理论力学习题
理论力学第4版习题答案

理论力学第4版习题答案理论力学是物理学中的一门基础课程,它研究物体运动的规律和力的作用关系。
而理论力学第4版习题是帮助学生巩固和应用所学知识的重要工具。
本文将为读者提供一些理论力学第4版习题的答案,以帮助他们更好地理解和掌握这门学科。
1. 题目:一个质量为m的物体以初速度v0沿着水平面上的直线运动,受到一个与速度成正比的阻力F=-kv作用。
求物体的速度随时间的变化关系。
答案:根据牛顿第二定律,物体的加速度a等于受到的合力F除以质量m。
由于物体只受到阻力和重力两个力的作用,因此有F=mg-kv。
代入牛顿第二定律的公式,得到ma=mg-kv,即m(dv/dt)=mg-kv。
整理后得到mdv/(mg-kv)=dt,两边同时积分得到ln|mg-kv|=-(k/m)t+C,其中C为积分常数。
通过指数函数的性质,可以得到mg-kv=Ae^(-kt/m),其中A为常数。
解出v后,即可得到物体的速度随时间的变化关系。
2. 题目:一个质量为m的物体以初速度v0沿着竖直方向上的直线运动,受到一个与速度平方成正比的阻力F=-kv^2作用。
求物体的速度随时间的变化关系。
答案:同样根据牛顿第二定律,物体的加速度a等于受到的合力F除以质量m。
由于物体只受到阻力和重力两个力的作用,因此有F=mg-kv^2。
代入牛顿第二定律的公式,得到ma=mg-kv^2,即m(dv/dt)=mg-kv^2。
整理后得到mdv/(mg-kv^2)=dt,两边同时积分得到(1/v0-1/v)=kt/m,其中k为常数。
解出v后,即可得到物体的速度随时间的变化关系。
3. 题目:一个质量为m的物体沿着半径为R的圆周上的轨道做匀速圆周运动。
求物体受到的向心力大小和方向。
答案:根据牛顿第二定律,物体的加速度a等于受到的合力F除以质量m。
在圆周运动中,物体受到的合力只有向心力Fc。
由于物体做匀速圆周运动,所以加速度a的大小为v^2/R,其中v为物体的速度。
将这个加速度代入牛顿第二定律的公式,得到Fc=mv^2/R。
理论力学习题

班级姓名学号第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。
()4、凡是受两个力作用的刚体都是二力构件.()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果. ()二.选择题1、在下述公理、法则、原理中,只适于刚体的有( )①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
整体受力图可在原图上画。
)a(球A )b(杆ABd(杆AB、CD、整体)c(杆AB、CD、整体))e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画.)a(球A、球B、整体)b(杆BC、杆AC、整体班级 姓名 学号第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图.未画重力的物体不计自重,所有接触处均为光滑接触.整体受力图可在原图上画.WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体)d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体班级 姓名 学号第二章 平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F = — F ’,所以力偶的合力等于零。
( )2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。
( )3、 力偶矩就是力偶。
理论力学习题及答案(全)

第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
理论力学习题集

理论力学习题集第一章静力学的基本概念及物体的受力分析1-1 画出指定物体的受力图,各接触面均为光滑面。
