历届高考中的“解析几何初步”试题精选

合集下载

全国高考数学试题汇编——解析几何

全国高考数学试题汇编——解析几何

7.2004年全国高考数学试题汇编一一解析几何(一)1. [2004年全国高考(山东山西河南河北江西安徽)•理科数学第7题,文科数学第7题]2椭圆—• y 2 =1的两个焦点为F i 、F 2,过F i 作垂直于x 轴的直线与椭圆相交,一个交4点为P ,则| PF 2 | =,3 A .22. [2004年全国高考(山东山西河南河北江西安徽)I 的斜率的取值范围是的轨迹方程为[2004年全国高考(四川云南吉林黑龙江)•已知点A (1, 2)、B( 3, 1),则线段AB 的垂直平分线的方程是 A . 4x 2y=5 B . 4x-2y=5 C . x 2y=5别是O '和A ',则O A "=囂£,其中•=B . .3•理科数学第8题,文科数学第8题] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线I 与抛物线有公共点,则直线3. 1 1A .[ —2, 2]B .[—2,2]C . [-1, 1]D . [ — 4, 4][2004年全国高考(山东山西河南河北江西安徽)•理科数学第14题,文科数学第15题] 由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、 B ,Z APB=60 ° ,则动点4. [2004年全国高考(四川云南吉林黑龙江)•理科数学第4题, 文科数学第已知圆C 与圆(x -1)2 y 2 =1关于直线 y = -x 对称,则圆 C 的方程为A . (x 1)2 y 2 =1B . x 2 - y 2 =12 2C . x (y 1)=12亠/ 八2D . x (y -1) =15. 文科数学第8题]6. [2004年全国高考(四川云南吉林黑龙江)•理科数学第8题]在坐标平面内,与点A (1,2)距离为1 ,且与点B (3, 1)距离为2 A . 1条[2004年全国高考 的直线共有 ( D . 4条已知平面上直线 B . 2条C . 3条(四川云南吉林黑龙江)•理科数学第9题] 4 3l 的方向向量e =(,—),点0(0, 0)和A (1, — 2)在I 上的射影分5 541111A .B .C . 2D255& [2004年全国高考(四川云南吉林黑龙江)•理科数学第14题,文科数学第14题] 设x, y 满足约束条件:x _0, x _y, 2x 「y 辽1,贝U z = 3x 2y 的最大值是 ________________ .9. [2004年全国高考(四川云南吉林黑龙江)•理科数学第15题,文科数学第15题]设中心在原点的椭圆与双曲线 2x 2 -2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是[2004年全国高考(陕西广西海南西藏内蒙古) •理科数学第1题,文科数学第1题]设集合 M = ®x, y 核2 + y 2 =1,x 己 R, y E R }, N = f x, y)xI则集合M N 中元素的个数为、 1设双曲线的焦点在 x 轴上,两条渐近线为yx ,则该双曲线的离心率 e = 2 _5 214 . [2004年全国高考(陕西广西海南西藏内蒙古)•理科数学第16题]10. 11 . [2004 年全国高考(陕西广西海南西藏内蒙古)-理科数学第 4题, 文科数学第圆x 22厂y-4^0在点P (1,'・3)处的切线方程为x .3y -2 = 0x - . 3y ,2 = 012. [2004 年全国高考(陕西广西海南西藏内蒙古)•理科数学第7题,文科数学第13 . [2004年全国高考(陕西广西海南西藏内蒙古)•文科数学第16题]2 2设P 为圆x y =1上的动点,则点到直线3x-4y-10=0的距离的最小值2设P是曲线y =4(x -1)上的一个动点,则点P到点(0,1)的距离与点P到y轴的距离之和的最小值为_______________ .15. [2004年全国高考(甘肃贵州宁夏青海新疆)•理科数学第3题]过点(—1, 3)且垂直于直线x - 2y• 3 = 0的直线方程为()A. 2x y-1=0B. 2x y-5=0C. x 2y-5=0D. x-2y 7=016. [2004年全国高考(甘肃贵州宁夏青海新疆)•文科数学第7题]已知函数y = log1x与y二kx的图象有公共点A,且点A的横坐标为2,则k =()41 1 1 1A . B. C. D .-4 4 2 217 . [2004年全国高考(甘肃贵州宁夏青海新疆)•文科数学第8题]已知圆C的半径为2,圆心在x轴的正半轴上,直线3x 4y ^0与圆C相切,则圆C的方程为()A . x2y2-2x-3=0B . x2y24x = 02 2 2 2C . x y 2x-3=0D . x y -4x=018 . [2004年全国高考(甘肃贵州宁夏青海新疆)•理科数学第8题]1 2已知椭圆的中心在原点,离心率e ,且它的一个焦点与抛物线y二-4x的焦点重合,2则此椭圆方程为2 2 2 222x . y . A. 1x . y .B . 1C .x 2 .y 1X 亠 2 彳y = 14 38 62419 . [2004年全国高考(甘肃贵州宁夏青海新疆)•理科数学第16题,文科数学第16题]设x, y满足约束条件:x y 岂1,*y兰x, 贝U z=2x + y的最大值是_____________________ .八0,20 .[(山东山西河南河北江西安徽)•理科数学第21题(12分),文科数学第22题(142分)]2设双曲线C:务- y2=1(a - 0)与直线l : x - 1相交于两个不同的点A、B.a(I)求双曲线C的离心率e的取值范围:— 5 —(II)设直线I与y轴的交点为P,且PA PB.求a的值.21. [(四川云南吉林黑龙江)•理科数学第21题(12分),文科数学第22题(14分)]给定抛物线C: y2=4x, F是C的焦点,过点F的直线I与C相交于A、B两点。

解析几何高考题汇编含答案

解析几何高考题汇编含答案

圆锥曲线一、选择题1、(2009全国卷Ⅱ文)双曲线13622=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r = 2、(2009浙江文)已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是3、(2009江西卷文)设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为4、(2009山东卷文)设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为5、(2009全国卷Ⅱ文)已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C的焦点。

若FB FA 2=,则k =6、(2009湖北卷理)已知双曲线22122x y -=的准线过椭圆22214x y b+=的焦点,若直线2y kx =+与椭圆至多有一个交点,则k 的取值范围为7、(2009湖南卷文)过双曲线C :22221x y a b-=(0,0)a b >>的一个焦点作圆222x y a +=的两条切线,切点分别为A ,B ,若120AOB ∠=(O 是坐标原点),则双曲线线C 的离心率为 8、(2009北京理)点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点”,那么下列结论中正确的是 A .直线l 上的所有点都是“点”B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”二、解答题9.(2009年广东卷文)(本小题满分14分)已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为23,两个焦点分别为1F 和2F ,椭圆G 上一点到1F 和2F 的距离之和为12.圆k C :0214222=--++y kx y x )(R k ∈的圆心为点k A . (1)求椭圆G 的方程 (2)求21F F A k ∆的面积(3)问是否存在圆k C 包围椭圆G ?请说明理由.10.(2009江苏卷)(本题满分10分)在平面直角坐标系xoy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上。

