精密仪用放大器INA114原理及应用
锁相放大器的原理及应用

锁相放大器的原理及应用1. 原理介绍锁相放大器(Lock-in Amplifier)是一种精密的信号处理仪器,常用于测量微小信号在高噪声环境中的幅度和相位。
其原理基于信号的时域和频域分析。
锁相放大器的工作原理如下:1.输入信号和参考信号分别经过同步检波器和相位补偿器。
同步检波器通过将输入信号和参考信号相乘,得到一个混频输出信号。
相位补偿器则用于调节参考信号的相位,使其与输入信号处于同一相位。
2.混频输出信号经过低通滤波器,滤去高频噪声和杂散信号,得到幅度和相位信息。
3.幅度和相位信息经过放大器放大后,输出到显示器或数据采集系统进行数据处理和分析。
2. 应用领域锁相放大器在各个领域都有广泛的应用,下面列举了几个主要的应用领域:2.1 光学领域2.1.1 光学干涉测量锁相放大器可以应用于光学干涉测量中,通过与参考光信号进行比较,提取出微小的干涉信号。
这对于测量物体表面形貌、薄膜厚度等具有重要意义。
2.1.2 光谱分析在光谱分析中,锁相放大器可以提取出光源的频率和相位信息,对于研究材料的光学性质、标定光谱仪等具有重要应用价值。
2.2 生物医学领域2.2.1 生物传感器生物传感器通常需要对微弱的生物信号进行放大和处理。
锁相放大器可以实现对生物信号的高灵敏度检测,应用于生物传感器的信号放大和分析。
2.2.2 磁共振成像(MRI)在磁共振成像中,锁相放大器可以对磁场感应信号进行放大和处理,提高成像的灵敏度和分辨率。
2.3 物理实验领域2.3.1 基础粒子物理实验在基础粒子物理实验中,需要对微小的粒子信号进行检测和处理。
锁相放大器可应用于实验中对粒子信号的放大和分析,用于寻找新的粒子。
2.3.2 材料科学研究锁相放大器可以应用于材料科学研究中,对材料的电学、热学、磁学等性质进行测量和分析。
3. 优势和限制3.1 优势•高灵敏度:锁相放大器可以放大微弱信号,提高信号与噪声的比值,从而实现对微小信号的检测。
•抗噪声能力强:锁相放大器可以滤除高频噪声和杂散信号,提高信号的纯度和准确性。
便携式电子秤的设计

电子电路综合实验总结报告便携式电子秤的设计班级: 20110821学号: ************: *******: ***实验日期: 2013年5月成绩:信息与通信工程学院一、任务要求手提电子称具有称重精确度高,简单实,携带方便成本低,制作简单,测量准确,分辨率高,不易损坏和价格便宜等优点,是家庭购物使用的首选。
本设计主要任务是设计一个LED或LCD显示的便携式电子称。
二、设计要求极其指标1、称重范围为20g~2kg;2、坚定分度值:Ⅳ级(检定分度值在一百到一千之间);3、显示分辨力:1g;4、采用电阻应变式传感器检测物体重;5、采用模拟数字电路构建系统,完成主要电路设计,包括了传感器电路,差动放大电路,A/D转换电路以及显示电路等;6、显示电路采用LED数码管进行显示;三、方案设计与论证1、方案一首先,利用由电阻应变式传感器组成的测量电路测出物质的重量信号。
其次,由差动放大器电路把传感器输出的微弱信号进行一定倍数的放大,然后送入A/D 转换电路中。
再由A/D转换电路把接收到的模拟信号转换成数字信号,传送到显示电路,最后由显示电路显示数据。
电阻应变式传感器就是将被测物理量的变化转换成电阻值的变化, 再经相应的电路转化为电压差值。
我们用电阻应变式传感器E350-ZAA作为测量电路的核心。
差动放大电路将由测量电路传过来的电压差值放大,再将放大电压传送给A/D转换电路。
本模块我们采用INA114AP做为核心元件。
A/D转换电路主要采用ICL7107将模拟信号转换为数字信号并通过LED数码管显示。
方案一优缺点:优点:本设计无复杂的程序,由硬件搭建,各部分分工明确。
在进行系统调试及故障查询时可分级测试。
