地表示一个量的准确值的数叫做这个量的近似数或近似值。
例如,测量身高或体重,得到的就是近似数。
又如,统计全国的人口数,由于地域广人口多,统计的时间长及统计期间人口的出生与死亡,得到的也是近似数。
用位数较少的近似值代替位数较多的数时,要有一定的取舍法则。
要保留的数位右边的所有数叫做尾数,取舍尾数的主要方法有:(1)四舍五入法。
四舍,就是当尾数最高位上的数字是不大于4的数时,就把尾数舍去;五入,就是当尾数最高位上的数字是不小于5的数时,把尾数舍去后,在它的前一位加1。
例如:7.3964…,截取到千分位的近似值是7.396,截取到百分位的近似值是7.40。
(2)去尾法。
把尾数全部舍去。
例如:7.3964…,截取到千分位的近似值是7.396,截取到百分位的近似值是7.39。
(3)收尾法(进一法)。
把尾数舍去后,在它的前一位加上1。
例如:7.3964…,截取到千分位的近似值是7.397,截取到百分位的近似值是7.40。
表示近似值近似的程度,叫做近似数的精确度。
在上面的三种方法中,最常用的是四舍五入法。
一般地,用四舍五入法截得的近似数,截到哪一位,就说精确到哪一位。
典型题解例1有13个自然数,它们的平均值精确到小数点后一位数是26.9。
那么,精确到小数点后两位数是多少?分析与解:13个自然数之和必然是整数,因为此和不是13的整数倍,所以平均值是小数。
由题意知,26.85≤平均值<26.95,所以13个数之和必然不小于26.85的13倍,而小于26.95的13倍。
26.85×13=349.05,26.95×13=350.35。
因为在349.05与350.35之间只有一个整数350,所以13个数之和是350。
350÷13=26.923…当精确到小数点后两位数时,是26.92。
三年级下册数学估算讲解

三年级下册数学估算讲解
在三年级下册数学学习中,估算是一个重要的主题,它可以帮助学生在实际生活中快速估算出一些数学问题的答案,提高他们的数学能力。
以下是一些关于三年级下册数学估算的讲解。
1. 估算的定义
估算是指在没有精确计算的情况下,通过近似值或预估值来计算数学问题的一种方法。
例如,估算可以用来计算购物清单的总价,或者估算一个物品的长度或重量。
2. 估算的方法
估算有许多方法,包括:
- 调整法:通过调整一个数的值来估算其他数的值。
例如,如果你知道一支铅笔的长度是15厘米,你可以通过比较它和另一支铅笔的长度,来估算那支铅笔的长度。
- 简化法:将一个数化简为一个更容易计算的数,然后再进行估算。
例如,如果你要估算60 ÷ 4的值,你可以将60化简为50,然后计算50 ÷ 4的值,得到12.5。
- 近似法:通过将一个数近似为一个更容易计算的数,然后进行估算。
例如,如果你要估算25 + 38的值,你可以将25近似为30,将38近似为40,然后计算30 + 40的值,得到70。
3. 估算的应用
估算在日常生活中有很多应用。
例如,在购物时,估算可以帮助你快速计算出购物清单的总价,以确保你的购物预算不超支。
在旅行
时,估算可以帮助你计算出路程的时间和花费。
在烹饪时,估算可以帮助你确定食材的用量和烹饪时间,以确保你的菜肴味道和口感都符合预期。
总之,在三年级下册数学学习中,估算是一个重要的主题。
通过学习估算的基本概念、方法和应用,可以帮助学生提高他们的数学能力,使他们在日常生活中更加便利和自信。
小学数学中的估算