高考真题全国卷(2017-2021)解析几何(1)

高考真题全国卷(2017-2021)解析几何(1)

一.直线与圆的位置关系、点到直线距离 1.(2020全国卷II.8)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( )A.5B.5C.5D.52.(2018全国卷卷Ⅲ.8)直线20x y ++=分别与轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( )A .[2,6]B .[4,8]C .D .二、直线过定点、两点之间距离公式3.(2020全国卷卷Ⅲ.8)点(0,1)到直线y =k(x +1)距离的最大值为( )A.1B. D.2 三.圆相关的弦长问题 4.(2020全国卷Ⅰ.6)已知圆x 2+y 2-6x =0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A.1B.2C.3D.45.(2018全国卷Ⅰ.15)直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________. 四.轨迹方程的求解6.(2020全国卷卷Ⅲ.6)在平面内,A ,B 是两个定点,C 是动点,若AC BC ⋅=1,则C 的轨迹为( )A.圆B.椭圆C.抛物线D.直线 五.双曲线焦点到直线距离 7.(2021乙卷.14)双曲线x 24−y 25=1的右焦点到直线x+2y -8=0的距离为_________.六.双曲线渐近线相关问题 8.(2018全国卷卷Ⅲ.10)已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为( )B .CD.9.(2021甲卷.5)点(3,0)到双曲线x 216−y 29,1的一条渐近线的距离为( )A .95B .85C .65D .4510.(2018全国卷II.6)双曲线22221(0,0)x y a b a b -=>>方程为( ) A.y =B.y = C.y = D.y =七.双曲线基本量求解11.(2017全国卷卷Ⅲ.14)双曲线22219x y a -=(a >0)的一条渐近线方程为35y x =,则a = .八.双曲线离心率相关问题12.(2020全国卷卷Ⅲ.14)设双曲线C :22221(0,0)x y a b a b -=>>的一条渐近线为y=x ,则C 的离心率为 。

解析几何近五年高考题

解析几何近五年高考题

近五年山东理科高考题-解析几何部分汇编一、选择填空题2010山东理(16)已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线1:-=x y l 被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为 2013山东理(9)过点(3,1)作圆1)1(22=+-y x 作圆的两条切线切点 为A ,B ,则直线AB ( )(A )032=-+y x (B )032=--y x (C )034=--y x (D )034=-+y x 2011山东理(9)已知双曲线22221(0b 0)x y a ab-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -= B .22145x y -= C .22136x y -= D .22163x y -=2012山东理(10)已知椭圆2222:1(0)x y C a b a b +=>>.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为(A )22182x y += (B )221126x y += (C )221164x y += (D )221205x y += 2013山东理(11)抛物线211:(0)2C y x p p=>的焦点与双曲线222:13x C y -=的右焦点的连线交1C 于第一象限的点M ,若1C 在点M 处的切线平行于2C 的一条渐近线,则=p63 (B )83 (C )332 (D )334二、解答题2010山东理(21)如图,已知椭圆)0(12222>>=+b a by a x 的离心率为22,以该椭圆上的点和椭圆的左、右焦点21,F F 为顶点的三角形的周长为)12(4+,一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于项点的任一点,直线1PF 和2PF 与椭圆的交点分别为A 、B 和C 、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF的斜率分别为1k 、2k ,证明:121=⋅k k ; (Ⅲ)是否存在常数λ,使得CD AB CD AB ⋅=+λ恒成立?若存在,求λ的值;若不存在,请说明理由.2011山东理(22)已知动直线l 与椭圆C: 22132x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积OPQ S ∆其中O 为坐标原点. (Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在点D,E,G ,使得2ODE ODG OEG S S S ∆∆∆===?若存在,判断△DEG 的形状;若不存在,请说明理由.2012山东理(21)在平面直角坐标系xOy 中,F 是抛物线2:2(0)C x py p =>的焦点,M 是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34. (Ⅰ)求抛物线C 的方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(Ⅲ)若点M 直线1:4l y kx =+与抛物线C 有两个不同的交点,A B ,l 与圆Q 有两个不同的交点,D E ,求当122k ≤≤时,22AB DE +的最小值. 2013山东理(22) 椭圆()2222:+10x y C a b a b=>>的左、右焦点分别是12F F ,,离心率为,过F 且垂直于x 轴的直线被椭圆C 截得的线段长为.(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12PF PF ,,设∠12F P F 的角平分线 P M 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线,使得与椭圆C 有且只有一个公共点.设直线12PF PF ,的斜率分别为12,k k ,若k ≠0,试证明1211k k +为定值,并求出这个定值。

解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)

解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)

专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。

历届高考中的“解析几何初步试题精选(A)

历届高考中的“解析几何初步试题精选(A)