缺点:芯片成本较高,无拓展功能。
2、方案二:称重传感器根据压力的变化提供相应的线性变化的电信号,该电信号经过高精度差动放大器放大。
输入给双积分型模数转换器。
转化为数字信号,数字信号可直接由单片机以串行方式读入。
精品文档-传感器原理及应用(郭爱芳)-第12章

第12章 智能传感器 图12.2 DTP型智能式压力传感器的结构
第12章 智能传感器
12.2.1 基本传感器 1. 传感器的主要技术要求 (1) 具有将被测量转换为后续电路可用信号的功能; (2) 转换范围与被测量实际变化范围一致,转换精度符
合在整个系统的总精度要求下而分配给传感器的精度指标(一 般应优于系统精度的十倍左右),转换速度应符合整机要求;
分析与处理功能,可完成非线性、温度、噪声、响应时间以及 零点漂移等误差的自动修正或补偿,提高测量准确度;
(2) 自校准、自诊断功能:实时进行系统的自检和故障 诊断,在接通电源时进行开机自检,在工作中进行运行自检, 自动校准工作状态,自行诊断故障部位,提高工作可靠性;
(3) 自适应、自调整功能:根据待测量的数值大小和工 作条件的变化情况,自动调整检测量程、测量方式、供电情况、 与上位机的数据传送速率等,提高检测适应性;
(4) 电源引起的失调:电源电压变化1%所引起放大器的 漂移电压值。一般数据采集系统的前置放大器常用稳压电源供 电,该指标是设计稳压电源的主要依据。
第12章 智能传感器
1. 仪用放大器 仪用放大器常采用三运放对称结构且具有较高的输入阻抗 和共模抑制比的单片集成放大器,只需外接一个电阻即可设定 增益,如美国BB(Burr Brown)公司生产的INA114, 美国 AD(Analog Devies)公司生产的AD521、AD524、AD8221等。 INA114是一种通用的仪用放大器,尺寸小、精度高、价格低 廉,可用于电桥、热电偶、数据采集以及医疗仪器等,其内部 电路如图12.3所示。
(3) 满足被测介质和使用环境的特殊要求,如耐高温、 耐高压、防腐、抗振、防爆、抗电磁干扰、体积小、质量轻和 不耗电(或耗电少)等;
仪用放大器设计

仪用放大器使用注意事项。
仪表放大器的结构仪表放大器一般是由三个放大器和经过激光调阻修正的电阻网络构成,如图1所示。
在传统的三片运放方式的基础上做一些改进,内部阻值的校准保证用户只需要外接一个电阻即可实现由1到上万倍的增益精确设定,减少了由于增益相关误差带来的数据采集误差,同时这种结构保证其具有高输入阻抗和低输出阻抗,且每一路输入都有输入保护电路以避免损坏器件。
由于采用激光调阻,使其具有低失调电压、高共模抑制比和低温漂。
图1 仪表放大器的结构原理框图图1所示为BB(Burr Brown)公司的INA114、INA118等仪表放大器的结构原理框图及引脚。
在实际应用时,正负电源引脚处应接滤波电容C,以消除电源带来的干扰。
5脚为输出参考端,一般接地。
实际应用中即使5脚对地之间存在很小的电阻值,也将对器件的共模抑制比产生很大的影响,如5欧姆的阻值将导致共模抑制比衰减到80dB。
应用中应考虑的问题1 输入偏置电流回路一般来说,选择差分信号测量的工作方式时,后面的信号放大电路一般直接采用仪表放大器构成。
仪表放大器的输入阻抗非常高,大约达到1010Ω数量级,相应对于差分输入的每个输入端都需要输入偏置电流通道,以提供共模电流反馈回路,例如仪表放大器IN118输入偏置电流大约为±5nA。
由于仪表放大器的输入阻抗非常高,使得输入的偏置电流随输入电压的变化非常小,对差分信号放大不会产生太大影响。
输入偏置电流是仪表放大器(IA)输入三极管所必须的电流,电路设计时必须保证偏置电流有接地的回路,如果电路中没有输入偏置电流通道,传感器的输入将处于浮电位状态,而浮电位值很可能超过放大器所能够允许的共模电压范围(其值与放大器的供电电压相关),使输入放大器饱和而失去放大功能。