1-2 画出下列指定物体的受力图,各接触面均为光滑,未画重力的物体的重量均不计。
1-3 画出下列各物体以及整体受力图,除注明者外,各物体自重不计,所有接触处均为光滑。
(a) (b)(c) (d)(e) (f)第二章平面一般力系2-1 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在铰车D 上,如图所示。
转动铰车,物体便能升起,设滑轮的大小及滑轮转轴处的摩擦忽略不计,A、B、C三处均为铰链连接。
当物体处于平衡状态时,试求拉杆AB和支杆CB所受的力。
2-2 用一组绳悬挂重P=1kN的物体,求各绳的拉力。
2-3 某桥墩顶部受到两边桥梁传来的铅直力P1=1940kN,P2=800kN及制动力T=193kN,桥墩自重W=5280kN,风力Q=140kN。
各力作用线位置如图所示,求将这些力向基底截面中心O简化的结果,如能简化为一合力,试求出合力作用线的位置。
2-4 水平梁的支承和载荷如图所示,试求出图中A、B处的约束反力。
2-5 在图示结构计算简图中,已知q=15kN/m,求A、B、C处的约束力。
2-6 图示平面结构,自重不计,由AB、BD、DFE三杆铰接组成,已知:P=50kN,M=40kN·m,q=20kN/m,L=2m,试求固定端A的反力。
图2-6 图2-72-7 求图示多跨静定梁的支座反力。
2-8 图示结构中各杆自重不计,D、E处为铰链,B、C为链杆约束,A为固定端,已知:q G=1kN/m,q=1kN/m,M=2kN·m,L1=3m,L2=2m,试求A、B、C 处约束反力。
图2-8 图2-92-9 支架由两杆AO、CE和滑轮等组成,O、B处为铰链,A、E是固定铰支座,尺寸如图,已知:r=20cm,在滑轮上吊有重Q=1000N的物体,杆及轮重均不计,试求支座A和E以及AO杆上的O处约束反力。
理论力学课后习题及答案解析

理论力学课后习题及答案解析文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-MG129]第一章习题4-1.求图示平面力系的合成结果,长度单位为m。
解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
习题4-3.求下列各图中平行分布力的合力和对于A 点之矩。
解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力RB和一个力偶M B,且:如图所示;将RB向下平移一段距离d,使满足:最后简化为一个力R,大小等于RB。
其几何意义是:R 的大小等于载荷分布的矩形面积,作用点通过矩形的形心。
(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力RA和一个力偶M A,且:如图所示;将RA向右平移一段距离d,使满足:最后简化为一个力R,大小等于RA。
其几何意义是:R 的大小等于载荷分布的三角形面积,作用点通过三角形的形心。
习题4-4.求下列各梁和刚架的支座反力,长度单位为m。
解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。
解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。
习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。
理论力学习题

第一章 质点运动学填空1. 在平面极坐标系中,单位向量的微分为: , ,速度的两个分量为 , ,加速度的两个分量为 。
2. 在自然坐标系下,单位向量的微分为: , 速度表示为: ,切向加速度为: ,法向加速度为: 。
3. 点M 沿螺旋线自外向内运动,如图所示。
它走过的弧长与时间的一次方成正比,则点的加速度越来越 (填:大、小、不变),点M 越跑越 (填:快、慢、不变)。
