凉山州2012年中考数学试题精析
2024年四川省凉山州中考数学试卷(附答案)

2024年四川省凉山州中考数学试卷(附答案)一、选择题(共12小题,每小题4分,共48分)在每小题给出的四个选项中只有一项的,请把正确选项的字母序号填涂在答题卡上对应的位置。
1.(4分)下列各数中:5,﹣,﹣3,0,﹣25.8,+2,负数有()A.1个B.2个C.3个D.4个【分析】根据正数和负数的定义判断即可,注意:0既不是负数也不是正数.【解答】解:5>0,是正数;,是负数;﹣3<0,是负数;0既不是正数,也不是负数;﹣25.8<0,是负数;+2>0,是正数;∴负数有,﹣3,﹣25.8,共3个.故选:C.2.(4分)如图,由3个相同的小正方体搭成的几何体的俯视图是()A.B.C.D.【答案】B.3.(4分)下列运算正确的是()A.2ab+3ab=5ab B.(ab2)3=a3b5C.a8÷a2=a4D.a2•a3=a6【答案】A.4.(4分)一副直角三角板按如图所示的方式摆放,点E在AB的延长线上,当DF∥AB时,∠EDB的度数为()A .10°B .15°C .30°D .45°【答案】B .5.(4分)点P (a ,﹣3)关于原点对称的点是P ′(2,b ),则a +b 的值是()A .1B .﹣1C .﹣5D .5【答案】A .6.(4分)如图,在Rt △ABC 中,∠ACB =90°,DE 垂直平分AB 交BC 于点D ,若△ACD 的周长为50cm ,则AC +BC =()A .25cmB .45cmC .50cmD .55cm【答案】C .7.(4分)匀速地向如图所示的容器内注水,直到把容器注满.在注水过程中,容器内水面高度h 随时间t 变化的大致图象是()A .B .C .D .【答案】C .8.(4分)在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,每个团参加表演的8位女演员身高的折线统计图如下.则甲、乙两团女演员身高的方差s甲2、s乙2大小关系正确的是()A.s甲2>s乙2B.s甲2<s乙2C.s甲2=s乙2D.无法确定【答案】B.9.(4分)若关于x的一元二次方程(a+2)x2+x+a2﹣4=0的一个根是x=0,则a的值为()A.2B.﹣2C.2或﹣2D.【答案】A.10.(4分)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点A,B,连接AB,作AB的垂直平分线CD交AB于点D,交于点C,测出AB=40cm,CD=10cm,则圆形工件的半径为()A.50cm B.35cm C.25cm D.20cm【答案】C.11.(4分)如图,一块面积为60cm2的三角形硬纸板(记为△ABC)平行于投影面时,在点光源O的照射下形成的投影是△A1B1C1,若OB:BB1=2:3,则△A1B1C1的面积是()A.90cm2B.135cm2C.150cm2D.375cm2【答案】D.12.(4分)抛物线y=(x﹣1)2+c经过(﹣2,y1),(0,y2),(,y3)三点,则y1,y2,y3的大小关系正确的是()A.y1>y2>y3B.y2>y3>y1C.y3>y1>y2D.y1>y3>y2【答案】D.二、填空题(共5小题,每小题4分,共20分)13.(4分)已知a2﹣b2=12,且a﹣b=﹣2,则a+b=.【分析】利用平方差公式:a2﹣b2=(a+b)(a﹣b)计算即可.【解答】解:∵a2﹣b2=12,∴(a+b)(a﹣b)=12,∵a﹣b=﹣2,∴a+b=﹣6,故答案为:﹣6.【点评】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.14.(4分)方程=的解是.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可确定出分式方程的解.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故答案为:x=9【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(4分)如图,△ABC中,∠BCD=30°,∠ACB=80°,CD是边AB上的高,AE是∠CAB的平分线,则∠AEB的度数是100°.【分析】由CD是边AB上的高,∠BCD=30°,∠ACB=80°,可求得∠CAB、∠CBA的度数,因为AE是∠CAB的平分线,可得∠EAB的度数,根据三角形内角和定理,可得∠AEB的度数.【解答】解:∵CD是边AB上的高,∴∠CDB=∠CDA=90°,∵∠BCD=30°,∠ACB=80°,∴∠ACD=∠ACB﹣∠BCD=50°,∠CBD=90°﹣∠BCD=60°,∴∠CAB=90°﹣∠ACD=40°,∵AE是∠CAB的平分线,∴∠EAB=∠CAB=20°,∴∠AEB=180°﹣∠EAB﹣∠EBA=100°,故答案为:100°.【点评】本题考查了三角形内角和定理,角平分线的定义,关键是掌握三角形内角和定理,角平分线的定义.16.(4分)如图,四边形ABCD各边中点分别是E、F、G、H,若对角线AC=24,BD=18,则四边形EFGH的周长是.【解答】解:∵四边形ABCD各边中点分别是E、F、G、H,∴EF、FG、GH、HE分别为△ABC、△BCD、△ADC、△ABD的中位线,∴EF=AC=×24=12,GH=AC=12,FG=BD=×18=9,HE=BD=9,∴四边形EFGH的周长为:12+9+12+9=42,故答案为:42.17.(4分)如图,一次函数y=kx+b的图象经过A(3,6)、B(0,3)两点,交x轴于点C,则△AOC的面积为.【分析】先利用待定系数法求出直线AB的解析式,再求出点C坐标,根据三角形面积公式计算面积即可.【解答】解:∵一次函数y=kx+b的图象经过A(3,6)、B(0,3)两点,∴,解得,∴一次函数解析式为y=x+3,当y=0时,x=﹣3,∴C(﹣3,0),==9.∴S△AOC故答案为:9.三、解答题(共5小题,共32分)解答应写出文字说明、证明过程或演算步骤.18.(5分)计算:+|2﹣|+2﹣1+cos30°﹣(﹣1)0.【分析】利用分母有理化法则,零指数幂,特殊锐角三角函数值,绝对值的性质计算即可.【解答】解:原式=+2﹣++﹣1=+2﹣++﹣1=2.【点评】本题考查分母有理化,特殊锐角三角函数值,零指数幂,绝对值,熟练掌握相关运算法则是解题的关键.19.(5分)求不等式组﹣3<4x﹣7≤9的整数解.【分析】先根据不等式的性质求出不等式的解集,再根据求不等式组解集的规律求出不等式组的解集,最后求出不等式组的整数解即可.【解答】解:﹣3<4x﹣7≤9,即,解不等式①,得x>1,解不等式②,得x≤4,所以不等式组的解集是1<x≤4,所以不等式组﹣3<4x﹣7≤9的整数解是2,3,4.【点评】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能根据求不等式组解集的规律求出不等式组的解集是解此题的关键.20.(7分)为保证每位同学在学校组织的课外体育活动中,都能参与自己最喜欢的球类项目,学校体育社团随机抽取部分同学进行“最喜欢的球类项目”的调查(每人只能选择一项),根据调查结果绘制成以下两幅不完整的统计图:请根据统计图回答下列问题:(1)本次调查的总人数是50人,估计全校1500名学生中最喜欢乒乓球项目的约有120人;(2)补全条形统计图;(3)学校体育社团为了制订训练计划,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两名进行个别访谈,请用列表法或画树状图法求抽取的两人恰好是甲和乙的概率.【分析】(1)根据最喜欢足球的有18人,对应的百分比是36%,据此即可求得总人数;利用1500除以最喜欢乒乓球所占的百分数,即可求解;(2)求出喜欢篮球的人数和喜欢羽毛球的人数,然后补全统计图即可;(3)首先画出树状图,得出共有12种等可能的结果数,其中抽取两人恰好是甲乙的结果数为2,再根据概率公式,计算即可.【解答】解:(1)本次调查的总人数是为:18×36%=50(人),估计全校1500名学生中最喜欢乒乓球项目的约有1500×=120(人),故答案为:50,120;(2)喜欢篮球的人数为:50×24%=12(人),喜欢乒乓球的人数为:50﹣18﹣12﹣10﹣4=6(人),补全条形统计图如下:(3)解:画树状图如下:共有12种等可能的结果数,其中抽取两人恰好是甲乙的结果数为2,∴甲乙两位同学同时被抽中的概率为:=.【点评】本题考查了条形统计图、扇形统计图、用样本估计总体、利用树状图法求概率、概率公式,解本题的关键在充分利用统计图解答.21.