(实验中好像是c)针对实际的应用情况,输入偏置电流回路设置可以采用三种基本形式,分别如图2所示。
其中(a)为差分信号源阻抗较高(人体内阻算大还是小?接电极时是否需要导电膏之类的东西,这是人体电阻大约是多少?)时常用的形式,其中的两个接地电阻相等,以保证较高的共模抑制比和减小偏置电流对失调的影响;(b)为信号源阻抗较低时采用的形式(如热电偶);(c)为对称结构常用的形式。
精密仪用放大器INA114

精密仪用放大器INA114原理及应用摘要:INA114是一种通用仪用放大器,尺寸小、精度高、价格低廉,可用于电桥、热电偶、数据采集、RTD传感器和医疗仪器等。
INA114只需一个外部电阻就可以设置1至10000之间的任意增益值,内部输入保护能够长期耐受±40V,失调电压低(50μV),漂移小(0.25μV/℃),共模抑制比高(G=1000时为50dB),用激光进行调整,可以在±2.25V的电压下工作,使用电池(组)或5V单电源系统,静态电流最大为3mA。
INA114采用8引脚塑料封装或SOL-16表面封装贴件,使用环境温度为-40℃~+85℃。
还有就是INA114的电气参数、建立增益、噪声特性、失调/偏移的修正、偏置电压返回路径、输入共模范围、输入保护。
结束语综上所述,INA114精密仪用放大器精度高、增益范围大、性能优良、价格低廉,非常适合于精密仪器的使用。
第一章引言INA114是美国BURR—BROWN公司推出的精密仪用放大器,具有成本低、精度高通用性强等优点,三运放结构设计,减小了尺寸,拓宽了应用范围。
利用一个外部电阻器就可在1—10000范围内进行增益调节,内部输入防护可承受高达40V的共模电压而不会损坏。
INA114具有低失调电压(50V)、低漂移(0.25V/C)和高共模抑制比(当G = 1000时为115dB )。
能在 2.25V低电源情况下工作,也可用5V单电源工作。
静态工作电流最大3mA。
第二章 INA114结构原理及特点一、特性1.低失调电压: 最大50V2.低漂移: 最大0.25V/ C3.低输入偏流: 最大2nA4.高共模抑制:最小115dB5.输入过压保护:40V6.宽电源范围: 2.25 —18V7.低静态电流: 最大3mA二、应用1.电桥放大器2.热电偶放大器3.RTD感测放大器4.医用放大器5.数据采集三、结构原理图INA114结构原理图如图1所示:图1 结构原理图-(脚2):信号反向输入端。
通用数字晶体管 114 应用电路

通用数字晶体管 114 应用电路通用数字晶体管(Universal Digital Transistor,简称UDT)是一种广泛应用于数字电路中的电子器件。
它可以作为开关或放大器使用,具有高速、低功耗、小尺寸等优点,在现代电子技术中发挥着重要的作用。
本文将从UDT的基本原理、应用电路和未来发展方向三个方面进行介绍和讨论。
一、UDT的基本原理UDT是一种双极型晶体管,由基极(B)、发射极(E)和集电极(C)组成。
它的工作原理是通过控制基极电流来控制集电极电流,从而实现开关或放大的功能。
UDT的工作状态可以分为两种:截止状态和饱和状态。
当基极电流为零时,UDT处于截止状态,集电极电流为零;当基极电流足够大时,UDT处于饱和状态,集电极电流最大。
UDT的工作状态由输入电压和电流决定,可以通过控制输入信号的大小和极性来实现对输出信号的控制。
二、UDT的应用电路1. 开关电路UDT常用于数字电路中的开关电路。
以CMOS逻辑门电路为例,UDT可以作为开关管来控制逻辑门的输入和输出。
当输入信号为高电平时,UDT处于饱和状态,输出信号为低电平;当输入信号为低电平时,UDT处于截止状态,输出信号为高电平。
这样可以实现逻辑门的逻辑运算功能。
2. 放大电路UDT也可以用作放大器电路。