小学数学中的估算估算作为一种重要的数学能力,近年来逐渐受到国际数学教育界的重视。
在《美国学校数学教育的原则和标准》中对估算提出了明确的要求:“学前期至十二年级的数学教育,应该使所有的学生都能够熟练地计算并进行合理的估算。
”荷兰、英国、法国等国家的正式课程中,也包括估算内容的教学。
我国《课程标准》对估算教学提出了明确的目标和要求:“在小学第一学段要求学生能结合具体情境进行估算,并解释估算的过程;第二学段要求学生在解决具体问题的过程中,能选择合适的估算方法,养成估算的习惯。
”估算是估计的一个方面。
小学数学中的估计大体有三种:估算、估量和估数。
国内关于估算教学的研究并不多,由于缺乏相关的理论指导,教师对估算内容的教学存在着困惑,必然导致处理不当等现象的发生。
一、估算的作用估算是一种生活技能,在日常生活中,我们经常会用到估算。
如:有足够多的现金来支付这些书款吗?粉刷房间需要多少涂料?体育馆能容纳多少名观众?……类似的问题有很多,回答这些问题都需要用到估算。
据统计,平时应用估算与精确计算的比例为3∶1。
因此,熟练地掌握估算技巧可以方便我们的生活。
除此之外,估算还有以下几个方面的作用:1.估算有利于培养学生的数感。
2.估算有助于培养学生的思维能力。
3.估算可以使学生及时发现错误。
4.估算有助于调动学生学习的积极性。
二、对估算的理解Smart把估算定义为:为了一定的目的,对大小、数量、数给出一个足够精确的判断。
即按照一定的要求对初始数据进行心算,给出结果,并且结果落在某个指定的范围内。
我们经常遇到这样的情况,在让学生估算时,学生往往不进行估算,而是直接进行精确计算或近似计算。
估算不同于精确计算和近似计算,估算通常是一个心理操作活动,而近似计算或精确计算都要借助计算器或纸、笔进行。
如估算4÷21的值,可以这样估算:4÷21<4÷20=0.2,4÷21>4÷25=0.16,所以4÷21的值介于0.16和0.2之间,这个结果的范围是估计出来的。
估算知识点的总结

估算知识点的总结一、估算的基本原理估算是通过一定的逻辑推理和计算,得出一个近似的结果。
在实际生活中,我们经常会碰到一些没有确切数据的问题,这时就需要用到估算的技巧。
比如,我们看到一种商品标价1000元,但由于我们没带测量工具,我们无法精确估计这种商品的价格,这时我们就可以使用估算的方法来得出一个近似的结果。
估算的基本原理包括以下几点:1. 近似值:估算得出的结果是一个近似值,不是一个精确值。
这是因为估算是根据一些已知的信息和经验进行推测和计算的,其结果只能作为一个大致的参考,不能完全代表实际值。
2. 逻辑推理:估算是建立在一定的逻辑推理之上的。
在估算过程中,我们需要根据已知的信息和问题的特点,进行合理的逻辑推理,从而得出一个近似的结果。
3. 灵活应用:估算需要我们在实际问题中灵活应用各种方法和技巧。
不同的问题可能需要不同的估算方法,我们需要根据具体情况选择合适的方法。
二、估算的方法估算的方法主要包括以下几种:1. 数值近似法:这是最常用的估算方法之一。
通过对实际数值进行近似,把复杂的运算转化为简单的运算,从而得出大致的结果。
例如,将一个小数近似为一个整数,或者将一个较大的数近似为一个较小的数,从而方便计算。
2. 分段估算法:将一个复杂的问题分成若干个简单的部分,然后对每个部分进行估算,最后将各个部分的结果合并起来,得出整体的估算结果。
这种方法适用于一些复杂的问题,通过分段估算可以简化计算过程,降低计算难度。
3. 类比估算法:将一个问题类比为一个已知的问题,通过对已知问题的估算,得出未知问题的估算结果。
这种方法适用于一些与已知问题类似的新问题,通过类比可以加速估算过程,提高估算的精度。
4. 经验估算法:根据已有的经验和常识进行估算。
例如,我们可以根据地理位置和气候条件,估算某地的平均降雨量;或者可以根据人口数量和食物需求,估算某地的粮食需求量。
这种方法适用于一些常见的问题,通过经验估算可以得出较为准确的结果。
近似数与估算_三年级数学