历届高考中的“解析几何初步试题精选(A)一、选择题:1.(2007浙江文、理)直线某-2y+1=0关于直线某=1对称的直线方程是()(A)某+2y-1=0(B)2某+y-1=0(C)2某+y-3=0(D)某+2y-3=02.(2006福建文)已知两条直线ya某2和y(a2)某1互相垂直,则a等于()(A)2(B)1(C)0(D)13.(2005北京文、理)”m=”是“直线(m+2)某+3my+1=0与直线(m-2)某+(m+2)y-3=0相互垂直”的()2(A)充分必要条件(B)充分而不必要条件(C)必要而不充分条件(D)既不充分也不必要条件4.(2005全国卷III文、理)已知过点A(-2,m)和B(m,4)的直线与直线2某+y-1=0平行,则m的值为()(A)0(B)-8(C)2(D)105.(2005浙江文、理)点(1,-1)到直线某-y+1=0的距离是()(A)13(B)(C)(D)22226.(2004全国卷Ⅱ文)已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程为()(A)4某+2y=5(B)4某-2y=5(C)某+2y=5(D)某-2y=57.(2004全国卷Ⅳ理)过点(-1,3)且垂直于直线某2y30的直线方程为()A.2某y10B.2某y50C.某2y50D.某2y708.(2003广东)在同一坐标系中,表示直线ya某与y某a正确的是()9.(2002北京文)若直线l:yk某与直线2某3y60的交点位于第一象限,则直线l的倾斜角的取值范围()A.[,)63B.(,)62C.(,)32D.[,]6210.(2001春招上海)若直线某1的倾斜角为,则()(A)等于0(B)等于4(C)等于2(D)不存在11.(2001上海文、理)a=3是直线a某+2y+3a=0和直线3某+(a-1)y=a-7平行且不重合的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件12.(2000春招北京、安徽文)直线(-)某+y=3和直线某+(-)y=2的位置关系是()A.相交不垂直B.垂直C.平行D.重合二、填空题:2某my10与直线l2:y3某1平行,则m.13.(2007上海理)若直线l1:14.(2006上海春招)已知直线l过点P(2,1),且与某轴、y轴的正半轴分别交于A、B两点,O为坐标原点,则三角形OAB面积的最小值为.15.(2006北京理)若三点A(2,2),B(a,0),C(0,b)(ab0)共线,则11的值等于________.ab16、(2006上海文)已知两条直线l1:a某3y30,l2:4某6y10.若l1//l2,则a____.17.(2003上海文)已知定点A(0,1),点B在直线某+y=0上运动,当线段AB最短时,点B的坐标是.三、解答题:18、(2006广东)设函数f(某)某33某2分别在某1、某2处取得极小值、极大值.某oy平面上点A、B的(某1,f(某1))(某2,f(某2))坐标分别为、,该平面上动点P满足PAPB4,点Q是点P关于直线y2(某4)的对称点.求:(I)求点A、B的坐标;(II)求动点Q的轨迹方程.19.(2003北京文)有三个新兴城镇,分别位于A,B,C三点处,且AB=AC=13km,BC=10km.今计划合建一个中心医院,为同时方便三镇,准备建在BC的垂直平分线上的P点处,(建立坐标系如图)(Ⅰ)若希望点P到三镇距离的平方和为最小,点P应位于何处?(Ⅱ)若希望点P到三镇的最远距离为最小,点P应位于何处?一、选择题:1.(2007安徽文)若圆某2y22某4y0的圆心到直线某ya0的距离为(A)-2或2(B)2,则a的值为()213或(C)2或0(D)-2或0222.(2007湖北文)由直线y=某+1上的一点向圆(某-3)3+y2=1引切线,则切线长的最小值为()A.1B.22C.D.33.(2007上海文)圆某2y22某10关于直线2某y30对称的圆的方程是()A.(某3)(y2)212B.(某3)(y2)2212C.(某3)2(y2)22D.(某3)2(y2)224.(2006湖南文)圆某2y24某4y100上的点到直线某y140的最大距离与最小距离的差是()A.36B.18C.62D.525.(2006江苏)圆(某1)2(y3)21的切线方程中有一个是()(A)某-y=0(B)某+y=0(C)某=0(D)y=06.(2006全国Ⅰ卷文)从圆某2某y2y10外一点P3,2向这个圆作两条切线,则两切线22夹角的余弦值为()A.13B.CD.0257.(2006重庆文)以点(2,-1)为圆心且与直线3某4y50相切的圆的方程为()(A)(某2)2(y1)23(B)(某2)2(y1)23(C)(某2)(y1)9(D)(某2)(y1)98.(2005北京文)从原点向圆某2+y2-12y+27=0作两条切线,则这两条切线的夹角的大小为()(A)2222(B)(C)(D)6323229.(2005重庆文、理)圆(某2)y5关于原点(0,0)对称的圆的方程为()A.(某2)y5B.某(y2)5C.(某2)(y2)5D.某(y2)52222222210.(2004湖北文)两个圆C1:某2y22某2y20与C2:某2y24某2y10的公切线有且仅有()A.1条B.2条C.3条D.4条11.(2004全国卷Ⅱ文、理)已知圆C与圆(某-1)2+y2=1关于直线y=-某对称,则圆C的方程为()(A)(某+1)2+y2=1(B)某2+y2=1(C)某2+(y+1)2=1(D)某2+(y-1)2=112.(2004全国卷Ⅲ文、理)圆某2y24某0在点P(1,)处的切线方程为()A.某3y20B.某y40C.某y40D.某3y2013.(2004天津理)若P(2,1)为圆(某1)2y225的弦AB的中点,则直线AB的方程是()A.某y30B.2某y30C.某y10D.2某y5014.(2002春招北京理)圆2某2+2y2=1与直线某in+y–1=0(R,/2+k,kZ)的位置关系是()(A)相交(B)相切(C)相离(D)不能确定15.(2001江西、山西、天津文、理,全国文、理)过点A(1,-1)、B(-1,1)且圆心在直线某+y-2=0上的圆的方程是()(A)(某3)2(y1)24(B)(某3)2(y1)24(C)(某1)2(y1)24(D)(某1)2(y1)24二.填空题:16.(2007湖南文、理)圆心为(11),且与直线某y4相切的圆的方程是_________.2217.(2007山东文、理)与直线某y20和曲线某y12某12y540都相切的半径最小的圆的标准方程是.18.(2007天津文、理)已知两圆某y10和(某1)(y3)20相交于A,B两点,则直线AB的方程是.19、(2006湖北文)若直线y=k某+2与圆(某-2)2+(y-3)2=1有两个不同的交点,则k的取值范围是.20.(2006天津理)设直线a某y30与圆(某1)(y2)4相交于A、B两点,且弦AB的222222长为a.21.(2005湖南文)设直线2某3y10和圆某2y22某30相交于点A、B,则弦AB的垂直平分线方程是.22.(2005重庆文)若某2y24,则某y的最大值是.23、(2004上海文、理)圆心在直线2某-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,-2),则圆C的方程为.24.(2002北京文)圆某2y22某2y10的动点Q到直线3某4y80距离的最小值为25.(2002上海文、理)已知圆某(y1)1和圆外一点P(2,0),过点P作圆的切线,则两条切线夹角的正切值是22参考答案一、选择题:题号答案二、填空题:13.1D2D3B4B5D6B7A8CB910C11C12B2111;15.;17.,232218.解:(Ⅰ)令f(某)(某33某2)3某230解得某1或某1当某1时,f(某)0,当1某1时,f(某)0,当某1时,f(某)0所以,函数在某1处取得极小值,在某1取得极大值,故某11,某21,f(1)0,f(1)4所以,点A、B的坐标为A(1,0),B(1,4).(Ⅱ)设p(m,n),Q(某,y),1m,n1m,4nm21n24n41yn1ym某nkPQ,所以,又PQ的中点在y2(某4)上,所以242某m222消去m,n得某8y292219.(Ⅰ)解:设P的坐标为(0,y),则P至三镇距离的平方和为f(y)2(25y2)(12y)23(y4)2146.所以,当y4时,函数f(y)取得最小值.答:点P的坐标是(0,4).25y2,25y2|12y|,(Ⅱ)解法一:P至三镇的最远距离为g(某)2|12y|,25y|12y|.2由25y|12y|解得y119119,记y某,于是242425y2,当yy某,某某2g(某)因为在[上是增函数,而|12y|在(-,y]上是减函y,)25y某|12y|,当yy.数.所以yy某时,函数g(y)取得最小值.答:点P的坐标是(0, 119);2425y2,25y2|12y|,解法二:P至三镇的最远距离为g(某)2|12y|,25y|12y|.2由25y|12y|解得y119119,记y某,于是24242某25y,当yy,g(某)某|12y|,当yy.函数某g(y)的图象如图(a),因此,当yy时,函数g(y)取得最小值.答:点P的坐标是(0,某119);244解法三:因为在△ABC中,AB=AC=13,且,AC2OC2125OC,ACB,如图(b).所以△ABC的外心M在线段AO上,其坐标为(0,119),24且AM=BM=CM.当P在射线MA上,记P为P1;当P在射线MA的反向延长线上,记P为P2,这时P到A、B、C三点的最远距离为P1C和P2A,且P1C≥MC,P2A≥MA,所以点P与外心M重合时,P到三镇的最远距离最小.答:点P的坐标是(0,119);24参考答案一、选择题:题号答案二、填空题:1C2C3C4C5C6B7C8B9A10B1112131415CDACC16.(某1)2(y1)22;17.(某2)2(y2)22;18.某3y0;19.(0,);20.;21.22.22;23.(某2)2(y3)25;;25.4343。