以共射放大电路为例,UDT作为放大器的核心部件,可以放大输入信号的幅度。
当输入信号施加到基极时,UDT工作在放大区,将输入信号放大,并输出到集电极。
这样可以实现输入信号的放大功能。
3. 时钟电路UDT还可以用于时钟电路中。
时钟电路是数字系统中非常重要的一部分,用于控制信号的同步和定时。
UDT可以作为时钟信号的驱动器,输出高频率的时钟信号,确保数字系统的正常运行。
三、UDT的未来发展方向随着科技的不断进步和应用的不断扩展,UDT也在不断发展和改进。
未来UDT的发展方向有以下几个方面:1. 高速化随着数字系统的需求不断增加,UDT需要具备更高的工作速度,以满足高速数字电路的要求。
INA114及CLASS-D放大器在石油测井仪器中的应用

关键词 : 器放 大器 ; 仪 I NAI 4 C AS -D; 算放 大器 ; 1;L S 运 共模 干扰 ; 声 ; 噪 测井 仪器 ; 精度
引言
石 油 测 井仪 器在 石 油 工 业 中 起 着 很 关 键 的 作 用, 由它 测得 的测 井 曲线能 够很 好反 映真实 地层 , 有 效的指 导石 油勘 探开 发开 采 的进 行 。 中 , 其 测井仪 器 的精 度决 定 了 测井 曲线 反映 真 实地 层 的接 近 程 度 。 但就 我 们 目前 使 用的 测 井仪 器 来 看 , 度 并 不能 达 精 到生 产 的要求 。 电阻率 类测 井仪器 为例 , 以 在地 层 电 阻率 值 的 高端 , 器 的线 性 比较 容 易 满 足精 度要 求 仪 而 在 地 层 电阻 率 的 低端 , 器 的 线性 往 往 难 以满 仪 足较 高 的要求 。 究其原 因 , 主要有 两方 面 : 是测量 一
通 过 以上分 析 可 以看 出 , 成 这 种测 量 电路 精 造 度下 降的 主要原 因是 4个 电阻 之 间无法 做到 很 好 的 匹配 。为 了抑制 这种 不平 衡所 造成 的对原 始 信号放
我 们将 以 S T一1电位 梯 度下井 仪 测量 电路 的 D 改 进 为例 , 绍 I 介 NAI4型放 大 器优 化 测 量 电路 的 1 方法 。由于该 仪 器是 同时 并测 电位 、 度 四路信号 , 梯 测 量 电路 的 前置 放 大 级 不能 采 用一 端 接 地 , 一端 反 馈 放大 的方 式 , 只能 采 用如 图 1所示 的双端 差 动 输 入 的放 大方 式。 。
维普资讯
2 0
内蒙 古石 油4 r L- -
20 年第 9 08 期
模拟信号调理电路

1. 大信号输出传感器 :为了与A/D输入要求相适应,传感器 厂家开始设计、制造一些专门与A/D相配套的大信号输出 传感器。
传感器 小电压 小信号放
小电流
大
传感器 大电压
传感器 大电流 I/V转换
信号修正与变换
滤波 A/ D
V/ F
微机
光电耦 合
微机
图6.1 大信号输出传感器的使用
2.数字式 传感器
隔离放大 器
隔离放大器(Isolation Amplifier)输出端和输 入端各自具有不同的电位参考点、即输入端和 输出端没有直接的电耦合,而是通过光、变压 器或电容等耦合元件耦合。输入端和输出端的 绝缘电压一般达1000V以上,绝缘电阻达数十 ΜΩ。因此输入端的干扰不会直接到达输出端, 多路通道使用隔离放大器时相互之间不会影响。 当仪器工作环境噪声较大而信号较小时,采用 隔离放大器可保护电子仪器设备和人身安全, 提高共模抑制比,获得较精确的测量结果。
02 单 击 此 处 添 加 小 标 题
PGA202不需任何 外部调整元件就能 可靠工作。但为了 保证效果更好,在 正、负电源端分别 连接一个1μF的旁 路钽电容到模拟地, 且尽可能靠近放大 器的电源引脚,如 图6.10所示,由于 11脚、4脚上的连 线电阻都会引起增 益误差,因此11、 4脚连线应尽可能短。