(7分)为建设全城旅游西昌,加快旅游产业发展.2022年9月29日位于西昌主城区东部的历史风貌核心区唐园正式开园,坐落于唐园内的怀远塔乃唐园至高点,为七层密檐式八角砖混结构阁楼式塔楼,建筑面积为1845.4平方米,塔顶金碧辉煌,为“火珠垂莲”窣(sū)堵坡造型.某校为了让学生进一步了解怀远塔,组织九年级(2)班学生利用综合实践课测量怀远塔的高度.小江同学站在如图所示的怀远塔前的平地上A点处,测得塔顶C的仰角为30°,眼睛B距离地面1.8m,向塔前行67m,到达点D处,测得塔顶C的仰角为60°,求塔高CF.(参考数据:≈1.414,≈1.732,结果精确到0.01m)【分析】先用CG表示EG,BG,再根据BG﹣EG=67m,列方程求出CG,进一步可求出CF,从而解决问题.【解答】解:由题意,知∠CBG=30°,∠CEG=60°,∠CGB=∠CGE=90°,GF=ED=BA=1.8m,BE=67m,在Rt△CBG中,BG==CG,在Rt△CEG中,EG==CG,∵BG﹣EG=BE,∴CG﹣CG=67,解得CG≈58.02(m),∴CF=CG+GF=58.02+1.8=59.82(m),答:塔高CF为59.82m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,理解题意,熟练运用三角函数关系是解题的关键.22.(8分)如图,正比例函数y1=x与反比例函数y2=(x>0)的图象交于点A(m,2).(1)求反比例函数的解析式;(2)把直线y1=x向上平移3个单位长度与y2=(x>0)的图象交于点B,连接AB、OB,求△AOB 的面积.【分析】(1)待定系数法求出反比例函数解析式即可;(2)先得到平移后直线解析式,联立方程组求出点B 坐标,根据平行线可得S △AOB =S △ADO 代入数据计算即可.【解答】解:(1)∵点A (m ,2)在正比例函数图象上,∴2=,解得x =4,∴A (4,2),∵A (4,2)在反比例函数图象上,∴k =8,∴反比例函数解析式为y 2=.(2)把直线y 1=x 向上平移3个单位得到解析式为y =,直线与y 轴交点坐标为D (0,3),连接AD ,联立方程组,解得,(舍去),∴B (2,4),∴S △AOB =S △ADO ==6.【点评】本题考查了一次函数与反比例函数的交点问题,熟练掌握函数的平移法则是关键.四、填空题(共2小题,每小题5分,共10分)23.(5分)已知y2﹣x=0,x2﹣3y2+x﹣3=0,则x的值为3.【分析】由已知条件可得y2=x,将其代入x2﹣3y2+x﹣3=0中整理后解一元二次方程求得符合题意的x 的值即可.【解答】解:∵y2﹣x=0,∴y2=x≥0,∵x2﹣3y2+x﹣3=0,∴x2﹣3x+x﹣3=0,即x2﹣2x﹣3=0,解得:x1=3,x2=﹣1(舍去),即x的值为3,故答案为:3.【点评】本题考查一元二次方程的解,结合已知条件得到关于x的方程是解题的关键.24.(5分)如图,⊙M的圆心为M(4,0),半径为2,P是直线y=x+4上的一个动点,过点P作⊙M的切线,切点为Q,则PQ的最小值为2.【解答】解:如图,连接MP、MQ,∵PQ是⊙M的切线,∴MQ⊥PQ,∴PQ==,当PM最小时,PQ最小,当MP⊥AB时,MP最小,直线y=x+4与x轴的交点A的坐标为(﹣4,0),与y轴的交点B的坐标为(0,4),∴OA=OB=4,∴∠BAO=45°,AM=8,当MP⊥AB时,MP=AM•sin∠BAO=8×=4,∴PQ的最小值为:==2,故答案为:2.五、解答题(共4小题,共40分)25.(8分)阅读下面材料,并解决相关问题:如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点,…,第n行有n个点…,容易发现,三角点阵中前4行的点数之和为10.(1)探索:三角点阵中前8行的点数之和为36,前15行的点数之和为120,那么,前n行的点数之和为.(2)体验:三角点阵中前n行的点数之和不能(填“能”或“不能”)为500.(3)运用:某广场要摆放若干种造型的盆景,其中一种造型要用420盆同样规格的花,按照第一排2盆,第二排4盆,第三排6盆,…,第n排2n盆的规律摆放而成,则一共能摆放多少排?【解答】解:(1)由题知,三角点阵中前1行的点数之和为:1;三角点阵中前2行的点数之和为:1+2;三角点阵中前3行的点数之和为:1+2+3;三角点阵中前4行的点数之和为:1+2+3+4;…,所以三角点阵中前n行的点数之和为:1+2+3+…+n=.当n=8时,,即三角点阵中前8行的点数之和为36.当n=15时,,即三角点阵中前15行的点数之和为120.故答案为:36,120,.(2)不能.令得,解得n=,因为n为正整数,所以三角点阵中前n行的点数之和不能为500.故答案为:不能.(3)由题知,前n排盆景的总数可表示为n(n+1),令n(n+1)=420得,解得n1=﹣21,n2=20.因为n为正整数,所以n=20,即一共能摆20排.26.(10分)如图,在菱形ABCD中,∠ABC=60°,AB=2,E是BC边上一个动点,连接AE,AE的垂直平分线MN交AE于点M,交BD于点N,连接EN、CN.(1)求证:EN=CN;【分析】(1)利用线段垂直平分线的性质和菱形的性质即可证明出结论;(2)过点N作NG⊥BC于点G,连接AN,AG,过点A作AH⊥BC于点H,证明出2EN+BN的最小值为2AH,再求出AH即可解决问题.【解答】解:(1)连接AN,如图,∵四边形ABCD是菱形,∴点A,点C关于直线BD轴对称,∴AN=CN,∵AE的垂直平分线MN交AE于点M,交BD于点N,∴AN=EN,∴EN=CN;(2)过点N作NG⊥BC于点G,连接AN,AG,过点A作AH⊥BC于点H,∵四边形ABCD是菱形,∠ABC=60°,∴∠DBC=30°,∴BN=2NG,∵AE的垂直平分线MN交AE于点M,交BD于点N,∴EN=AN,∴2EN+BN=2AN+2NG=2(AN+NG)≥2AG≥2AH,∵∠ABC=60°,AB=2,∴AH=AB•sin60°=,∴2EN+BN的最小值为2.27.(10分)如图,AB是⊙O的直径,点C在⊙O上,AD平分∠BAC交⊙O于点D,过点D的直线DE ⊥AC,交AC的延长线于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)连接EO并延长,分别交⊙O于M、N两点,交AD于点G,若⊙O的半径为2,∠F=30°,求GM•GN的值.【解答】.(1)证明:连接OD,∵AD平分∠BAC,∴∠DAE=∠OAD,∵OA=OD,∴∠OAD=∠ODA,∴∠DAE=∠ODA,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:连接MD,AN,在Rt△ODF中,OB=OD=2,∠F=30°,∴OD=OF,∠BOD=60°,∴OF=4,∴DF==2,∴AF=2+4=6,在Rt△AEF中,∠F=30°,∴AE=AF=3,∵∠F=30°,OD⊥EF,∴∠DOF=60°=∠2+∠3,∵OA=OD,∵∠2=∠3,∴∠2=30°,∴∠2=∠F,∴AD=DF=2,∵OD∥AE,∴△DGO∽△AGE,∴==,∴DG=AD,AG=AD,∵∠ANM=∠MDG,∠MGD=∠AGN,∴△MGD∽△AGN,∴=,∴GM•GN=GD•GA=AD•AD=AD2=×(2)2=.28.(12分)如图,抛物线y=﹣x2+bx+c与直线y=x+2相交于A(﹣2,0),B(3,m)两点,与x轴相交于另一点C.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一个动点(不与A、B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E,当PE=2ED时,求P点坐标;(3)抛物线上是否存在点M使△ABM的面积等于△ABC面积的一半?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)把B(3,m)代入y=x+2求出B(3,5),再用待定系数法可得抛物线的解析式为y=﹣x2+2x+8;(2)设P(t,﹣t2+2t+8),则E(t,t+2),D(t,0),由PE=2DE,可得﹣t2+2t+8﹣(t+2)=2(t+2),解出t的值可得P的坐标为(1,9);=×6×5=15,设M (3)过M作MK∥y轴交直线AB于K,求出C(4,0),知AC=6,故S△ABC(m,﹣m2+2m+8),则K(m,m+2),可得MK=|﹣m2+2m+8﹣(m+2)|=|﹣m2+m+6|,S△ABM=MK •|x B﹣x A|=|﹣m2+m+6|,根据△ABM的面积等于△ABC面积的一半,有|﹣m2+m+6|=×15,可得|﹣m2+m+6|=3,即﹣m2+m+6=3或﹣m2+m+6=﹣3,解出m的值可得答案.