功率器件封装工艺详解(公司最新)
功率器件封装工艺详解

功率器件定义与分类
功率器件定义:用于控制和转换电能的电子器件 功率器件分类:按照工作电压、电流、频率等参数进行分类 常见功率器件:二极管、晶体管、晶闸管等 功率器件应用:电机控制、电源转换、逆变器等
封装工艺在功率器件中的作用
提高器件稳定性
增强器件散热性能
确保器件电气性能
方便器件安装与使 用
封装工艺对功率器件性能的影响
机械强度不足导致的故障
故障现象:功率器件封装机械强度不足,可能导致器件损坏或性能下降 原因分析:封装材料选择不当、封装工艺不合理、器件结构不合理等 解决方案:优化封装材料选择,改进封装工艺,加强器件结构设计 预防措施:加强封装工艺控制,提高器件机械强度,定期进行性能检测
电气性能不稳定导致的故障
故障现象:功率器件电气性能不稳定,可能导致电路异常、过热、短路等问题 原因分析:器件老化、制造工艺问题、使用环境恶劣等 解决方案:优化器件设计、加强制造工艺控制、改善使用环境等 预防措施:定期检查、维护、更换功率器件,确保设备正常运行
耐温要求:功率器件封装应能够在高温环境下稳定工作,并承受一定的温 度波动和冲击。
可靠性要求:功率器件封装应具有较高的可靠性和稳定性,能够保证长时 间的正常工作。
机械强度要求
封装结构强度:能够承受机械应力和振动 封装材料强度:具有足够的机械强度和耐久性 封装工艺要求:确保封装结构在制造过程中不受损坏 可靠性测试:通过严格测试确保封装结构在各种环境下的稳定性
可靠性不达标导致的故障
器件老化:由于长 时间使用或高温环 境导致器件性能下 降
封装材料问题:封 装材料选择不当或 质量不佳导致器件 性能不稳定
制造工艺问题:制 造工艺不规范或操 作不当导致器件性 能不达标
功率器件封装工艺流程ppt

目的
将功率器件按照电路连接需求装配到预定位置,实现电路功能。
主要步骤
定位:确定器件在封装板上的位置,确保器件与电路板连接的准确性;- 插入引脚:将器件引脚插入到封装板上的引脚孔中;- 固定:采用焊接、压接等方式固定器件在封装板上。
装配
检测
检测封装后的功率器件是否符合技术要求,保证产品的质量和可靠性。
目的
电性能检测:检测封装后的功率器件的电气性能指标是否符合设计要求;- 外观检测:检查封装后的器件表面及引脚是否完好无损,是否符合外观标准;- 环境适应性检测:模拟器件在实际使用中可能遇到的环境条件,检测其稳定性和可靠性。
主要步骤
封装工艺材料
03
03
介质损耗因数
绝缘材料在交流电压作用下消耗的能量与总能量之比,反映材料的介质损失。
封装工艺与功率器件性能
背景介绍
1
封装工艺重要性
2
3
良好的封装工艺能够保护功率器件免受环境影响,提高器件性能和稳定性。
提高器件性能
功率器件在工作过程中会产生大量热量,良好的封装工艺能够增强器件的散热能力,保证器件的正常运行。
增强散热能力
封装工艺对功率器件的电路设计具有重要影响,良好的封装设计方案能够优化电路布局和性能。
环境友好型封装技术
IPC及其他国际质量标准在封装行业的应用情况
06
IPC标准的制定
IPC标准是电子封装行业的基础标准之一,包括封装设计、制造、组装和测试等方面的标准,对提高封装质量和可靠性具有重要意义。
IPC在封装行业的应用情况
IPC标准的推广
IPC标准在电子封装行业得到了广泛的应用和推广,特别是在微电子、半导体等领域,已经成为封装企业必须遵守的基础标准之一。
功率器件封装工艺流程