单击此处添加副标题
第六章 模拟信号调理
6.1 传感器的选用
6.2 运用前置放大器的依据
6.3 常用放大器
6.4 信号调制与解调
6.5 信号滤波电路
6.6 信号转换电路
6.7 A/D转换电路
在一般测量系统中信号调理的任务较复杂, 除了实现物理信号向电信号的转换、小信 号放大、滤波外,还有诸如零点校正、线 性化处理、温度补偿、误差修正和量程切 换等,这些操作统称为信号调理(Signal Conditioning),相应的执行电路统称 为信号调理电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精密仪用放大器INA114原理及应用
摘要:
第一章引言
INA114是美国BURR—BROWN公司推出的精密仪用放大器,具有成本低、精度高通用性强等优点,三运放结构设计,减小了尺寸,拓宽了应用范围。
利用一个外部电阻器就可在1—10000范围内进行增益调节,内部输入防护可承受高达±40V的共模电压而不会损坏。
INA114具有低失调电压(50μV)、低漂移μV/︒C)和高共模抑制比(当G = 1000时为115dB )。
能在±低电源情况下工作,也可用5V单电源工作。
静态工作电流最大3mA。
第二章INA114结构原理及特点
一、特性
1.低失调电压: 最大50μV
2.低漂移: 最大μV/︒C
3.低输入偏流: 最大2nA
4.高共模抑制:最小115dB
5.输入过压保护:±40V
6.宽电源范围: ±2.25 —±18V
7.低静态电流: 最大3mA
二、应用
1.电桥放大器
2.热电偶放大器
3.RTD感测放大器
4.医用放大器
5.数据采集
三、结构原理图
INA114结构原理图如图1所示:
图1 结构原理图
1. V IN-(脚2):信号反向输入端。
该端与信号同相输入端(脚3)构成差分输入。
2. V IN+(脚3):信号同向输入端。
3.增益调整(脚1、8):该端接外接增益调整电阻器R G。
4. V O(脚6):放大器输出端。
5. Ref(脚5):参考电压输入端,通常接地。
为确保良好的共模抑制,连接必须是低阻抗的,如果一个5 的电阻串接在此脚,将引起共模抑制比典型值下降到80dB(G=1)。
三、工作原理分析
1.三运放仪用放大器电路结构
仪用放大器的三运放结构,是在差动运放的基础上发展起来的一种比较完善的结构形式,如图2所示,其中,A1、A2为同相放大器,A3为差动放大器,三个运放都具有高输入阻抗、高增益、高共模抑制比、低噪声等特性,且A1、A2性能完全匹配。
图2 三运放仪用放大器电路结构
2.工作原理分析
(1)当Ui1单独作用,即Ui2 = 0时:Ui2 = 0, UN = 0
(2)当U i2单独作用(Ui1= 0)时:Ui1 = 0, UM = 0
(3)当Ui1、Ui2同时作用时:
当满足电阻匹配条件,即 R5 = R4 , R7 = R6 , R3 = R2时,输出电压为:
选择R2~R6=R ,则增益为:
因此,INA114的增益为: G
R k G Ω
+
=501 i1
1
2
1o1
U R R R U +='i11
3
o2
U R R U -='i2
1
2
1o2
U R R R U +=''i21
2
o1
U R R U -=''o1o1
o1U U U '''=+122i1i2
11R R R
U U R R +=-o2o2
o2U U U '''=+133i2i111
R R R
U U R R +=-6o o2o14()R U U U R =
-6123i2i114
()
()R R R R U U R R ++=-1
21)(413216R R
R R R R R R G +
=++=
其中,R
是外接电阻器,50k 是内部两个反馈电阻值的和。
G
第三章INA114基本应用简介