【解答】解:(1)把B(3,m)代入y=x+2得:m=3+2=5,∴B(3,5),把A(﹣2,0),B(3,5)代入y=﹣x2+bx+c得:,解得,∴抛物线的解析式为y=﹣x2+2x+8;(2)设P(t,﹣t2+2t+8),则E(t,t+2),D(t,0),∵PE=2DE,∴﹣t2+2t+8﹣(t+2)=2(t+2),解得t=1或t=﹣2(此时P不在直线AB上方,舍去);∴P的坐标为(1,9);(3)抛物线上存在点M,使△ABM的面积等于△ABC面积的一半,理由如下:过M作MK∥y轴交直线AB于K,如图:在y=﹣x2+2x+8中,令y=0得0=﹣x2+2x+8,解得x=﹣2或x=4,∴A(﹣2,0),C(4,0),∴AC=6,∵B(3,5),=×6×5=15,∴S△ABC设M(m,﹣m2+2m+8),则K(m,m+2),∴MK=|﹣m2+2m+8﹣(m+2)|=|﹣m2+m+6|,=MK•|x B﹣x A|=|﹣m2+m+6|×5=|﹣m2+m+6|,∴S△ABM∵△ABM的面积等于△ABC面积的一半,∴|﹣m2+m+6|=×15,∴|﹣m2+m+6|=3,∴﹣m2+m+6=3或﹣m2+m+6=﹣3,解得m=或m=,∴M的坐标为(,)或(,)或(,)或(,).。
[2015年中考必备]2012年中考数学卷精析版——四川乐山卷
![[2015年中考必备]2012年中考数学卷精析版——四川乐山卷](https://img.taocdn.com/s3/m/4975951c4431b90d6c85c778.png)
2012年中考数学卷精析版——乐山卷(本试卷满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.(2012四川乐山3分)如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作【 】A .﹣500元B .﹣237元C .237元D .500元【答案】B 。
【考点】正数和负数。
【分析】根据题意收入为正,支出为负,支出237元应记作﹣237元。
故选B 。
2.(2012四川乐山3分)如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是【 】A .B .C .D .【答案】C 。
【考点】简单组合体的三视图。
【分析】左视图从左往右,2列正方形的个数依次为2,1,依此得出图形C 正确。
故选C 。
3.(2012四川乐山3分)计算(﹣x )3÷(﹣x )2的结果是【 】A .﹣xB .xC .﹣x 5D .x 5【答案】A 。
【考点】整式的除法。
【分析】根据整式的除法法则和顺序进行计算即可求出正确答案:()()3232x x =x x =x -÷--÷-。
故选A 。
4.(2012四川乐山3分)下列命题是假命题的是【 】A .平行四边形的对边相等B .四条边都相等的四边形是菱形C .矩形的两条对角线互相垂直D .等腰梯形的两条对角线相等【答案】C 。
【考点】命题与定理,平行四边形的性质,菱形的判定,矩形的性质,等腰梯形的性质。
【分析】根据平行四边形的性质,菱形的判定,矩形的性质,等腰梯形的性质做出判断即可:A 、平行四边形的两组对边相等,正确,是真命题;B、四条边都相等的四边形是菱形,正确,是真命题;C、矩形的对角线相等但不一定垂直,错误,是假命题;D、等腰梯形的两条对角线相等,正确,是真命题。
故选C。
5.(2012四川乐山3分)如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为【】A.B.C.D.1【答案】C。
2012年中考数学精析系列——德阳卷

2012年中考数学精析系列——德阳卷(本试卷满分120分,考试时间120分钟)一、选择题(本大题共12个小题,每小题3分,共36分)⒊ (2012四川德阳3分)使代数式x 2x 1-有意义的x 的取值范围是【 】 A.x 0≥ B.1x 2≠ C.x 0≥且1x 2≠ D.一切实数 【答案】C 。
【考点】二次根式和分式有意义的条件。
【分析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使x 2x 1-在实数范围内有意义,必须x 0x 012x 10x 2≥⎧≥⎧⎪⇒⎨⎨-≠≠⎩⎪⎩。
故选C 。
⒋ (2012四川德阳3分)某物体的侧面展开图如图所示,那么它的左视图为【 】【答案】B 。
【考点】几何体的展开图,简单几何体的三视图。
【分析】∵物体的侧面展开图是扇形,∴此物体是圆锥。
∴圆锥的左视图是等腰三角形。
故选B 。
⒌ (2012四川德阳3分)已知AB 、CD 是⊙O 的两条直径,∠ABC=30°,那么∠BAD=【 】A.45°B. 60°C.90°D. 30°【答案】D 。
【考点】圆周角定理,等腰三角形的性质。
【分析】∵∠ADC 与∠ABC 所对的弧相同,∴∠ADC=∠ABC=30°。
∵OA=OD ,∴∠BAD =∠ADC 30°,故选D 。
⒍ (2012四川德阳3分)某时刻海上点P 处有一客轮,测得灯塔A 位于客轮P 的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏听偏西60°方向航行32小时到达B 处,那么tan ∠ABP=【 】 A.21 B.2 C.55 D.552 【答案】A 。
【考点】解直角三角形的应用(方向角问题),锐角三角函数定义,特殊角的三角函数值。
【分析】∵灯塔A 位于客轮P 的北偏东30°方向,且相距20海里,∴PA=20。
∵客轮以60海里/小时的速度沿北偏西60°方向航行23小时到达B 处, ∴∠APB=90° ,BP=60×23=40。
2012凉山州初中毕业高中招生预测卷数学试题及参考答案

2012年凉山州初中毕业、高中阶段招生预测考试数学试卷本试卷共8页,分为A 卷(120分)、B 卷(30分),全卷150分,考试时间120分钟。
A 卷又分为第Ι卷和第II 卷。
注意事项1.第Ι卷答在题卡上,不能答在试卷上,答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用2B 或3B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案。
A 卷(共120分)第I 卷(选择题 共48分)注意事项:1.第Ι卷答在答题卡上,不能答在试卷上。
答卷前,考生务必将自己的姓名、准考证号、试题科目涂写在答题卡上。
2.每小题选出答案后,用2B 或3B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案。
一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确的字母填涂在答题卡上相应的位置。
1.|3.14-π|的计算结果是( )A 、3-π B. π-3.14 C.1 D.0 2.将1045000000000保留三位有效数字为( )A 、1.04×1013B 、105×1013C 、1.04×1012D 、1.05×1012 3. 函数y=2 x +21 x 自变量 x 的取值范围是( )A .x ≥2 B.x ≥-2 C.x >2 D.x >-2 4. 如图所示的几何体的俯视图是( ).5.如图,已知∠1 = 70º,如果CD ∥BE ,那么∠B 的度数为( )A . 120ºB . 110ºC .100ºD .70º 6.在一次数学单元考试中,某小组7名同学的成绩(单位:分) 分别是:65,80,70,90,95,100,70。
这组数据的中位数是( )A 、90B 、85C 、80D 、707. 已知两圆的半径分别为2厘米和4厘米,圆心距为3厘米,则这两圆的位置关系是( )A 、相离B 、内切C 、外切D 、相交 8. 不等式组2133x x +⎧⎨>-⎩≤的解集在数轴上表示正确的是( )第5题 B C E DA1(α9. 下列计算正确的是( )A .2242a a a +=B .2(2)4a a = C3= D32=10. 二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = ax 与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是( )11. 下列说法正确的是( )A .为了解全省中学生的心理健康状况,宜采用普查方式B .某彩票设“中奖概率为1100”,购买100张彩票就—定会中奖一次 C .某地会发生地晨是必然事件D .若甲组数据的方差20.1s =甲,乙组数据的方差20.2s =乙,则甲组数据比乙组稳定12. 在正方形网格中,若α∠的位置如图所示,则cos α的 值为( ) A.12B.2D.2A .B .C .D .B 第Ⅱ卷(非选择题共72分)注意事项:1.答卷前将密封线内的项目填写清楚,准考证号前七位填在密封线方框内,末两位填在卷首方框内.2.答题前用钢笔或圆珠笔直接答在试卷上.二、填空题(共5小题,每小题4分,共20分) 13. 因式分解:。