2023-11-07
contents
目录
• 功率器件封装概述 • 前段封装工艺 • 后段封装工艺 • 特殊封装工艺 • 封装工艺材料与设备 • 封装工艺研究与发展趋势
01
功率器件封装概述
封装的作用与重要性
1 2 3
提高功率器件的可靠性
通过封装,可以保护功率器件免受环境因素( 如温度、湿度、尘埃等)的影响,提高其可靠 性。
成品测试
外观检查
对封装完成的功率器件进行外观检查,包括 器件的高度、平整度、引脚是否歪斜等。
电气性能测试
对封装完成的功率器件进行电学性能测试,包括导 通电阻、耐压、电流等参数的测试。
环境适应性测试
对封装完成的功率器件进行环境适应性测试 ,包括高温高湿、振动、盐雾等恶劣环境的 测试。
04
特殊封装工艺
实现标准化和批量生产
通过封装,可以将不同规格和类型的功率器件 进行标准化,从而实现批量生产,提高生产效 率。
提高功率器件的性能
通过先进的封装技术,可以改善功率器件的性 能,例如降低内阻、提高散热性能等。
封装工艺的基本流程
引线键合
将芯片上的电极与引线连接起来, 通常采用超声波键合或热压键合等 方法。
感谢您的观看
THANKS
封装设备
切割设备பைடு நூலகம்
用于将功率器件从原始芯片中分离出来, 并进行初步的切割和形状加工。
清洗设备
用于清洗封装过程中的各种材料和器件, 保证其清洁度和质量。
焊接设备
用于将金属引脚或其他连接件焊接到功率 器件上,保证其可靠性和稳定性。
检测设备
用于检测封装后的功率器件性能和质量, 包括电气性能测试、外观检测等。
功率器件封装工艺流程

功率器件封装工艺流程摘要功率器件封装工艺是将功率器件芯片封装在外部保护层中,以保护器件免受环境因素影响。
本文将介绍功率器件封装工艺的流程及相关技术细节。
引言功率器件是电子设备中重要组成部分,其封装过程对器件的性能和稳定性起着重要作用。
功率器件封装工艺包括多个环节,从芯片封装到外部保护层的封装,每个环节都需要精确控制。
工艺流程1. 良品检查在封装工艺开始之前,需要对功率器件芯片进行检查,确保其质量符合要求。
2. 芯片封装首先,芯片被放置在封装座上,然后通过焊接或其他固定方式固定在座上。
接着,通过导线连接芯片的引脚,并在其周围加入封装材料。
3. 铸包封装材料会通过铸包的方式将芯片包裹在内,确保芯片受到良好的保护。
4. 温度固化将封装好的器件放置在固化烤箱中,通过加热使封装材料固化,并确保其与芯片牢固结合。
5. 修边封装完成后,需要对器件进行修边,消除封装过程中可能产生的不平整或刺边,保证器件外观整洁。
6. 老化测试封装完成的功率器件需要进行老化测试,模拟长期使用情况,检测器件稳定性和性能表现。
7. 包装最后,封装好的功率器件被放置在专门的包装盒中,可以是塑料盒或泡沫盒,以保护器件在运输和存储过程中不受损坏。
技术细节•焊接技术:通常采用金属焊接技术将导线连接到芯片引脚上。
•封装材料:常见的封装材料包括环氧树脂、有机硅胶等,具有良好的绝缘和导热性能。
•铸包方法:铸包可以采用注塑成型或模塑成型,确保封装材料均匀包裹芯片。
•固化温度:固化温度根据封装材料的特性而定,需要根据具体要求进行调整。
•老化测试条件:老化测试一般在高温高湿的环境下进行,以模拟器件长时间使用的情况。
结论功率器件封装工艺流程是保证功率器件性能和稳定性的重要环节,通过严格控制每个步骤,可以确保封装的功率器件具有良好的品质和可靠性。
同时,随着科技的发展,封装技术也在不断创新和改进,以满足不断变化的市场需求。
致谢本文参考了相关文献和资料,特此感谢。
功率器件封装工艺流程