近似数与估算冀教版三年级上册数学第一单元设计到了近似数与估算,刚刚升入三年级的孩子,对于新接触的估算,不精确的数有疑惑,很多孩子认为这个是不对的,错误最多的地方就是估算不够大胆,不敢于估算为整十整百的数。
还有的孩子不能正确使用“=”与“≈”。
比如:求下列各数的近似数。
416 ≈();1927 ≈();689 ≈();9019 ≈().解答过程中学生容易这样写的:416 ≈(520 );1927 ≈(1950 );689 ≈(690 );9019 ≈(9020 ).这样的结果没有错,但是不够大胆,孩子的心里就是担心,怕一个数字变化太大了就错了。
其实可以放开做。
可以写成这样:416 ≈(400 );1927 ≈(2000 );689 ≈(700 );9019 ≈(9000 ).有的人会问,估算有没有一个尺度,近似到什么程度比较好。
在这里,我们要有一个原则,尽量近似到整十整百。
如果题目是求解近似数,我们可以近似到整十,如果是应用题,购物什么的,我们尽量近似到整百,整千,这样对后面的解题过程有帮助。
如果求近似数,如1927 ≈(),我们可以写1927 ≈(1930 ),注意不能写为1927 ≈(1920 )。
如果是解应用题,如:小明妈妈去商场买电视机与饮水机,电视机的价格是1927元,饮水机的价格是416元,估算一下,小明妈妈需要带多少钱?这个就应该这样估算,1927 ≈2000,416 ≈400,2000 + 400 = 2400(元)。
答:小明妈妈需要带2400元钱。
值得注意的是,在上面的解题过程中,1927 ≈2000,416 ≈400必须用“≈”,2000 + 400 = 2400 必须用“=”。
这个细节很多孩子不能正确把握。
教材中涉及到了四舍五入法,没有深入的讲解。
在取小数近似数的时候,如果尾数的最高位数字是4或者比4小,就把尾数去掉。
如果尾数的最高位数是5或者比5大,就把尾数舍去并且在它的前一位进"1",这种取近似数的方法叫做四舍五入法。
数的估算与近似

数的估算与近似数的估算与近似在数学中扮演着重要的角色。
它们可以帮助我们在没有精确数值的情况下,通过使用适当的近似方法来计算数值。
本文将探讨数的估算与近似的概念、方法和应用。
一、数的估算与近似的概念数的估算与近似是指在计算过程中,用一些不精确但相对接近的数值来替代确切的数值。
这种处理方式一般在实际问题中应用广泛,因为很多情况下我们无法获得完全准确的数值,或者为了简化计算而需要使用近似数。
二、数的估算与近似的方法1.舍入法舍入法是一种常见的估算与近似方法。
它基于四舍五入的原则,将数值调整到最接近的整数或指定位数的小数。
这种方法在计算金融数据、统计数据等情况下经常使用。
例如,要将3.14159近似到小数点后两位,可以使用舍入法将其近似为3.14。
2.科学记数法科学记数法是另一种常用的估算与近似方法。
它通过将一个数表示为一个基数和指数的乘积,简化了大数或小数的表达和计算。
科学记数法通常在科学、工程等领域广泛应用。
例如,1,500,000可以用科学记数法表示为1.5 × 10^6,其中1.5是基数,6是指数。
3.估算法估算法是一种以近似的方式求解问题的方法。
它不追求精确值,而是利用一些简化的计算或近似方法得到一个接近解。
例如,要计算48 × 17,可以将48近似为50,将17近似为20,然后进行乘法运算(50 × 20 = 1000),最后再根据估算结果进行适当的调整。
三、数的估算与近似的应用1.商业计算在商业计算中,数的估算与近似广泛应用于成本估计、销售预测和市场分析等方面。
通过使用适当的近似方法,可以在短时间内得到准确的结果,并为决策提供支持。
2.科学研究在科学研究中,数的估算与近似常见于实验和观测数据的处理过程中。
由于实验或观测过程中的误差和不确定性,科学家们经常需要使用一些近似方法来处理数据并得出结论。
3.工程设计工程设计中经常需要进行参数估算与近似计算,以确定合适的设计参数。
乘法估算的方法

乘法估算的方法
乘法估算是一种在计算过程中快速估算乘法结果的方法。
以下是一些常用的乘法估算方法:
1. 近似估算法:适用于两个较大的数相乘的情况。
首先将乘法运算简化为相对较小的数相乘,然后再进行估算。
例如,要估算68 × 47,可以先将68近似为70,将47近似为50,然后计
算70 × 50 = 3500 来代替估算。
2. 分解估算法:适用于较复杂的乘法运算。
将一个较大的数分解成较小的数的乘积,然后进行分别估算和相加。
例如,要估算145 × 27,可以将145分解为100 + 40 + 5,将27分解为20 + 7,然后计算(100 × 20) + (40 × 20) + (5 × 7) = 2000 + 800 + 35 = 2835 来代替估算。
3. 使用整数的倍数:适用于估算某个数的某个倍数的乘法结果。
例如,要估算247 × 8,可以先计算240 × 8 = 1920,然后再加
上7 × 8 = 56,得到总估算结果为1976。
4. 使用相似性和近似值:适用于含有近似值的乘法运算。
根据数值的相似性,结合已知的近似值进行估算。
例如,要估算23.5 × 4.7,可以将4.7近似为5,然后计算23.5 × 5 = 117.5 来
代替估算。
以上是一些常用的乘法估算方法,通过灵活运用这些方法,我们可以在计算乘法时快速估算结果,提高计算效率。
估算与近似值的区别