2012年中考数学第一轮复习第25课 圆的有关性质

第25课圆的有关性质第一部分讲解部分(一)课标要求1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念.2.探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧.3.探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论:圆周角的度数等于它所对弧上的圆心角度数的一半;直径所对的圆周角是直角;90°的圆周角所对的弦是直径;圆内接四边形的对角互补.(二)知识要点1.圆的有关概念:(1)圆可以看作是到定点的距离等于定长的点的集合.(2)连结圆上任意两点的线段叫做弦.经过圆心的弦叫做直径.(3)圆上任意两点间的部分叫做圆弧,简称弧.小于半圆周的圆弧叫做劣弧.大于半圆周的圆弧叫做优弧.在同圆或等圆中,能够互相重合的弧叫做等弧.(4)经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点.2.垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧.推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.推论2:圆的两条平行弦所夹的弧相等.3.圆心角定理同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等.4.圆周角定理同弧所对的圆周角等于它所对的圆心的角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧.推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径.推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.5.圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角.(三)考点精讲考点一 :考查圆的有关概念例1 (2011年四川省凉山州) 如图1,︒=∠100AOB ,点C 在⊙O 上,且点C 不与A 、B 重合,则ACB ∠的度数为( )A.50°B.80°或50°C. 130°D. 50°或130°分析:因为点C 的位置有两种可能,既可以在优弧上,也可以在劣弧上,所以要分两种情况讨论.解:当点C 在优弧上时,︒=÷︒=∠502100ACB ;当点C 在劣弧上时,︒=÷︒-︒=∠1302)100360(ACB .所以本题选择D .评注:本题中圆上两点把圆分成两部分,导致问题会出现两种不同的结果,这一点在解题时不能忽略.考点二 :考查垂径定理的应用例2 (2011年浙江省绍兴市)一条排水管的截面如图2所示.已知排水管的截面圆半径10OB =,截面圆圆心O 到水面的距离OC 是6,求水面宽A B 的大小.分析:根据垂径定理把已知量与未知量转化到一个直角三角形中后,利用勾股定理来解决问题. 解:因为OC ⊥AB ,由垂径定理,得,AC =BC .在Rt △OBC 中,由勾股定理,得86102222=-=-=OC OB BC ,所以162==BC AB .评注:垂径定理及其推论是圆的重要性质,它是证明线段相等、角相等、垂直关系的重要依据,同时也为圆中一些计算和作图问题提供了方法和依据. 考点三:考查弧、弦、圆心角、圆周角之间的关系例3 (2011年浙江省嘉兴市)如图3,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②OE CE =;③△ODE ∽△ADO ;④AB CE CD⋅=22.其中正确结论的序号是 .分析:根据弧、弦、圆心角、圆周角之间的关系来对结论逐一判断.解:(1)因为∠COD =2∠CAD =45°=∠ACO ,所以AC ∥OD ;(2)在△COD 和△CDE 中,∠DCE 是它们的公共角,∠COD =45°=∠CDE ,所以△C OD ∽△CDE ,所以CD COCE CD=.又因为CO AB 2=,所以AB CE CD ⋅=22.于是本题选择 ①④.图2图3评注:弧、弦、圆心角、圆周角之间的相等或倍分关系是论证同等或等圆中弧相等、角相等、线段相等的主要依据.(四)易错点剖析易错点一 点的位置不唯一出错例题1 △ABC 点是半径为1的圆内接三角形,且3=BC ,求∠A 的度数.解 (1)当点A 在优弧BAC 上时(如图),过圆心O 作OD ⊥BC 于点D .在Rt △BOD 中,1=OB ,2321==BC BD ,所以23cos ==∠OB ODBOD ,所以︒=∠60BOD ,︒=∠120BOC ,那么︒=∠60A .(2)当点A 在劣弧BC 上时,即图中点A '的位置时,这时,︒=∠-︒='∠120180A A .易错剖析 圆中一条弦所对的弧有两条,导致点在弦所对的弧上的位置不唯一,这一点常常被忽视.因此在解决此类问题时,一定要考虑点在优弧上与劣弧上两种情况分析.易错点二 弦的位置不唯一出错例题2 在半径为1的⊙O 中,弦2AB =,3AC =,那么B A C ∠=________.解 (1)当两弦在圆心的一侧时(图1),︒=︒-︒=∠-∠=∠153045CAD BAD BAC .(2)当两弦在圆心的两侧时(图2),︒=︒+︒=∠+∠=∠753045CAD BAD BAC . 易错剖析 已知两弦的长,但它们的位置没有确定,因为它们位置可能位于圆心的同侧,也可能位于圆心的异侧,所以,本题存在两种情况,解题时容易忽视其中的一种情形.(五)真题演练1.(2011年福建省三明市)如图1,AB 是⊙O 的直径,C ,D 两点在⊙O 上,若∠C =40°,则∠ABD 的度数为( )A .40°B .50°C .80°D .90°2.(2011年安徽省)如图2,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB=CD ,已知CE=1,ED=3,则⊙O 的半径是_________.3.(2011年甘肃省兰州市)如图3,线段OB 是⊙O 的半径,点C 、点D 在⊙O 上,∠DCB=27°,则∠OBD= 度.4.(2011年深圳市)如图4,在⊙O 中,圆心角∠AOB =120°,弦AB =23cm ,则OA =___________cm .5.(2011年江苏省扬州市)如图5,O ⊙的弦C D 与直线径A B 相交,若50B A D ∠=°,则A C D ∠=___________°.第二部分 练习部分1.(2011重庆市潼南)如图,AB 为⊙O 的直径,点C 在⊙O 上,∠A =30°,则∠B 的度数为( )A .15°B . 30°C . 45° D. 60°2.(2011广东肇庆)如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD =105°,则∠DCE的大小是()A.115°B.105°C.100°D.95°3.(2011江苏南通)如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8B. 2C. 10D. 54.(2011四川内江)如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为()A.1 B.3C.2 D.235.(2011四川成都)如图,若AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的大小是()A.116°B.32°C.58°D.64°6.(2011山东泰安)如图,⊙O的弦AB垂直平分半径OC,若AB=6,则⊙O的半径为()A. 2B.2 2C.22D.627.(2011广东湛江)如图,A、B、C是O上的三点,30BAC︒∠=,则B O C∠=度.8.(2011台湾全区)如图,△ABC 的外接圆上,AB 、BC 、CA 三弧的度数比为12:13:11.自BC 上取一点D ,过D 分别作直线AC 、直线AB 的并行线,且交BC 于E 、F 两点,则∠EDF 的度数 .9.