高考数学——解析几何专题经典试题练习及解析

1 / 21高考数学解析几何专题经典试题练习及解析1、已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1)(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足、证明:存在定点Q ,使得|DQ |为定值【解析】(1)由题意可得:22222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)设点()()1122,,,M x y N x y .因为AM ⊥AN ,∴·0AM AN =,即()()()()121222110x x y y --+--=,① 当直线MN 的斜率存在时,设方程为y kx m =+,如图1. 代入椭圆方程消去y 并整理得:()22212k4260xkmx m +++-=,2121222426,1212km m x x x x k k-+=-=++ ②, 根据1122,y kx m y kx m =+=+,代入①整理可得:()()()()221212k1x 2140x km k x x m ++--++-+=将②代入,()()()22222264k 121401212m kmkm k m k k-⎛⎫++---+-+= ⎪++⎝⎭,2 / 21整理化简得()()231210k m k m +++-=,∵2,1A ()不在直线MN 上,∴210k m +-≠,∴23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭, 所以直线过定点直线过定点21,33E ⎛⎫-⎪⎝⎭. 当直线MN 的斜率不存在时,可得()11,N x y -,如图2.代入()()()()121222110x x y y --+--=得()2212210x y -+-=,结合2211163x y +=,解得()1122,3x x ==舍,此时直线MN 过点21,33E ⎛⎫-⎪⎝⎭,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,3 / 21所以AE 中点Q 满足QD 为定值(AE=). 由于()21,32,13,A E ⎛⎫-⎪⎝⎭,故由中点坐标公式可得41,33Q ⎛⎫ ⎪⎝⎭. 故存在点41,33Q ⎛⎫⎪⎝⎭,使得|DQ|为定值. 2、已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点、求直线AB 的方程、【答案】(Ⅰ)221189x y +=;(Ⅰ)132y x =-,或3y x =-、 【解析】(Ⅰ)椭圆()222210x y a b a b +=>>的一个顶点为()0,3A -,∴3b =,由OA OF=,得3c b ==,又由222a b c =+,得2228313a =+=,所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在,4 / 21设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121k k k -⎛⎫⎪++⎝⎭, 由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk k k k k k --+=-+-+=, 又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =. 所以,直线AB 的方程为132y x =-或3y x =-. 3、已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =(Ⅰ)求椭圆C 的方程:5 / 21(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q 、求||||PB BQ 的值【解析】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩, 故椭圆方程为:22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++. 直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.6 / 21很明显0P Q y y <,且:PQPB y PQy =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭, 而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,故0,P Q P Q y y y y +==-.从而1PQPB y BQy ==. 4、已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y . 当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=, 解得b 2=12.7 / 21所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d==,由两点之间距离公式可得||AM==.所以△AMN的面积的最大值:11825⨯=.5、如下图已知椭圆221:12xC y+=,抛物线22:2(0)C y px p=>,点A是椭圆1C与抛物线2C的交点,过点A的直线l交椭圆1C于点B,交抛物线2C于M(B,M不同于A)(Ⅰ)若116=p,求抛物线2C的焦点坐标;(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值、【答案】(Ⅰ)1(,0)32;【解析】(Ⅰ)当116=p时,2C的方程为218y x=,故抛物线2C的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x yB x y M x y I x y mλ=+,8/ 219 / 21由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,40p ≤, 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .10 / 21将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p模拟试题1、在平面直角坐标系中,曲线Γ:0(),F x y =和函数21()4f x x =的图像关于点(1,2)对称. (1)函数21()4f x x =的图像和直线4y k x =⋅+交于A 、B两点,O 是坐标原点,求证:2AOB π∠=; (2)求曲线Γ的方程;(3)对于(2),依据课本章节《圆锥曲线》的抛物线的定义,求证:曲线Γ为抛物线.【解析】(1)设()()1122,,A B x y x y ,,由2144y x y kx ⎧=⎪⎨⎪=+⎩得24160x kx --=,则1212+4,16x x k x x =⋅=-, 又1212+OA OB x x y y ⋅=⋅⋅ ()()22112121222211++16+160441616x x x x x x x x =⋅⋅=⋅⋅=-⨯-=,11 / 21所以OA OB ⊥,所以2AOB π∠=;(2)设曲线Γ:0(),F x y =上任意一点(),P x y ,点P 关于点(1,2)对称的点()111,P x y ,则1124x xy y =-⎧⎨=-⎩,代入到214y x =中得()21424y x -=-, 所以曲线Γ的方程是2134y x x =-++;(3)设曲线Γ:0(),F x y =上任意一点(),P x y ,则满足2134y x x =-++,设点()2,3F ,直线:5l y =,则()()22223PFx y =-+-()()22222211233244x x x x x x ⎛⎫⎛⎫=-+-++-=-+-+ ⎪ ⎪⎝⎭⎝⎭()2222251123544x x x x y ⎛⎫⎛⎫=-+=-++-= ⎪ ⎪⎝⎭-⎝⎭,所以曲线Γ:0(),F x y =上任意一点P 到点()2,3F 的距离与到直线:5l y =的距离相等,根据抛物线的定义得到曲线Γ为抛物线.2、点P 是直线2y =-上的动点,过点P 的直线1l 、2l 与抛物线2y x 相切,切点分别是A 、B .(1)证明:直线AB 过定点;(2)以AB 为直径的圆过点()2,1M ,求点P 的坐标及圆的方程. 【解析】(1)设点()11,A x y 、()22,B x y 、(),2P b -,对函数2yx 求导得2y x '=,所以,直线1l 的方程为()1112y y x x x -=-,即1120x x y y --=,同理可得直线2l 的方程为2220x x y y --=,12 / 21将点P 的坐标代入直线1l 、2l 的方程得1122220220bx y bx y -+=⎧⎨-+=⎩,所以,点A 、B 的坐标满足方程220bx y -+=,由于两点确定一条直线,所以,直线AB 的方程为220bx y -+=,该直线过定点()0,2; (2)设直线AB 的方程为()22y kx k b =+=,将直线AB 的方程与抛物线的方程联立得220x kx --=,则240k ∆=+>,由韦达定理得122x x =-,12x x k +=,因为()2,1M 在AB 为直径的圆上,所以0MA MB ⋅=,()()11112,12,1MA x y x kx =--=-+,同理()222,1MB x kx =-+,()()()()()()()21212121222111250MA MB x x kx kx k x x k x x ∴⋅=--+++=++-++=,即2230k k +-=,解得1k =或3k =-.当1k =时,1,22P ⎛⎫-⎪⎝⎭,直线AB 的方程为2y x =+,圆心为15,22⎛⎫⎪⎝⎭,半径2r ==,圆的标准方程为22159222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭; 当3k =-时,3,22P ⎛⎫-- ⎪⎝⎭,直线AB 的方程为32y x =-+,圆心为313,22⎛⎫- ⎪⎝⎭,半径r ==2231385222x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭. 