选择题1. 在直角坐标系下,某质点速度随时间的变化为:2234 (m/s)t i t j - ,则在1s 时,质点轨迹的曲率半径ρ= ( ) A. 0 m B. m ∞ C. 1 m D. 5 m计算和证明题:1. 有一作平面曲线运动的质点,其速度在y 轴上的投影于任何时刻均为常数c .试证:任何情况下,加速度的值可用下式表示3v a c ρ= ,其中v 为速率,ρ为轨道曲率半径.M·3. 质点作平面运动,其速率保持为常数.试证此质点速度矢量与加速度矢量相互垂直。
4. 一质点沿抛物线22y px =运动. 其切向加速度的量值为法向加速度量值的2k -倍.如此质点从弦的一端(,)2pp 以速率u 出发,试求其达到正焦弦另一端时的速率.)p )p5,质点沿着半径为r 的圆周运动,其加速度矢量与速度矢量间的夹角α保持不变。
求:(1),质点的速率随时间而变化的规律,(2),质点速率关于速度与x 之间夹角θ之间的函数关系。
已知初始时,速率为0v ,速度与x 轴夹角为0θ。
6,如图所示,细长杆A 端沿半径为R 的半圆槽底滑动,杆紧靠槽边以角速度ω倒下。
求:当杆与x 轴的夹角为ϕ时,杆的端点A 和杆上与槽边的接触点C 的速度。
开始时A 点在半圆槽底端A 0处。
x第二章 质点动力学填空题1.如果运动质点所受的力的作用线始终通过某一定点,我们称此力为有心力,而这个定点叫 。
2. 在直角坐标系下,某质点的动量为:32cos te i t j -- ,则作用在质点上的力F= 。
理论力学习题集

1-1、画出下列每个标注字符的物体(不包含销钉与支座)的受力图与系统整体受力图。
题图中未画重力的各物体自重不计,所有接触处均为光滑接触。
(整体受力图在原图上画)2-1、物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在铰车D 上,如图所示。
转动铰车,物体便能升起。
设滑轮的大小、AB与CB杆自重及磨擦略去不计,A、B、C三处均为铰链连接。
当物体处于平衡状态时,试求拉杆AB和支杆CB处受的力。
2-2、图示结构中,各构件的自重略去不计。
在构件AB上作用一力偶矩为M的力偶,求支座A和C的约束力。
2-3、直角弯杆ABCD与直杆DE及EC铰接如图,作用在杆DE上力偶的力偶矩M=,不计各杆自重,不考虑摩擦,尺寸如图,求支座A,B处的约束力及杆EC的受力。
3-1、图示平面任意力系中F1=402N,F2=80N,F3=40N, F4=110N,M=。
各力作用位置如图所示。
求:(1)力系向点O简化的结果;(2)力系的合力的大小、方向及合力作用线方程。
3-2、无重水平梁的支承和载荷如图 (b)所示。
已知力F、力偶矩为M的力偶和强度为q的均布载荷。
求支座A和B处的约束力。
3-3、图示水平梁AB由铰链A和杆BC所支持。
在梁上D处用销子安装半径为r=的滑轮。
有一跨过滑轮的绳子,其一端水平地系于墙上,另一端悬挂有重P=1800N的重物,如AD=,BD=, =45°,且不计梁、杆、滑轮和绳的重量。
求铰链A和杆BC对梁的约束力。
3-4、如图所示,组合梁由AC和DC两段铰接构成,起重机放在梁上。
已知起重机重 P1=50kN,重心在铅垂线上EC,起重载荷 P2=10kN。
如不计梁重,求支座A,B和D三处的约束力。
3-6、由AC和CD构成的组合梁通过铰链C连接。
它的支承和受力如图所示。
已知均布载荷强度q=10kN/m,力偶矩M=40 kN·m,不计梁重。
求支座A,B,D的约束力和铰链C处所受的力。
4-1、图示构架中,物体重1200N,由细绳跨过滑轮E而水平系于墙上,尺寸如图,不计杆和滑轮的重量。
《理论力学》习题三答案

《理论力学》习题三答案一、单项选择题(本大题共30小题,每小题2分,共60分)1. 求解质点动力学问题时,质点的初始条件是用来( C )。
A 、分析力的变化规律; B 、建立质点运动微分方程; C 、确定积分常数; D 、分离积分变量。
2. 在图1所示圆锥摆中,球M 的质量为m ,绳长l ,若α角保持不变,则小球的法向加速度为( C )。
A 、αsin g ;B 、αcos g ;C 、αtan g ;D 、αtan gc 。
3. 已知某点的运动方程为2bt a S +=(S 以米计,t 以秒计,a 、b 为常数),则点的轨迹为( C )。