(2011内蒙古乌兰察布)如图, AB 为 ⊙ O 的直径, CD 为弦, AB ⊥ CD ,如果∠BOC = 700 ,那么∠A 的度数为 .A .70︒B . 35︒C . 30︒D . 20︒10.(2011甘肃兰州)如图,OB 是⊙O 的半径,点C 、D 在⊙O 上,∠DCB=27°,则∠OBD= 度.11.(2011四川广安)如图,若⊙O 的半径为13cm ,点P 是弦A B 上一动点,且到圆心的最短距离为5 cm ,则弦A B 的长为________cm .12.(2011江西)如图,已知⊙O 的半径为2,弦BC 的长为23,点A 为弦BC 所对优弧上任意一点(B ,C 两点除外). (1)求∠BAC 的度数;(2)求△ABC 面积的最大值..(参考数据:sin60°=23,cos30°=23,tan30°=33.)★“真题演练”答案★1.B .提示:根据圆周角,圆心角,等腰三角形的性质解决问题.2. 5.提示:作OM ⊥AB ,ON ⊥CD ,易证四边形OMEN 是正方形.由于CD=CE+ED=4,所以CN=2,EN=CN -CE=1,则ON=1,再连接OC ,使用勾股定理即可求出OC=5.3. 63°.提示:∠DOB=2∠DCB=54°,△OBD 是等腰三角形,得∠OBD=(180°-54°)÷2=63°.4. 4 .提示:根据弦的性质、直角三角形的知识求解.5.40.提示:0000=90905040ACD ABD BAD ∠∠=-∠=-=.★“练习部分”答案★1.D 提示:由AB 是直径,得∠C=90°.而∠A =30°,所以∠B=60°.2.B 提示:由“圆内接四边形对角互补”可知,∠BAD +∠BCD =180°.又因为∠DCE +∠BCD =180°,所以∠BAD +∠BCD =180°,所以∠DCE =∠BAD =105°.3.D 提示:连接OA ,由OM 平分弦AB ,得OM ⊥AB 在Rt △OAM 中,3=OM ,4=AM ,由色股定理,得5=OA .4.D 提示:过O 点作OD ⊥BC ,垂足为D .因为︒=∠=∠1202BAC BOC ,所以︒=∠30OBD ,所以121==OB OD ,由勾股定理,得31222=-=BD ,所以322==BD BC .5.B 提示:由AB 是直径,得∠ADB=90°,所以︒=︒-︒=∠-︒=∠32589090ABD BAD .又因为∠BCD 与∠BAD 是同弧所对的圆周角,所以︒=∠=∠32BAD BCD .6.A 提示:连接OA 构造一个直角三角形,它的一条直角边是AB 长的一半,另一条直角边是半径的一半,由勾股定理列一元二次方程求解半径即可.7.60提示:因为∠BAC 与∠BOC 分别是弧BC 所对的圆周角和圆心角,所以︒=︒⨯=∠=∠603022BAC BOC .8.65 提示:因为︒=÷⨯++︒=∠65213111312360A .由两直线平行,内错角相等,得与分别有两对角相等,再由三角形内角和等于180°,得它们的另一组角相等,即︒=∠=∠65A EDF .9.35°提示:因为直径AB 垂直于弦CD ,所以弧BC 与弧BD 相等,所以︒=∠=∠3521BOC A . 10.63°提示:由“同弧所对的圆周角等于这条弧所对的圆心角的一半”,得︒=︒⨯=∠=∠542722DCB DOB ,又由OD OB =,得ODB OBD ∠=∠,所以︒=︒-︒=∠63254180OBD .11.24提示:过点O 作OD ⊥BC 于点D .由垂线段最短,得cm OD 5=,由勾股定理,得cm AD 12=,由垂径定理,得cm AD AB 242==.12.提示:(1)过点O 作OD ⊥BC 于点D, 连接OC .因为OC =2,所以sin D O C ∠=C D O C ,即sin D O C ∠=32,所以∠DOC =60°.又OD ⊥BC ,所以∠BAC =∠DOC =60°.(2)当点A 是 BAC 的中点时,△ABC 面积的最大值.因为∠BAC =60°,所以△ABC 是等边三角形,在Rt △ADC 中,AC =23,DC =3,所以AD =22AC DC -=22(23)3-=3.所以△ABC 面积的最大值为23×3×12=33.。
三角形2012年四川中考数学题(含答案和解释)

三角形2012年四川中考数学题(含答案和解释)四川各市2012年中考数学试题分类解析汇编专题9:三角形选择题1. (2012四川乐山3分)如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为【】A.B.C.D.1【答案】C。
【考点】锐角三角函数定义,特殊角的三角函数值。
【分析】∵Rt△ABC中,∠C=90°,AB=2BC,∴sinA= 。
∴∠A=30°。
∴∠B=60°。
∴sinB= 。
故选C。
2. (2012四川乐山3分)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C到线段EF的最大距离为.其中正确结论的个数是【】A.1个B.2个C.3个D.4个【答案】B。
【考点】全等三角形的判定和性质,等腰直角三角形,三角形中位线定理,勾股定理。
【分析】①连接CD(如图1)。
∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB。
∵AE=CF,∴△ADE≌△CDF(SAS)。
∴ED=DF,∠CDF=∠EDA。
∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°。
∴△DFE是等腰直角三角形。
故此结论正确。
②当E、F分别为AC、BC中点时,∵由三角形中位线定理,DE平行且等于BC。
∴四边形CEDF是平行四边形。
又∵E、F分别为AC、BC中点,AC=BC,∴四边形CEDF 是菱形。
又∵∠C=90°,∴四边形CEDF是正方形。
故此结论错误。
③如图2,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,由②,知四边形CMDN是正方形,∴DM=DN。
三年中考2010-2012全国各地中考数学试题分类汇编汇编:直角三角形与勾股定理
2012年全国各地中考数学真题分类汇编第24章直角三角形与勾股定理一.选择题1.(2012•广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.2.(2012毕节)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E式垂足,连接CD,若BD=1,则AC的长是()A.23B.2C.43D. 43.(2012湖州)如图,在Rt△ABC中,∠ACB=900,AB=10,CD是AB边上的中线,则CD的长是()5A.20B.10C.5D.24.(2012安徽)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()DA.10B.54C. 10或54D.10或1725. (2012•荆门)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是( )A .B .C .D .6. ( 2012巴中)如图3,已知AD 是△ABC 的BC 边上的高,下列能使△ABD≌△ACD 的条件是( )A.AB=ACB.∠BAC=900C.BD=ACD.∠B=450二.填空题7.( 2012巴中)已知a 、b 、c 是△ABC 的三边长,且满足关系c 2-a 2-b 2 +|a-b|=0,则△ABC的形状为______ 8(2012泸州)如图,在△ABC 中,∠C=90°,∠A=30°,若AB=6cm ,则BC= .9.(2012青岛)如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为 cm.11.(2012南州)如图1,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的坐标为( )A 、(2,0)B 、1,0)C 、)D 、)12.(2012临沂)在Rt△ABC 中,∠ACB=90°,BC=2cm ,CD⊥AB,在AC 上取一点E ,使EC=BC ,过点E 作EF⊥AC 交CD 的延长线于点F ,若EF=5cm ,则AE= cm .13.(2012陕西)如图,从点()02A ,发出的一束光,经x 轴反射,过点()43B ,,则这束光从点A 到点B 所经过路径的长为 .14.(2012•资阳)直角三角形的两边长分别为16和12,则此三角形的外接圆半径是 10或8 .15.(2012无锡)如图,△ABC中,∠ACB=90°,AB=8cm,D是AB的中点.