综上所述,当1k =时,1,22P ⎛⎫- ⎪⎝⎭,圆的标准方程为22159222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;13 / 21当3k =-时,3,22P ⎛⎫-- ⎪⎝⎭,圆的标准方程为2231385222x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭.3、设椭圆E 的方程为2212x y +=,斜率为1的动直线l 交椭圆E 于A 、B 两点,以线段AB 的中点C 为圆心,AB 为直径作圆S(1)求圆心C 的轨迹方程,并描述轨迹的图形; (2)若圆S 经过原点,求直线l 的方程;(3)证明:圆S 内含或内切于圆223x y +=.【答案】(1)圆心C的轨迹方程为1233y x x ⎛⎫=--<< ⎪ ⎪⎝⎭,轨迹为线段;(2)3y x =±;(3) 【解析】(1)设斜率为1的动直线l 的方程为y x t =+,联立椭圆方程2222x y +=,可得2234220x tx t ++-=,设()11,A x y 、()22,B x y ,则()2221612222480t t t ∆=--=->,即t <<由韦达定理得1243t x x +=-,212223t x x -=,则中点2,33t t C ⎛⎫- ⎪⎝⎭,可得圆心C的轨迹方程为12y x x ⎛=-<< ⎝⎭,即轨迹为线段; (2)由(1)可得AB ===可得圆S 的方程为2222124339t t t x y -⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,若圆S 经过原点,可得()2243599t t -=,解得3t =±,14 / 21因此,直线l的方程为y x =±; (3)圆223x y +=的圆心设为()0,0O圆S 的圆心2,33t t S ⎛⎫-⎪⎝⎭由222225124133393933t t OS t ⎫⎛⎫--=--+=+-⎪ ⎪⎪ ⎪⎝⎭⎝⎭,()03m m =<<,则2293m t -=,可得()2222941312033333m m OS m ⎫--=+-=--≤⎪⎪⎝⎭, 可得圆S 内含或内切于圆223x y +=.4、在平面直角坐标系xOy 中,抛物线C 关于x 轴对称,顶点为坐标原点,且经过点()2,2 (1)求抛物线C 的标准方程;(2)过点()1,0Q 的直线交抛物线于M 、N 两点,P 点是直线:1l x =-上任意一点.证明:直线PM PQ PN 、、的斜率依次成等差数列.【解析】(1)由条件设抛物线为22y px =,而点()2,2在抛物线上,从而有2222p =⨯,得1p =,故抛物线方程为22y x =;(2)设点()1,P t -是直线l 上任意一点,15 / 21由条件知直线MN 的斜率不等于0,设:1MN x my =+交抛物线于()()1122,,M x y N x y 、,由212x my y x=+⎧⎨=⎩可得:2220y my --= 从而有12122,2y y m y y +==-1212112PM PN PQ y t y t tk k k x x --===-++,, 121211PM PN y t y tk k x x --+=+++ ()()()12122121222424my y tm y y tm y y m y y +-+-=+++222424tm t t m --==-+, 而2PQ k t =-,即证2PM PN PQ k k k +=. 即证直线PM ,PQ ,PN 的斜率成等差数列.5、已知椭圆C :22221x y a b +=(0a b >>)的离心率是2,原点到直线1x y a b +=的距离等于3. (1)求椭圆C 的标准方程.(2)已知点()0,3Q ,若椭圆C 上总存在两个点,A B 关于直线y x m =+对称,且328QA QB ⋅<,求实数m 的取值范围【答案】(1)22142x y+=;(2)13⎛⎫⎪⎪⎝⎭,.【解析】(1)因为椭圆的离心率是2,原点到直线1x ya b+=的距离等于3,所以=⎪⎪⎨=,解得224,2a b==,所以椭圆C的标准方程为22142x y+=、(2)根据题意可设直线AB的方程为y x n=-+,联立22142y x nx y=-+⎧⎪⎨+=⎪⎩,整理得22342(2)0x nx n-+-=,由22(4)432(2)0n n=--⨯⨯->△,得26n<、设1122(),(,)A x x nB x x n-+-+,,则()21212224,33nnx x x x-+==又设AB的中点为00()M x x n-+,,则12002,233x x n nx x n+==-+=.由于点M在直线y x m=+上,所以233n nm=+,得3n m=-代入26n<,得296m<,所以m<<,因为1122(,3),(,3)QA x x n QB x x n=-+-=-+-,所以212122(3)()(3)QA QB x x n x x n⋅=--++-2224(2)4(3)3619(3)333n n n n nn---+=-+-=.由328QA QB⋅<,得2361928n n-+<,即13n-<<,所以133m-<-<,即113m-<<,16/ 2117 / 21所以113m m ⎧<<⎪⎪⎨⎪-<<⎪⎩,解得13m <<.实数m的取值范围为133⎛⎫- ⎪ ⎪⎝⎭,. 6、椭圆2222:1(0)x y C a b a b +=>>F 与长轴垂直的直线与椭圆在第一象限相交于点M ,1||2MF =. (1)求椭圆C 的标准方程;(2)设椭圆C 的左顶点为A ,右顶点为B ,点P 是椭圆上的动点,且点P 与点A ,B 不重合,直线PA 与直线3x =相交于点S ,直线PB 与直线3x =相交于点T ,求证:以线段ST 为直径的圆恒过定点.【答案】(1)2214x y +=;(2)证明见解析. 【解析】(1)由题意,离心率为c e a ==,右焦点为(),0F c ,将x c =代入22221x y a b +=,可得2b y a=±;又过椭圆右焦点F 与长轴垂直的直线与椭圆在第一象限相交于点M ,1||2MF =,所以21||2b MF a ==,联立2212c a b a ⎧==⎪⎪⎨⎪=⎪⎩解得:2a =,1b =,18 / 21所以椭圆C 的标准方程为2214x y +=;(2)证明:由(1)知()2,0A -,()2,0B ,设直线AP 的斜率为k ,则直线AP 的方程为(2)y k x =+, 联立3x =得()3,5S k ;设()00,P x y 代入椭圆的方程有:()22000124x y x +=≠±整理得:()220144y x =--,故2020144y x =--, 又002y k x =+,002y k x '=-(k ,k '分别为直线PA ,PB 的斜率) 所以2020144y kk x '==--, 所以直线PB 的方程为:1(2)4y x k =--,联立3x =得13,4T k ⎛⎫ ⎪-⎝⎭, 所以以ST 为直径的圆的方程为:2225151(3)2828k k x y k k ⎡⎤⎛⎫⎛⎫-+--=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令0y =,解得:3x =±, 所以以线段ST为直径的圆恒过定点3⎛⎫± ⎪ ⎪⎝⎭. 7、已知定点()1,0M -,圆()22:116N x y -+=,点Q 为圆N 上动点,线段MQ 的垂直平分线交NQ 于19 / 21点P ,记P 的轨迹为曲线C (1)求曲线C 的方程;(2)过点M 与N 作平行直线1l 和2l ,分别交曲线C 于点A 、B 和点D 、E ,求四边形ABDE 面积的最大值.【答案】(1)22143x y +=;(2)6. 【解析】(1)由中垂线的性质得PM PQ =,42MP NP PQ NP MN ∴+=+=>=, 所以,动点P 的轨迹是以M 、N 为焦点,长轴长为4的椭圆,设曲线C 的方程为()222210x y a b a b +=>>,则2a =,b =,因此,曲线C 的方程为:22143x y +=;(2)由题意,可设2l 的方程为1x ty =+,联立方程得()2222134690431x y t y ty x ty ⎧+=⎪⇒++-=⎨⎪=+⎩, 设()11,D x y 、()22,E x y ,则由根与系数关系有122122634934t y y t y y t ⎧+=-⎪⎪+⎨⎪⋅=-⎪+⎩,所以()2212134t DE t +===+,20 / 21同理()2212134t AB t +=+,1l 与2l的距离为d =所以,四边形ABDE的面积为24S =,u =,则1u ≥,得224241313u S u u u==++,由双勾函数的单调性可知,函数13y u u=+在[)1,+∞上为增函数, 所以,函数2413S u u=+在[)1,+∞上为减函数, 当且仅当1u =,即0t =时,四边形ABDE 的面积取最大值为6.8、已知椭圆C :22221x y a b +=(0a b >>)的左、右焦点分别为1F ,2F ,M 为椭圆上任意一点,当1260F MF ∠=︒时,12F MF △2b =(1)求椭圆C 的方程;(2)设O 为坐标原点,过椭圆C 内的一点()0,t 作斜率为k 的直线l 与椭圆C 交于A ,B 两点,直线OA ,OB 的斜率分别为1k ,2k ,若对任意实数k ,存在实数m ,使得124k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)1,2⎛⎫+∞ ⎪⎝⎭. 【解析】(1)设1MF m =,2MF n =,则2m n a +=,在12MF F △中,1sin 602S mn =︒=4mn =, 由余弦定理可得2222cos604m n mn c +-︒=,即()2234m n mn c +-=,21 / 21代入计算可得223a c -=,23b ∴=,又2b =,2a ∴=,则椭圆C 的方程为22143x y +=; (2)设直线l 的方程为y kx t =+, 由22143y kx t x y =+⎧⎪⎨+=⎪⎩,得()2223484120k x ktx t +++-=, 设()11,A x y ,()22,B x y , 则122834kt x x k +=-+,212241234t x x k-=+. ()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--. 由124k k mk +=对任意k 成立,得()221223t m t =--, ()23212m t m -∴=, 又()0,t 在椭圆内部,203t ∴<<, 即()321032m m-<<,解得12m >. m ∴的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.。