一、增益设定
INA114的增益由一个外部链接电阻RG设定,常用增益和相应的电阻值表示在图1中。
图3 INA114基本应用连接图
用来设置增益的外部电阻RG的稳定性和温漂也对增益有影响。
RG对增益精度和增益漂移的影响,可以由增益公式直接推导出来。
高增益需要低阻值,所以接线电阻就很重要。
管座引入的接线电阻会使增益误差额外地增加100甚至更多,并且很可能是不稳定的误差。
二、失调电压调整
INA114用激光来修正微小的失调电压和漂移,在多数应用中不需要外部失调调整,当输出电压失调需要调整时,可按照图4连接。
为保证低阻抗连接,通过运放对调整电压进行缓冲。
图4 输出电压失调调整电路图
在大多数应用中,INA114产生的噪声都很小。
对于小于1kΩ的差动信号源电阻,INA103产生的噪声更小;信号源电阻大于5kΩ时,INA111型FET输入仪用放大器产生的噪声更小一些。
INA114的低频噪声频率峰-峰值约为0.4μV(从0.1Hz到10Hz)。
这大约是使用斩波稳零的“低噪声”放大器所产生的噪声的十分之一。
三、输入偏流回路
INA114的输入阻抗近似为1010Ω,输入偏置电流小于±1nA。
高输入阻抗也表示输入偏置电流随输入电压的变化很小。
输入电路必须为INA114正常工作提供一个偏流路径,没有偏流回路,输入就会浮置在某个超过共模范围的电平上,并使INA114饱和。
如果差分信号源输入阻抗低,偏流路径可直接接到一个输入端上。
当信号源阻抗较高时,利用两个电阻器构成均衡输入电路,尽可能降低由于偏流产生的失调电压和保证良好的共模抑制比。
图5中表示各种不同情况下提供的偏流回路。
图5 各种共模输入电流路径
第四章应用设计
一、电缆线屏蔽层驱动电路
电缆线屏蔽层驱动电路如图6所示。
信号在长距离差分传送时,用电缆线进行连接,为保证电缆线的屏蔽层与INA114共模电压同电位,通过运放连接,将屏蔽层驱动到共模电位。
图6 屏蔽层驱动电路
Ω为运放提供输入信号,同时均衡共模电压。
电路增益电阻为:
Ω=+=
k RG 505.0)
1.22(2511.0)
1.22(2*511.0
查图3中的表可知,此电路增益为G=100。
二、RTD 温度测量电路
利用电阻温度探测器(RTD )构成的温度测量电路如图7所示。
图7 RTD 温度测量电路图
R Z 为RTD 温度测量电阻的最小电阻,两个100μA 恒流源分别驱动RTD 和R Z ,仪用放大器INA114测量放大RTD 和R Z 上的电压差,调整RZ 的值,使在R Z =(R RTD )MIN 时,V O =0V 。
由于电路结构的对称性,消除了由于接线产生的共模输入型号的影响。
三、具有冷端补偿的热电偶放大器电路
图示为由INA114构成的有冷端补偿的热电偶放大器。
采用REF102精密基准电压源(10.0V)对热电偶供电,热电偶产生的电压由INA114放大后输出。
二极管1N4148在200μA 时为-2.1mV /o C ,100Ω电位器R6用于电路调零。
如选用其他型号的热电偶,可参照下表。
图8 具有冷端补偿的热电偶放大器电路图
四、交流耦合仪用放大器电路
图示为由INA114构成的交流耦合仪表放大器。
OPA602构成具有交流特性的反馈电路,f-3db=1/2 R1C1=1.59Hz。
将信号反馈到INA114的Ref 端(5脚),由此组成交流耦合电路。
图9 交流耦合仪用放大器电路图
五、差分电压/电流转换器
图10 差动电压—电流变换电路图
图示为差动电压—电流变换电路。
INA114输出经由R1及A1构成电流源,因运算放大器输入阻抗极高,偏流极小,即I L>>I B,因此,输出电流I L=Io可以看作是恒定的,只与输入电压和R1有关,Io=(VIN/R1)×G。
第五章结论
主要写通过课程设计自己在那几个方面得到提高
参考文献:。