现将△BCD 沿BA方向平移1cm,得到△EFG,FG交AC于H,则GH的长等于 3 cm.16.(2012黔西南州)如图6,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,则四边形ACEB的周长为______________.三.解答题17.(2012菏泽)如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1,P2,P3,P4,P5是△DEF边上的5个格点,请按要求完成下列各题:(1)试证明三角形△ABC为直角三角形;(2)判断△ABC和△DEF是否相似,并说明理由;(3)画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点并且与△ABC 相似(要求:用尺规作图,保留痕迹,不写作法与证明).2011年全国各地中考数学真题分类汇编第24章直角三角形与勾股定理一、选择题1.(2011山东滨州,9,3分)在△ABC中,∠C=90°, ∠C=72°,AB=10,则边AC的长约为(精确到0.1)()A.9.1B.9.5C.3.1D.3.52. (2011山东烟台,7,4分)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A2m B.3mC.6mD.9m3. (2011台湾全区)已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?A.100 B.180 C.220 D.2604. (2011湖北黄石,7,3分)将一个有45度角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图(3),则三角板的最大边的长为A. 3cmB. 6cmC. 32cmD. 62cm5. (2011贵州贵阳,7,3分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是(第7题图)(A )3.5 (B )4.2 (C )5.8 (D )76. (2011河北,9,3分)如图3,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB,AC 上,将△ABC 沿DE 折叠,使点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为( )A .21B .2C .3D .4图3A '【答案】B7.8.二、填空题1. (2011山东德州13,4分)下列命题中,其逆.命题成立的是______________.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形.【答案】① ④2. (2011浙江温州,16,5分)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1,S2,S3=10,则S2的值是.【答案】1033. (2011重庆綦江,16,4分) 一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米. 当正方形DEFH运动到什么位置,即当AE=米时,有DC=AE+BC.14【答案】:34. (2011四川凉山州,15,4分)把命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么222+=”的逆命题改写成“如果……,那么……”的形式:a b c。
凉山州年中考数学试题精析
2012年中考数学精析系列——凉山卷(本试卷满分150分,考试时间120分钟)A卷(共120分)一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确的字母填涂在答题卡上相应的位置。
3.(2012四川凉山4分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是【】A.180B.220C.240D.300【答案】C。
【考点】等边三角形的性质,多边形内角和定理。
【分析】∵等边三角形每个内角为60°,∴两底角和=120°。
又∵四边形内角和为360°,∴∠α+∠β=360°-120°=240°。
故选C 。
4.(2012四川凉山4分)已知b 5a 13=,则a b a b -+的值是【】 A .23B .32C .94D .49【答案】D 。
【考点】比例的性质。
【分析】∵b 5a 13=,∴设出b =5k ,得出a =13k ,把a ,b 的值代入a b a b-+,得, a b 13k 5k 8k 4===a b 13k 5k 18k 9--++。
故选D 。
5.(2012四川凉山4分)下列多项式能分解因式的是【】A .22x y +B .22x y --C .22x 2xy y -+-D .22x xy y -+【答案】C 。
【考点】因式分解的意义【分析】因式分解的常用方法有:提取公因式法、公式法、分组分解法等.用各种方法分别检验是否能够分解:A 、B 、D 不能分解,C :()()22222x 2xy y =x 2xy y =x y -+---+--。
故选C 。
6.(2012四川凉山4分)如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是【】 A .14B .12C .34D .1 【答案】B 。
[2015年中考必备]2012年中考数学卷精析版——四川凉山卷
2012年中考数学卷精析版——凉山卷(本试卷满分150分,考试时间120分钟)A卷(共120分)一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确的字母填涂在答题卡上相应的位置。
3.(2012四川凉山4分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是【】A.180B.220C.240D.300【答案】C。
【考点】等边三角形的性质,多边形内角和定理。
【分析】∵等边三角形每个内角为60°,∴两底角和=120°。
又∵四边形内角和为360°,∴∠α+∠β=360°-120°=240°。
故选C 。
4.(2012四川凉山4分)已知b 5a 13=,则a b a b-+的值是【 】 A .错误!不能通过编辑域代码创建对象。
B .错误!不能通过编辑域代码创建对象。
C .错误!不能通过编辑域代码创建对象。
D .错误!不能通过编辑域代码创建对象。
【答案】D 。
【考点】比例的性质。
【分析】∵b 5a 13=,∴设出b =5k ,得出a =13k ,把a ,b 的值代入a b a b-+,得, a b 13k 5k 8k 4===a b 13k 5k 18k 9--++。
故选D 。
5.(2012四川凉山4分)下列多项式能分解因式的是【 】A .22x y +B .22x y --C .22x 2xy y -+-D . 22x xy y -+【答案】C 。
【考点】因式分解的意义【分析】因式分解的常用方法有:提取公因式法、公式法、分组分解法等.用各种方法分别检验是否能够分解:A 、B 、D 不能分解,C :()()22222x 2xy y =x 2xy y =x y -+---+--。
故选C 。
6.(2012四川凉山4分)如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是【 】 A .14 B .12 C .34D .1 【答案】B 。
初三中考数学方程组练习题及答案