A 、是直线;B 、是曲线;C 、不能确定;D 、抛物线。
4. 如图2所示距地面H 的质点M ,具有水平初速度0v,则该质点落地时的水平距离l 与( B )成正比。
A 、H ; B、H ; C 、2H ;D 、3H 。
5. 一质量为m 的小球和地面碰撞,开始瞬时的速度为1v ,碰撞结束瞬时的速度为2v(如图3),若v v v ==21,则碰撞前后质点动量的变化值为( A )。
A 、mv ;B 、mv 2 ;C 、mv 3;D 、 0。
6. 一动点作平面曲线运动,若其速率不变,则其速度矢量与加速度矢量( B )。
A 、平行; B 、垂直; C 、夹角随时间变化; D 、不能确定。
7. 三棱柱重P ,放在光滑的水平面上,重Q 的匀质圆柱体静止释放后沿斜面作纯滚动,则系统在运动过程中( A )。
A 、沿水平方向动量守恒,机械能守恒;B 、动量守恒,机械能守恒;C 、沿水平方向动量守恒,机械能不守恒;D 、均不守恒。
图1图2图38. 动点M 沿其轨迹运动时,下列几种情况中,正确的应该是( A )。
A 、若始终有a v⊥,则必有v 的大小等于常量; B 、若始终有a v ⊥,则点M 必作匀速圆周运动;C 、若某瞬时有v ∥a,则点M 的轨迹必为直线;D 、若某瞬时有a 的大小为零,且点M 作曲线运动,则此时速度必等于零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章静力学公理与受力分析1一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体;2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态;3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在;4、凡是受两个力作用的刚体都是二力构件;5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果;二.选择题1、在下述公理、法则、原理中,只适于刚体的有①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图;未画重力的物体不计自重,所有接触处均为光滑接触;整体受力图可在原图上画;)a(球A )b(杆ABd(杆AB、CD、整体)c(杆AB、CD、整体))e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图;未画重力的物体不计自重,所有接触处均为光滑接触;多杆件的整体受力图可在原图上画;)a(球A、球B、整体)b(杆BC、杆AC、整体第一章 静力学公理与受力分析2一.画出下列图中指定物体受力图;未画重力的物体不计自重,所有接触处均为光滑接触;整体受力图可在原图上画;WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体)d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体第二章 平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F = - F ’,所以力偶的合力等于零;2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同;3、 力偶矩就是力偶; 二. 电动机重P=500N ,放在水平梁AC 的中央,如图所示;梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的交角为300;忽略梁和撑杆的重量,求撑杆BC 的内力及铰支座A 的约束力;)(kN 5F ,kN 5F BC A 压力-==三. 拔桩机如图,图示位置DC 水平、AC 垂直,若︒=4α,N 400P =,求木桩所受的力F ,并求两力的比值:?P /F =204P /F ,kN 8.81F ==四.一大小为50N 的力作用在圆盘边缘的C 点上,如图所示,试分别计算此力对B ,A ,O 三点之矩;50N︒30︒60R 250︒45OCBA五.