高三数学解析几何专题(含解析)

高三数学解析几何专题(含解析)1.【理科】已知动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,且∠APB=2θ,且d1d2cos2θ=1.Ⅰ)求动点P的轨迹C的方程;Ⅱ)过点B作直线l交轨迹C于M,N两点,交直线x=4于点E,求|EM||EN|的最小值。

2.已知椭圆C:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的离心率为2,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=7/2,PF·PF3/12=4.其中O为坐标原点。

I)求椭圆C的方程;Ⅱ)如图,过点S(0,1/3),且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。

3.已知两定点F1(-2,0)、F2(2,0),满足条件PF2-PF1=2的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、B两点。

Ⅰ)求k的取值范围;Ⅱ)如果AB=63,且曲线E上存在点C,使OA+OB=mOC,求m的值和△ABC的面积S。

4.已知抛物线W:y=ax^2经过点A(2,1),过A作倾斜角互补的两条不同的直线L1、L2.1)求抛物线W的方程及其准线方程;2)当直线L1与抛物线W相切时,求直线L2与抛物线W所围成封闭区域的面积;3)设直线L1、L2分别交抛物线W于B、C两点(均不与A重合),若以BC为直径的圆与抛物线的准线相切,求直线BC的方程。

5.动点M(x,y)到定点F(-1,0)的距离与到y轴的距离之差为1.I)求动点M的轨迹C的方程;II)过点Q(-3,0)的直线l与曲线C交于A、B两点,问直线x=3上是否存在点P,使得△PAB是等边三角形?若存在,求出所有的点P;若不存在,请说明理由。

6.椭圆M的中心在坐标原点D,左、右焦点F1、F2在x轴上,抛物线N的顶点也在原点D,焦点为F2,椭圆M与抛物线N的一个交点为A(3,26)。

全国1历年高考解析几何

20. (2015课标全国Ⅰ本小题满分12分)已知过点A(0,1 )且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I ).求k 的取值范围; (II ).若12OM ON ⋅=,其中O 为坐标原点,求MN .21.(2013课标全国Ⅰ,文21)(本小题满分12分)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(I ).求C 的方程;(II ).l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.20.(2012课标全国Ⅰ,本小题满分12分)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点。

(I )若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程; (II )若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值。

20.(2011课标全国Ⅰ本小题满分12分)在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上.(I )求圆C 的方程; (II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.(20)(2010全国新课标卷文)设1F ,2F 分别是椭圆E :2x +22y b =1(0﹤b﹤1)的左、右焦点,过1F 的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列。