1.(2011年安徽芜湖)方程组2x+3y=7,x-3y=8的解为________________.2.(2012年湖南长沙)若实数a,b满足|3a-1|+b2=0,则ab的值为______.3.已知x,y满足方程组2x+y=5,x+2y=4,则x-y的值为_____________.4.(2011年山东潍坊)方程组5x-2y-4=0,x+y-5=0的解是__________.5.(2012年贵州安顺)以方程组y=x+1,y=-x+2的解为坐标的点(x,y)在第____象限.6.(2012年江苏南通)甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了____张.7.已知x=2,y=1是关于x,y的二元一次方程组ax+by=7,ax-by=1的解,则a-b 的值为()A.1 B.-1 C.2 D.38.(2012年山东临沂)关于x,y的方程组3x-y=m,x+my=n的解是x=1,y=1,则m -n的值是()A.5 B.3 C.2 D.19.(2012年四川凉山州)雅西高速公路于2012年4月29日正式通车,西昌到成都全长420千米,一辆小汽车和一辆客车同时从西昌、成都两地相向开出,经过2.5小时相遇.相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x千米/小时和y千米/小时,则下列方程组正确的是()A.x+y=70,2.5x+2.5y=420B.x-y=70,2.5x+2.5y=420C.x+y=70,2.5x-2.5y=420D.2.5x+2.5y=420,2.5x-2.5y=7010.(2010年山东日照)解方程组:x-2y=3,3x-8y=13.11.已知x=1,y=-2是关于x,y的二元一次方程组ax+by=1,x-by=3的解,求a,b的值.12.(2012年江苏苏州)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800 m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?13.(2011年湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18 000元,其中甲种蔬菜每亩获利2 000元,乙种蔬菜每亩获利1 500元,李大叔去年甲、乙两种蔬菜各种植了多少亩(注:亩为面积单位)?16.(2011年河北)已知x =2,y =3是关于x ,y 的二元一次方程3x =y +a 的解,求(a +1)(a -1)+7的值.17.若关于x ,y 的二元一次方程组x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,则k 的值为( ) A .-34 B.34 C.43 D .-43【北京市海淀区】当使用换元法解方程03)1(2)1(2=-+-+x x x x 时,若设1+=x x y ,则原方程可变形为( )A .y 2+2y +3=0B .y 2-2y +3=0C .y 2+2y -3=0D .y 2-2y -3=0(3)、用换元法解方程433322=-+-x x x x 时,设x x y 32-=,原方程可化为( )同.已知水流的速度是3千米/时,求轮船在静水中的速度.(提示:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度) 解:②乙两辆汽车同时分别从A 、B 两城沿同一条高速公路驶向C 城.已知A 、C 两城的距离为450千米,B 、C 两城的距离为400千米,甲车比乙车的速度快10 千米/时,结果两辆车同时到达C 城.求两车的速度 解③某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率.(精确到0.1%) 解④【05绵阳】已知等式 (2A -7B ) x +(3A -8B )=8x +10对一切实数x 都成立,求A 、B 的值解⑤【05南通】某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:捐款(元) 1 2 3 4 人 数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组A 、272366x y x y +=⎧⎨+=⎩B 、2723100x y x y +=⎧⎨+=⎩C 、273266x y x y +=⎧⎨+=⎩D 、2732100x y x y +=⎧⎨+=⎩解⑥已知三个连续奇数的平方和是371,求这三个奇数.解⑦一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长. 解:【05黄岗】不等式组()()⎪⎩⎪⎨⎧≤--+<--+-1213128313x x x x 的解集应为( )A 、2-<xB 、722≤<-x C 、12≤<-x D 、2-<x 或x ≥1 ④求不等式组2≤3x -7<8的整数解.解:1.x =5,y =-12.13.14.x =2,y =35.一6.20 7.B 8.D 9.D10.解:x -2y =3, ①3x -8y =13. ② ①×3,得3x -6y =9. ③③-②,得-6y -(-8y)=9-13,解得y =-2. 把y =-2代入①,得x =-1. ∴原方程组的解为x =-1,y =-2.11.解:将x =1,y =-2代入二元一次方程组,得a -2b =1, ①1+2b =3. ② 由②,得b =1. 将b =1代入①,得a -2=1.∴a =3. 即a =3,b =1.12.解:设中国人均淡水资源占有量为x m3,美国人均淡水资源占有量为y m3,依题意,得y =5x ,x +y =13 800, 解得x =2 300,y =11 500.答:中、美两国人均淡水资源占有量各为2 300 m3,11 500 m3.13.解:设李大叔去年种植了甲种蔬菜x 亩,种植了乙种蔬菜y 亩,则x +y =10,2 000x +1 500y =18 000. 解得x =6,y =4.答:李大叔去年甲种蔬菜种植了6亩,乙种蔬菜种植了4亩. 16.解:将x =2,y =3代入3x =y +a 中,得a =3. ∴(a +1)(a -1)+7=a2-1+7=3+6=9.17.B 解析:解关于x ,y 的二元一次方程组 得x =7k ,y =-2k ,将之代入方程2x +3y =6,得k =34.(3)判别式△=b ²-4ac 的三种情况与根的关系 当0>∆时 有两个不相等的实数根 ,当0=∆时 有两个相等的实数根当0<∆时 没有实数根.当△≥0时 有两个实数根【北京市海淀区】( D )(3)、( A ) 例题:①解:设船在静水中速度为x 千米/小时依题意得:80/(x +3)= 60/(x -3) 解得:x =21 答:(略) ②解:设乙车速度为x 千米/小时,则甲车的速度为(x +10)千米/小时依题意得:450/(x +10)=400/x 解得x =80 x +1=90 ③解:设原零售价为a 元,每次降价率为x依题意得:a (1-x )²=a /2 解得:x ≈0.292 答:(略) ④【05绵阳】解:A =6/5 B = -4/5 ⑤解:A⑥解:三个连续奇数依次为x -2、x 、x +2 依题意得:(x -2)² + x ² +(x +2)² =371 解得:x =±11当x =11时,三个数为9、11、13;当x = —11时,为 —13、—11、—9 ⑦解:设小正方形的边长为x cm 依题意:(60-2x )(40-2x )=800 解得x 1=40 (不合题意舍去) x 2=10 答(略)③【05黄岗】(C )④求不等式组2≤3x -7<8的整数解.解得:3≤x <5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年中考数学精析系列——凉山卷(本试卷满分150分,考试时间120分钟)A卷(共120分)一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确的字母填涂在答题卡上相应的位置。
3.(2012四川凉山4分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是【】A.180 B.220 C.240 D.300【答案】C。
【考点】等边三角形的性质,多边形内角和定理。
【分析】∵等边三角形每个内角为60°,∴两底角和=120°。
又∵四边形内角和为360°,∴∠α+∠β=360°-120°=240°。
故选C 。
4.(2012四川凉山4分)已知b 5a 13=,则a b a b-+的值是【 】A .23B .32C .94D .49【答案】D 。
【考点】比例的性质。
【分析】∵b 5a 13=,∴设出b =5k ,得出a =13k ,把a ,b 的值代入a b a b-+,得,a b 13k 5k 8k 4===a b13k 5k18k9--++。
故选D 。
5.(2012四川凉山4分)下列多项式能分解因式的是【 】A .22x y +B .22x y --C .22x 2xy y -+-D . 22x xy y -+ 【答案】C 。
【考点】因式分解的意义【分析】因式分解的常用方法有:提取公因式法、公式法、分组分解法等.用各种方法分别检验是否能够分解:A 、B 、D 不能分解,C :()()22222x 2xy y =x 2xy y=x y -+---+--。
故选C 。
6.(2012四川凉山4分)如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是【 】A .14B .12C .34D .1【答案】B 。