在图示结构中,各构件的自重不计;在构件AB 上作用一矩为M 的力偶,求支座A 和C 的约束力;)a 4/(M 2F F C A ==六. 图示为曲柄连杆机构;主动力F=400N 作用在活塞上;不计构件自重,试问在曲柄上应加多大的力偶矩M 方能使机构在图示位置平衡M=60N ·m第三章 平面任意力系1一.是非题1、某一平面力系,如其力多边形不封闭,则该力系对任意一点的主矩都不可能为零;2、当平面一般力系向某点简化为力偶时,如果向另一点简化,则其结果是一样的;3、一汇交力系,若非平衡力系,一定有合力;4、若一平面力系对某点之主矩为零,且主矢亦为零,则该力系为一平衡力系; 二.选择题1、平面内一非平衡汇交力系和一非平衡力偶系,最后可能合成的情况是①合力偶 ②一合力 ③相平衡 ④无法进一步合成 三. 平面力系中各力大小分别为,作用位置如图所示,尺寸单位为mm;试求力系向O 点和O 1点简化的结果;xyOA (4,2)F 1︒45F 2B (-3,2)C(-3,-2)F 3O 1四. 图示简支梁中,求AB 两端约束的约束反力;ql 2F ,0F A B ==ABLqL2qL五.图示悬臂梁中,求A 端的约束反力;2/FL M ,F F A Ay -==六.在图示刚架中,已知q m =3Kn/m,F=62kN,M=10kN •m ,不计刚架自重;求固定端A处的约束力;m kN 12M ,kN 6F ,0F A Ay Ax ⋅===第三章 平面任意力系2一.AC 和CD 梁通过铰链C 连接;支承和受力如图所示;均布载荷强度q =10kN/m ,力偶矩M=40kN •m ;求支座A 、B 、D 的约束力和铰链 C 处所受的力;kN 15F ,kN 5F ,kN 40F ,kN 15F D C B A ===-=二. 构架由杆AB ,AC 和DF 铰接而成,如图所示;在DEF 杆上作用一矩为M 的力偶;不计各杆的重量,求AB 杆上铰链A ,D 所受的力;a /M F ,0F ),a 2/(M F ,0F Dy Dx Ay Ax ==-==三. 如图所示,组合梁由AC 和CD 两段铰接构成,起重机放在梁上;已知起重机重kN 501=W ,重心在铅直线EC 上,起重载荷kN 102=W ;如不计梁重,求支座A 、B 和D 三处的约束反力;kN 33.8F ,kN 100F ,kN 3.48F D B A ==-=第三章平面任意力系3一.平面桁架的支座和载荷如图所示;ABC 为等边三角形,E,F 为两腰中点,又AD=DB;1判断零杆,2 求杆CD的内力F CD;二.平面悬臂桁架所受的载荷如图所示;1判断零杆,2求杆1,2和3的内力;三. 桁架受力如图所示,已知kN 101=F ,kN 2032==F F ;试求桁架4、5、6各杆的内力;第七章 刚体的基本运动一.是非题1、某瞬时,刚体上有两点的轨迹相同,则刚体作平动;二. 揉茶机的揉桶由三个曲柄支持,曲柄的支座 A 、B 、C 与支轴a 、b 、c 恰成两全等等边三角形,如图所示;三个曲柄长度相等,均为 l =150mm,并以相同的转速min /r 45n =分别绕其支座在图示平面内转动;求揉桶中心点O 的速度和加速度;三. 图示曲柄滑杆机构中,滑杆上有一圆弧形滑道,其半径 R =100mm ,圆心 O 1 在导杆BC 上;曲柄长 OA =100mm ,以等角速度s /rad 4=ω绕 O 轴转动;求导杆BC 的运动规律以及当曲柄与水平线间的交角︒=30ϕ时,导杆BC 的速度;四. 机构如图所示,假定杆 AB 在某段时间内以匀速运动,开始时︒=0ϕ;试求当︒=45ϕ时,摇杆OC 的角速度和角加速度;五. 图示机构中齿轮1紧固在杆AC 上,AB =O 1O 2,齿轮1和半径为2r 的齿轮2啮合,齿轮2可绕 O 2 轴转动且和曲柄 O 2B 没有联系;设l B O A O 21==,t sin b ωϕ=,试确定)s (2t ωπ=时,轮2的角速度和角加速度;第八章 点的复合运动1一. 图示曲柄滑道机构中,曲柄长OA=r ,并以等角速度ω绕O 轴转动;装在水平杆上的滑槽DE 与水平线成60°角;求当曲柄与水平线的交角分别为︒︒︒=60,30,0ϕ时,杆BC 的速度;二. 