(Ⅰ)求AB(Ⅱ)若直线l 的斜率为1,求b 的值。

2015、解:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C 交于两点,所以223111k k -+〈+. 解得 474733k -+〈〈. 所以k 的取值范围为4747(,)33-+. ……5分 (II )设()1122,,(,)M x y N x y .将1y kx =+代入方程22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=. 所以1212224(1)7,11k x x x x k k ++==++. 1212OM ON c x y y ⋅=+()()2121211k x x k x x =++++()24181k k k +=++. 由题设可得()24181k k k+=++=12,解得k=1,所以l 的方程是y=x+1. 故圆心C 在l 上,所以2MN =. ……12分2014.解:(I )圆C 的方程可化为22(4)16x y +-=,所以圆心为(0,4)C ,半径为4,设(,)M x y ,则(,4)CM x y =- ,(2,2)MP x y =-- ,由题设知0CM MP ∙= ,故(2)(4)(2)0x x y y -+--=,即22(1)(3)2x y -+-=.由于点P 在圆C 的内部,所以M 的轨迹方程是22(1)(3)2x y -+-=. ……6分 (II )由(1)可知M 的轨迹是以点(1,3)N 为圆心,2为半径的圆.由于||||OP OM =,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON PM ⊥. 因为ON 的斜率为3,所以l 的斜率为13-,故l 的方程为1833y x =-+. 又||||22OP OM ==,O 到l 的距离为4105,410||5PM =,所以POM ∆的面积为165.…12分2013. 解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切, 所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4. 由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2).(2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=23.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l :y =k (x +4). 由l 与圆M 相切得2|3|1k k +=1,解得k =24±. 当k =24时,将224y x =+代入22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2=4627-±, 所以|AB |=21k +|x 2-x 1|=187. 当k =24-时,由图形的对称性可知|AB |=187. 综上,|AB |=23或|AB |=187.。

全国高考数学解析几何大题精选50题(完美编辑、含答案、知识卡片)

全国高考数学解析几何大题精选 50 题 (完美编辑、含答案、知识卡片)
1.(2020•上海)已知抛物线 y2=x 上的动点 M(x0,y0),过 M 分别作两条直线交抛物 线于 P、Q 两点,交直线 x=t 于 A、B 两点. (1)若点 M 纵坐标为 ,求 M 与焦点的距离; (2)若 t=﹣1,P(1,1),Q(1,﹣1),求证:yA•yB 为常数; (3)是否存在 t,使得 yA•yB=1 且 yP•yQ 为常数?若存在,求出 t 的所有可能值, 若不存在,请说明理由.
试卷第 1 页,总 25 页
线型道路 PB,QA,规划要求:线段 PB,QA 上的所有点到点 O 的距离均不.小.于.圆 O 的半径.已知点 A,B 到直线 l 的距离分别为 AC 和 BD(C,D 为垂足),测得 AB =10,AC=6,BD=12(单位:百米). (1)若道路 PB 与桥 AB 垂直,求道路 PB 的长; (2)在规划要求下,P 和 Q 中能否有一个点选在 D 处?并说明理由; (3)在规划要求下,若道路 PB 和 QA 的长度均为 d(单位:百米),求当 d 最小时, P、Q 两点间的距离.
21.(2018•新课标Ⅲ)已知斜率为 k 的直线 l 与椭圆 C: + =1 交于 A,B 两点, 线段 AB 的中点为 M(1,m)(m>0). (1)证明:k<﹣ ; (2)设 F 为 C 的右焦点,P 为 C 上一点,且 + + = ,证明:2| |=| |+| |.
试卷第 10 页,总 25 页
点的圆. (1)求 C 的轨迹方程; (2)动点 P 在 C 上运动,M 满足
=2 ,求 M 的轨迹方程.
试卷第 8 页,总 25 页
18.(2018•浙江)如图,已知点 P 是 y 轴左侧(不含 y 轴)一点,抛物线 C:y2=4x 上 存在不同的两点 A,B 满足 PA,PB 的中点均在 C 上. (Ⅰ)设 AB 中点为 M,证明:PM 垂直于 y 轴;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历届高考中的“解析几何初步”试题精选(A )一、选择题:1.(2007浙江文、理)直线x -2y +1=0关于直线x =1对称的直线方程是( ) (A)x +2y -1=0 (B)2 x +y -1=0 (C )2 x +y -3=0 (D) x +2y -3=02.(2006福建文)已知两条直线2y ax =-和(2)1y a x =++互相垂直,则a 等于( ) (A )2 (B )1 (C )0 (D )1-3.(2005北京文、理)”m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )(A )充分必要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件4.(2005全国卷III 文、理)已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )(A )0 (B )-8 (C )2 (D )105.(2005浙江文、理)点(1,-1)到直线x -y +1=0的距离是( )(A)21 (B)32 (C)22(D)3226.(2004全国卷Ⅱ文)已知点A (1,2),B(3,1),则线段AB 的垂直平分线的方程为( )(A )4x +2y =5 (B )4x -2y =5 (C )x +2y =5 (D )x -2y =57.(2004全国卷Ⅳ理)过点(-1,3)且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 8.(2003广东)在同一坐标系中,表示直线ax y =与a x y +=正确的是( )9.(2002北京文)若直线3:-=kx y l 与直线0632=-+y x 的交点位于第一象限,则直线l 的倾斜角的取值范围( )A .)3,6[ππB .)2,6(ππC .)2,3(ππD .]2,6[ππ10.(2001春招上海)若直线1=x 的倾斜角为α,则α( )(A )等于0(B )等于4π (C )等于2π (D )不存在11.(2001上海文、理)a=3是直线ax+2y+3a=0和直线3x+(a -1)y=a -7平行且不重合的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件 12.(2000春招北京、安徽文)直线(-)x +y =3和直线x +(-)y =2的位置关系是( )A .相交不垂直B .垂直C .平行D .重合 二、填空题:13.(2007上海理)若直线1210l x my ++=: 与直线231l y x =-:平行,则=m . 14.(2006上海春招) 已知直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于B A 、两点,O 为坐标原点,则三角形OAB 面积的最小值为 .15.(2006北京理)若三点(2,2),(,0),(0,)(0)A B a C b ab ≠共线,则11a b+的值等于________.16、(2006上海文)已知两条直线12:330,:4610.l ax y l x y +-=+-=若12//l l ,则a =____. 17.(2003上海文)已知定点A (0,1),点B 在直线x +y=0上运动,当线段AB 最短时,点B 的坐标是 . 三、解答题:18、(2006广东)设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点A B 、的坐标分别为11()x f x (,)、22()x f x (,),该平面上动点P 满足•4PA PB =,点Q 是点P 关于直线2(4)y x =-的对称点.求: (错误!未找到引用源。