【考点】概率公式,同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项。
【分析】判断运算正确的卡片的数量,然后利用概率的公式求解即可:∵根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项运算法则四张卡片中第一张和第三张正确,∴随机抽取一张,则抽到得卡片上算式正确的概率是11=42。
故选B 。
7.(2012四川凉山4分)设a 、b 、c 表示三种不同物体的质量,用天枰称两次,情况如图347a a a =842a a a ÷=326(a )a =235a a 2a +=所示,则这三种物体的质量从小到大排序正确的是【】A.c b a<<D.b a c<<<<C.c a b<<B.b c a【答案】A。
【考点】等式和不等式的性质。
【分析】观察图形可知:b+c =3c,即b = 2c;且a>b。
所以c b a<<。
故选A。
8.(2012四川凉山4分)如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A.30 B.45 C.60 D.90【答案】B。
【考点】平角的性质,平行线的性质。
【分析】∵∠DFE=135°,∴∠CFE=180°-135°=45°。
∵AB∥CD,∴∠ABE=∠CFE=45°。
故选B。
9.(2012四川凉山4分)下列命题:①圆周角等于圆心角的一半;②x=2是方程x-1=1的解;③平行四边形既是中心对称图形又是轴对称图形;④16的算术平方根是4。
其中真命题的个数有【】A.1B.2 C.3D.4【答案】A。
【考点】命题与定理,圆周角定理,方程的解,平行四边形的性质,算术平方根。
【分析】根据圆周角定理,方程的解、平行四边形的性质及算术平方根的定义进行判断即可得到真命题的个数:同(等)弧所对的圆周角等于圆心角的一半,必须是同(等)弧,故①是假命题;将x=2代入方程左右两边相等,故②正确,是真命题;平行四边形是中心对称图形但不是轴对称图形,故③错误,是假命题;16=4的算术平方根是2,故④错误,是假命题。
真命题有1个。
故选A。
11.(2012四川凉山4分)雅西高速公路于2012年4月29日正式通车,西昌到成都全长420千米,一辆小汽车和一辆客车同时从西昌、成都两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x千米/小时和y千米/小时,则下列方程组正确的是【】A.x y702.5x 2.5y420+=⎧⎨+=⎩B.x y702.5x 2.5y420-=⎧⎨+=⎩C.x y702.5x 2.5y420+=⎧⎨-=⎩D.2.5x 2.5y4202.5x 2.5y70+=⎧⎨-=⎩【答案】D。
【考点】由实际问题抽象出二元一次方程组(行程问题)。
【分析】设小汽车和客车的平均速度分别为x千米/小时和y千米/小时,根据相遇时,小汽车比客车多行驶70千米可列方程2.5x-2.5y=70;根据经过2.5小时相遇,西昌到成都全长420千米可列方程2.5x+2.5y=420。
故选D。
12.(2012四川凉山4分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是【 】A .相离B .相切C .相交D .以上三种情况都有可能 【答案】B 。
【考点】坐标与图形性质,直线与圆的位置关系,等腰直角三角形的判定和性质,勾股定理。
【分析】如图,在y x 2=-中,令x =0,则y =-2 ;令y =0,则x =2 ,∴A (0,-2),B (2,0)。
∴OA =OB = 2 。
∴△AOB 是等腰直角三角形。
∴AB =2, 过点O 作OD ⊥AB ,则OD =BD =12AB =12×2=1。
又∵⊙O 的半径为1,∴圆心到直线的距离等于半径。
∴直线y =x - 2 与⊙O 相切。
故选B 。
二、填空题(共5小题,每小题4分,共20分) 13.(2012四川凉山4分)在函数x 1y x+=中,自变量x 的取值范围是 ▲ 。
【答案】x ≥-1且x ≠0。
【考点】函数自变量的取值范围,二次根式和分式有意义的条件。
【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数为是非负数和分式分母不为0的条件,要使x 1x+在实数范围内有意义,必须x+10x 1x 00x ≥≥-⎧⎧⇒⇒⎨⎨≠≠⎩⎩x ≥-1且x ≠0。
14.(2012四川凉山4分)整式A 与m 2-2mn +n 2的和是(m +n )2,则A = ▲ 。
【答案】4mn 。
【考点】代数式的加减法,完全平方公式。
【分析】根据已知两数的和和其中一个加数,求另一个加数,用减法.列式计算:A=(m+n)2-(m2-2mn+n2)==4mn。
15.(2012四川凉山4分)如图,已知点A在反比例函数图象上,AM⊥x轴于点M,且△AOM 的面积为1,则反比例函数的解析式为▲ 。
【答案】2yx=-。
【考点】反比例函数系数k的几何意义.【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=12|k|,又反比例函数的图象在二、四象限,∴k<0。
则由1=12|k|得k=-2。
所以这个反比例函数的解析式是2yx=-。
16.(2012四川凉山4分)某商品的售价是528元,商家出售一件这样的商品可获利润是进价的10%~20%,设进价为x元,则x的取值范围是▲ 。
【答案】440≤x≤480。
【考点】一元一次不等式组的应用。
【分析】根据:售价=进价×(1+利润率),可得:进价=售价1+利润率,商品可获利润(10%~20%),即售价至少是进价(1+10%)倍,最多是进价的1+20%倍,据此可到不等式组:528 1+20% ≤x≤528 1+10% ,解得440≤x≤480。
∴x的取值范围是440≤x≤480。
17.(2012四川凉山4分)如图,小正方形构成的网络中,半径为1的⊙O在格点上,则图中阴影部分两个小扇形的面积之和为▲ (结果保留π)。
【答案】4π。
【考点】扇形面积的计算,直角三角形两锐角的关系。
【分析】如图,先根据直角三角形的性质求出∠ABC +∠BAC 的值,再根据扇形的面积公式进行解答即可:∵△ABC 是直角三角形,∴∠ABC +∠BAC =90°。
∵两个阴影部分扇形的半径均为1,∴S 阴影29013604ππ⨯==。
三、解答题(共2小题,每小题6分,共12分) 18.(2012四川凉山6分)计算:22012211|12cos 45|(2)( 1.4)2π-⎛⎫---+-⨯+- ⎪⎝⎭;【答案】解:原式=21|12|241=1081=82---⨯+⨯+--++。
【考点】实数的运算,有理数的乘方,特殊角的三角函数值,二次根式化简,绝对值,负整数指数幂,零指数幂。
【分析】针对有理数的乘方,特殊角的三角函数值,二次根式化简,绝对值,负整数指数幂,零指数幂6个考点分别计算出各数,再根据实数混合运算的法则进行计算即可。
19.(2012四川凉山6分)如图,梯形ABCD 是直角梯形.(1)直接写出点A 、B 、C 、D 的坐标;(2)画出直角梯形ABCD 关于y 轴的对称图形,使它与梯形ABCD 构成一个等腰梯形. (3)将(2)中的等腰梯形向上平移四个单位长度,画出平移后的图形.(不要求写作法)【答案】解:(1)如图所示,根据A,B,C,D,位置得出点A、B、C、D的坐标分别为:(-2,-1),(-4,-4),(0,-4),(0,-1)。
(2)根据A,B两点关于y轴对称点分别为:A′(2,-1),B′(4,-4),在坐标系中找出A′,B′,连接DA′,A′B′,B′C,即可得等腰梯形AA′B′B,即为所求,如下图所示:(3)将对应点分别向上移动4个单位,可得等腰梯形EFGH,即为所求,如上图所示。
【考点】作图(轴对称和平移变换),直角梯形和等腰梯形的性质【分析】(1)根据A,B,C,D,位置得出点A、B、C、D的坐标即可。
(2)首先求出A,B两点关于y轴对称点,在坐标系中找出,连接各点,即可得出图象。
(3)将对应点分别向上移动4个单位,即可得出图象。
四、解答题(共3小题,20题7分,21题、22题各8分,共23分)20.(2012四川凉山7分)如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于F.(1)求证:△ABE∽△DEF;(2)求EF的长.【答案】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠AEB+∠ABE=90°。
∵EF⊥BE,∴∠AEB+∠DEF=90°,∴∠DEF=∠ABE。