如图所示,摇杆机构的滑杆AB 以等速v 向上运动;摇杆长OC=a ,距离OD=l ;求当4πϕ=时点C 的速度的大小;三. 在图a 和b 所示的两种机构中,已知mm 200a O O 21==,rad/s 31=ω;求图示位置时杆A O 2的角速度;第八章点的复合运动2一. 图示铰接平行四边形机构中,O1A=O2B=100mm,又O1O2=AB,杆O1A以等角速度ω=2rad/s绕O1轴转动;杆AB上有一套筒C,此筒与杆CD相铰接;机构的各部件都在同一铅直面内;求当φ=600时,杆CD的速度和加速度;二. 如图所示,曲柄OA长0.4m,以等角速度ω=s绕O轴逆时针转向转动;由于曲柄的A端推动水平板B,而使滑杆C沿铅直方向上升;求当曲柄与水平线间的夹角θ=300时,滑杆C的速度和加速度三. 半径为R 的半圆形凸轮D 以等速v o 沿水平线向右运动,带动从动杆AB 沿铅直方向上升,如图所示求θ=300时杆AB 相对于凸轮的速度和加速度;四 图示曲柄滑杆机构中,滑杆上有一圆弧形滑道,其半径 R =100mm ,圆心 O 1 在导杆BC 上;曲柄长 OA =100mm ,以等角速度s /rad 4=ω绕 O 轴转动;当曲柄与水平线间的交角︒=30ϕ时,用点的合成运动求导杆BC 的速度和加速度;第八章 点的复合运动3一. 在图a 和b 所示的两种机构中,已知mm 200a O O 21==,rad/s 31=ω;求图示位置时杆A O 2的角加速度;二. 牛头刨床机构如图所示;已知mm 200A O 1=,角速度rad/s 21=ω;求图示位置滑枕CD 的速度和加速度;第九章 刚体的平面运动1一.是非题1、纯滚动时轮与平面接触点处的速度为零;2、点的合成运动和刚体平面运动两种分析方法中,动坐标系的运动可以是任何一种刚体运动;二. 四连杆机构中,连杆AB 上固连一块三角板ABD ,机构由曲柄A O 1带动,已知曲柄的角速度s /rad 2A O 1=ω,m 1.0A O 1=,水平距离m 05.0O O 21=,m 05.0AD =,当211O O A O ⊥时,AB 平行于21O O ,且AD 与1AO 在同一直线上,︒=30ϕ,求三角板速ABD 的角速度和点D 的速度;三. 如图所示,在筛动机构中,筛子的摆动是由曲柄连杆机构所带动;已知曲柄 OA 的转速min /40r n OA =,OA = 0.3m;当筛子 BC 运动到与点O 在同一水平线上时,90=∠BAO ;求此瞬时筛子 BC 的速度;四. 图示机构中,已知:OA =0.1m, DE =0.1m,EF=0.13m ,D 距OB 线为 h =0.1m ;ωOA =4rad/s ;在图示位置时,曲柄 OA 与水平线 OB 垂直;且B 、D 和 F 在同一铅直线上;又 DE 垂直于 EF ;求杆EF 的角速度和点 F 的速度;五. 图示配汽机构中,曲柄OA 的角速度rad/s 20=ω为常量;已知OA =,AC=BC =372.0m;求当曲柄OA 在两铅直线位置和两水平位置时,配汽机构中气阀推杆DE 的速度;第九章 刚体的平面运动2一. 曲柄连杆机构中,曲柄 OA 以匀角速度ω绕 O 轴转动,计算图示瞬时连杆AB 的角速度及角加速度;二. 在图示曲柄连杆机构中,曲柄 OA 绕 O 轴转动,其角速度为0ω,角加速度为0α;在图示瞬时曲柄与水平线间成600角,而连杆AB 与曲柄OA 垂直;滑块 B 在圆形槽内滑动,此时半径 O 1B 与连杆AB 间成300角;如 OA=r ,r 32AB =,O 1B=2r ,求在该瞬时,滑块B 的切向和法向加速度;三. 图示机构,曲柄OA= r ,绕O 轴以等角速度O ω转动,AB=6r ,r 33BC =,当AB ⊥BC 时,求滑块C 的速度和加速度;四.如图所示机构中,各杆长均为 ,已知杆 OA 及O 1D 的角速度分别为s /rad 5OA =ω及,且3/4tan =α;试求图示位置时:1杆 AB 和杆 BD 的角速度;2杆 AB 和杆BD 的角加速度;第九章 运动学综合应用一. 