)求点A B 、的坐标; (错误!未找到引用源。

)求动点Q 的轨迹方程.19.(2003北京文)有三个新兴城镇,分别位于A ,B ,C 三点处,且AB=AC=13km ,BC=10km.今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处,(建立坐标系如图)(Ⅰ)若希望点P 到三镇距离的平方和为最小, 点P 应位于何处?(Ⅱ)若希望点P 到三镇的最远距离为最小,点P 应位于何处?历届高考中的“解析几何初步”试题精选(B )一、选择题:1.(2007安徽文)若圆04222=--+y x y x 的圆心到直线0=+-a y x 的距离为22,则a 的值为( )(A)-2或2 (B)2321或 (C)2或0 (D)-2或02.(2007湖北文)由直线y=x +1上的一点向圆(x -3)3+y 2=1引切线,则切线长的最小值为( ) A.1 B.22 C.7 D.33.(2007上海文)圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( ) A.21)2()3(22=-++y x B.21)2()3(22=++-y x x yB(-b,0)PC(b,0)OAC.2)2()3(22=-++y x D.2)2()3(22=++-y x4.(2006湖南文)圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是( )A .36 B.18 C.26 D.255.(2006江苏)圆1)3()1(22=++-y x 的切线方程中有一个是( )(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =06.(2006全国Ⅰ卷文)从圆222210x x y y -+-+=外一点()3,2P 向这个圆作两条切线,则两切线夹角的余弦值为( )A .12B .35C .32D .07.(2006重庆文)以点(2,-1)为圆心且与直线3450x y -+=相切的圆的方程为( ) (A )22(2)(1)3x y -++= (B )22(2)(1)3x y ++-= (C )22(2)(1)9x y -++= (D )9)1()2(22=-++y x8.(2005北京文)从原点向圆 x 2+y 2-12y +27=0作两条切线,则这两条切线的夹角的大小为( )(A )6π (B )3π (C )2π(D )32π9.(2005重庆文、理)圆5)2(22=++y x 关于原点(0,0)对称的圆的方程为( ) A .5)2(22=+-y x B .5)2(22=-+y x C .5)2()2(22=+++y x D .5)2(22=++y x10.(2004湖北文)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的公切线有且仅有( )A .1条B .2条C .3条D .4条11.(2004全国卷Ⅱ文、理)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为( )(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=112.(2004全国卷Ⅲ文、理)圆0422=-+x y x 在点)3,1(P 处的切线方程为( ) A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x 13.(2004天津理)若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A.03=--y xB.032=-+y xC.01=-+y xD.052=--y x14.(2002春招北京理)圆2x 2+2y 2=1与直线xsin θ+y –1=0 (θ∈R, θ≠π/2+k π, k ∈Z)的位置关系是( )(A )相交 (B )相切 (C )相离 (D )不能确定15.(2001江西、山西、天津文、理,全国文、理)过点A (1,-1)、B (-1,1)且圆心在直线x +y-2=0上的圆的方程是( )(A )4)1()3(22=++-y x (B )4)1()3(22=-++y x (C )4)1()1(22=-+-y x (D )4)1()1(22=+++y x 二.填空题:16.(2007湖南文、理)圆心为(11),且与直线4x y +=相切的圆的方程是_________. 17.(2007山东文、理)与直线20x y +-=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是 .18.(2007天津文、理)已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则直线AB 的方程是 .19、(2006湖北文)若直线y =kx +2与圆(x -2)2+(y -3)2=1有两个不同的交点,则k 的取值范围是 .20.(2006天津理)设直线30ax y -+=与圆22(1)(2)4x y -+-=相交于A 、B 两点,且弦AB 的长为23,则a =____________.21.(2005湖南文)设直线0132=++y x 和圆03222=--+x y x 相交于点A 、B ,则弦AB的垂直平分线方程是 .22.(2005重庆文)若y x y x -=+则,422的最大值是 .23、(2004上海文、理)圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A(0, -4),B(0, -2),则圆C 的方程为 .24.(2002北京文)圆012222=+--+y x y x 的动点Q 到直线0843=++y x 距离的最小值为 .25.(2002上海文、理)已知圆1)1(22=-+y x 和圆外一点)0,2(-P ,过点P 作圆的切线,则两条切线夹角的正切值是 。

历届高考中的“解析几何初步”试题精选(A )参考答案一、选择题:题号123456789101112答案DDBBDBACB CCB二、填空题:13.32-; 14. 4 15. 21 ; 16. 2 17.⎪⎭⎫⎝⎛-21,2118.解: (Ⅰ)令033)23()(23=+-='++-='x x x x f 解得11-==x x 或 当1-<x 时,0)(<'x f , 当11<<-x 时,0)(>'x f ,当1>x 时,0)(<'x f所以,函数在1-=x 处取得极小值,在1=x 取得极大值,故1,121=-=x x ,4)1(,0)1(==-f f所以, 点A 、B 的坐标为)4,1(),0,1(B A -.(Ⅱ) 设),(n m p ,),(y x Q ,()()4414,1,122=-+-=--∙---=∙n n m n m n m PB PA21-=PQ k ,所以21-=--m x n y ,又PQ 的中点在)4(2-=x y 上,所以⎪⎭⎫⎝⎛-+=+4222n x m y消去n m ,得()()92822=++-y x19. (Ⅰ)解:设P 的坐标为(0,y ),则P 至三镇距离的平方和为.146)4(3)12()25(2)(222+-=-++=y y y y f所以,当4=y 时,函数)(y f 取得最小值. 答:点P 的坐标是).4,0((Ⅱ)解法一:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当由|12|252y y -≥+解得,24119≥y 记,24119*=y 于是 ⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 因为225y +在[),*+∞y 上是增函数,而]y ,(-|12|*∞-在y 上是减函数. 所以*y y =时,函数)(y g 取得最小值. 答:点P 的坐标是);24119,0( 解法二:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当由|12|252y y -≥+解得,24119≥y 记,24119*=y 于是 ⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 函数)(y g x =的图象如图)(a ,因此,当*y y =时,函数)(y g 取得最小值.答:点P 的坐标是);24119,0( 解法三:因为在△ABC 中,AB=AC=13,且,(b).,4,51222如图π=∠=>=-ACB OC OC AC所以△ABC 的外心M 在线段AO 上,其坐标为)24119,0(, 且AM=BM=CM. 当P 在射线MA 上,记P 为P 1;当P 在射线 MA 的反向延长线上,记P 为P 2,这时P 到A 、B 、C 三点的最远距离为P 1C 和P 2A ,且P 1C ≥MC ,P 2A ≥MA ,所以点P 与外心M 重合时,P 到三镇的最远距离最小. 答:点P 的坐标是);24119,0(历届高考中的“解析几何初步”试题精选(B )参考答案一、选择题:题号123456789101112131415答案CCCCCBCBABCDACC二、填空题:16. 2)1y ()1x (22=-+-; 17. 2)2y ()2x (22=-+-; 18. 03y x =+;19.)34,0(; 20. 0 ; 21. 3x-2y-3=0 ; 22. 22 ;23. 5)3y ()2x (22=++- ; 24. 2 ; 25. 34。

相关文档
最新文档