估算与近似值的区别王倩新课程标准明确提出:“应重视口算,加强估算,提倡算法多样化。
”估算是以口算为基础的,估算要加强,必须有口算的准确熟练为坚实的基础。
同时估算也要提倡算法多样化,允许学生采用不同的算法。
取近似值估算,就是在以上的理念指导下进行的“取整”口算,也就是按“四舍五入”法,将原始数据取近似的整十、整百、整千的数,进行口算,得以估算。
1、妈妈带100元钱去商店买下列生活用品:暖瓶28元,铝壶43元,茶杯一套24元,妈妈带的钱够吗?教材算法:28≈30 43≈4030+40=70 100-70=30 30>24所以100元够了。
学生喜欢的方法:28≈30 43≈40 24≈2030+40=70 70+20=90 90<100所以100元够了。
2、万以内数的加减法估算同学们收集矿泉水瓶,第三周收集192个,第四周收集219个。
第三、四周大约一共收集了多少个?估算方法一:192≈200 219≈200200+200=400 500-400=100估算方法二:192≈190 219≈220192+220=410 500-410=90多数学生喜欢第一种方法,理由是好算。
3、乘法估算。
每张门票8元,29个同学参观,带250元钱够吗?解法:29≈30 30×8=240 240<250 够了。
以上三个例题(当然教材里类似的例题还有,就不一一列举了。
)的教学,基本上代表了这一阶段的“取整估算”。
这一阶段的教学内容对学生来说并不难,学生易于接受和掌握。
通过四舍五入取整估算,学生初步知道估算的基本方法,大概了解估算的意义。
这一阶段估算教学实践的体验和借鉴:1、由于多个例题的取整估算的学习,再加上教师设计的一定量的类似的练习强化,容易给学生形成一种条件反射:即,见到估算就全部取整估算。
尤其是两个数的加减法估算影响最大。
2、建议:两个数的加减法估算,不必两个数都要取整估算,可将其中一个数取整估算,即可起到估算的效果,又不会对两位数乘法估算起到负迁移作用,而且在某种程度上还有正迁移的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
估算与近似值的区别
希望学校李桂兰
估算,因为它的方便简洁,在日常实际生活中,应用非常广泛,有着举足轻重的作用。
但在我们小学的数学课本上出现较少。
所以许多同学,不能准确的理解和应用估算。
常和近似值混淆。
在教学中发现班里许多学生在估算解决问题是,总是先计算只把结果“估算”。
下面,谈谈自己在教学中的点滴认识。
两者的意义不同,方法不同,原则不同,结果不同。
以小学阶段的《积得近似值》和《商的近似值》为例来说:先求出积或者商,再求它近似值。
做法是先求出准确值,再根据要求和实际情况,按四舍五入法的原则取舍,得到近似值。
得到的结果只有是一个正确答案。
比如,8×1.2=9.6如果要求保留整数,按四舍五入法取舍就只能是约等于10.
其他的答案都是错误的。
而估算,通俗的说就是:“先估再算”。
是在计算之前,先对题中的数据加工。
在这一步较灵活,可以估大,也可以估小。
没有严格的原则,比如,34,5可以估做35,也可以故作30,还可以故作40.然后再根据题意列式计算,得到的结果当然就不是唯一的。
只要结论一致即对.。
比如,新人教审核版五年级数学上册17页练习四的第5题,苹果每箱38.2元,可以估做40元,梨每箱9.6元可以估作10元,香蕉每箱22.8元有的同学故作25元,有的同学故作23元,都是可以的。
这样就有:40+10+25×2=100和40+10+23×2=96
而96小于100,100等于100,结论是:够了。
这两种做法都应该肯定。
总之,在学习中一定要让学生多比较那些相近的内容,只有比较,才有鉴别。
在鉴别中进一步理解明确巩固所学的知识,理解了才能灵活应用于生活,达到我们数学教学的目的。