图示曲柄连杆机构带动摇杆O 1C 绕O 1轴摆动;在连杆AB 上装有两个滑块,滑块B 在水平槽内滑动,而滑块D 则在摇杆O 1C 的槽内滑动;已知:曲柄长OA=50 mm ,绕O 轴转动的匀角速度rad/s 10=ω;在图示位置时,曲柄与水平线间90°角,︒=∠60OAB ,摇杆与水平线间成60°角;距离mm 70D O 1=;求摇杆的角速度和角加速度;二.轮O 半径R=,在铅垂平面内沿水平方向作纯滚动,轮与杆AB 在A 点铰接,AB 杆长为;在图示位置时,A 点在轮的最高处,轮心O 的速度s /m 2v o =,加速度2o s /m 2a =;试求该瞬时B 点的速度和加速度; ABOo a ov三. 如图所示,轮O在水平面上滚动而不滑动,轮心以匀速v o=0.2m/s运动;轮缘上固连销钉B,此销钉在摇杆O1A的槽内滑动,并带动摇杆绕O1 轴转动;已知:轮的半径R=0.5m,在图示位置时,AO1是轮的切线,摇杆与水平面间的交角为600;求摇杆在该瞬时的角速度和角加速度;四.已知图示机构中滑块 A 的速度为常值,v A=0.2m/s,AB=0.4m;图示位置AB=BC,θ=300;求该瞬时杆CD的速度和加速度;第十二章 动量矩定理1一. 小球由不可伸长绳系住,可绕铅垂轴 Oz 转动;绳的另一端穿过铅垂小管被力 F 向下慢慢拉动;不计绳的质量;开始时小球在 M 0 位置,离Oz 轴的距离为R 0,小球以转速min /r 120n o =绕 Oz 轴旋转;当小球在 M 1 位置时,2/R R 01=,求此时小球绕 Oz 轴转动的转速min)/r (n 1;二. 如图所示,均质圆盘半径为 R ,质量为 m ,不计质量的细杆长 l ,绕轴 O 转动,角速度为ω,求下列三种情况下圆盘对固定轴的动量矩:a 圆盘固结于杆;b 圆盘绕 A 轴转动,相对于杆 OA 的角速度为-ω;c 圆盘绕 A 轴转动,相对于杆 OA 的角速度为ω三. 水平圆盘可绕铅直轴转动,如图所示,其对轴的转动惯量为J z;一质量为m的质点,在圆盘上作匀速圆周运动,质点的速度为v O,圆的半径为r,圆心到盘中心的距离为l;开始运动时,质点在位置M O,圆盘角速度为零;求圆盘角速度ω与角φ间的关系,轴承摩擦不计;四. 质量为m1,m2的重物系在绳子的两端,两绳分别绕在半径为r1,r2,并固结在一起的两鼓轮上,鼓轮质量为m,对O轴的转动惯量为J o;求鼓轮的角加速度和轴承的约束反力;第十二章动量矩定理2一. 质量为100kg、半径为1m的均质圆轮,以转速n=120r/min绕O轴转动,如图所示;设有一常力F作用于闸杆,轮经10s后停止转动;已知摩擦系数f=,求力F的大小;二. 如图所示,为了求得半径R=50cm的飞轮A对于通过其重心O的轴的转动惯量,在飞轮上系一细绳;绳的末端系一质量m1= 8kg的重锤,重锤自高度h =2m 处落下,测得落下时间T1=16s;为了消去轴承摩擦的影响,再用质量m2=4kg的重锤作第二次试验,此重锤自同一高度落下来的时间是T2=25s;假定摩擦力矩为一常量,且与重锤的重量无关,试计算转动惯量J;三. 已知均质三角形薄板质量为m,高为h,求其对底边轴的转动惯量J x;四. 试求下图所示各均质物体对其转轴的动量矩;第十二章动量矩定理3一. 图示均质杆AB长l,质量为m1;杆的B端固连质量为m2的小球,其大小不计;杆上点D连一弹簧,刚度系数为k,使杆在水平位置保持平衡;设初始静止,求给小球B一个垂直向下的微小初位移δo后杆AB的运动规律和周期;二. 均质圆柱体质量为m ,半径为,放在倾斜角为600的斜面上,如图所示;一细绳缠在圆柱体上,其一端固定于A点,AB平行于斜面;若圆柱体与斜面间的摩擦系数f=1/3,试求柱体中心C的加速度;三. 均质实心圆柱体A和薄铁环B的质量均为m,半径都等于r,两者用杆AB铰接,无滑动地沿斜面滚下,斜面与水平面的夹角为θ,如图所示;如杆的质量忽略不计,求杆AB的加速度和杆的内力;四.图示均质杆AB 长为l ,放在铅直平面内,杆的一端A靠在光滑的铅直墙上,另一端B放在光滑的水平地板上,并与水平面成φo角;此后,令杆由静止状态倒下;求1杆在任意位置时的角加速度和角速度;2当杆脱离墙时,此杆与水平面所夹的角;。