不够
件,压力 、功率、时间。
1、在N2保护中压焊。
2、专职检验员,_ 每隔1h巡检一次。 3、引线强度的 X -R管理图。
框架管脚 质量
1、管脚牢固、平整。 2、管脚锡层光亮平整、不氧化。 3、高温老化后锡层不变色。
1、调整塑封工艺,以达到充分填充。 2、加强浸锡前,管脚处理。 3、老化烘箱采用N2保护。
24
提高产品可靠性 -封装工艺的严格控制
一、降低热阻 二、控制“虚焊” 三、增强塑封气密性
25
功率器件的重要参数-热阻
降低器件发热量的三个途径 一、通过优化电路,避免开关器件进入放大区,减
小器件上的功率消耗 。 二、降低器件的热阻,即提高器件的散热能力。 三、提高器件的电流性能,降低饱和压降 。
在电路和芯片都已固定的情况下,避免器件发热 失效重要的途径就是降低器件的热阻 。
26
功率器件的重要参数-热阻
一、热阻的定义 热阻(Rth)是表征晶体管工作时所产
生的热量向外界散发的能力,单位 为℃/W,即是当管子消耗掉1W时器 件温度升高的度数。 RTH总= RT1+ RT2+ RT3
27
功率器件的重要参数-热阻
温度的变化△T有近似线性的关系: △Vbe=k△T
对于硅pn结,k约等于2,热阻的计算公式为: Rth=△T/P 只需加一个稳定的功率,测量晶体管的△Vbe即 可计算出晶体管的热阻 RT。
31
热阻测试筛选设备的优点
进行热阻测试筛选,我们用的是日本 TESEC的△Vbe测试仪 。
32
热阻测试筛选设备的优点
4
功率器件后封装工艺流程-划片车间
日本DISKO划片机
5
功率器件后封装工艺流程 ——粘片
功率器件封装工艺流程ppt

微型化封装
采用微电子制造技术,实现功率器 件的小型化和微型化。
绿色封装
采用环保材料和工艺,降低封装过 程对环境的影响,实现绿色生产。
高温超导技术应用
利用高温超导材料制作功率器件, 提高器件的效率和性能。
02
封装工艺流程
芯片准备
环境适应性检测
01
02
03
检测目的
评估封装后的功率器件在 不同环境条件下的性能表 现,确保其具有较高的可 靠性和稳定性。
检测内容
包括温度循环测试、湿度 测试、机械应力测试等。
检测方法
在环境试验箱内进行模拟 测试。
05
封装工艺问题及解决方案
引脚焊接不良
原因
引脚材料不纯或焊接温度不当,导致引脚与焊板焊接不牢固 。
引脚焊接
01
02
03
引脚准备
将引脚焊接在芯片上,并 调整引脚间距和高度。
焊接准备
清洁引脚和基板上的焊接 点,并涂上焊膏。
焊接操作
将引脚与基板上的焊接点 对齐,并使用焊接设备进 行焊接。
塑封固化
塑封材料准备
选择合适的塑封材料,并 进行称量和混合。
塑封操作
将塑封材料均匀涂抹在基 板上,并将芯片和引脚完 全覆盖。
环氧树脂具有优良的绝缘性能和加工性能,常用于高电压、高温、高频率的功率器件封装。硅酮树脂 具有优良的耐腐蚀性能和阻燃性能,常用于高电压、高温、高频率的功率器件封装。聚氨酯具有优良 的耐腐蚀性能和阻燃性能,常用于中低档功率器件封装。
04
封装质量检测与控制
外观检测
检测目的
确保封装后的功率器件外观符 合设计要求,无缺陷、无不良
功率器件封装工艺流程

功率器件封装工艺流程1. 材料准备:首先需要准备封装所需的材料,包括基板、封装胶、金属线等。
2. 基板处理:将基板进行清洗、腐蚀处理和表面处理,以确保封装胶能够牢固粘附在其上。
3. 封装胶涂覆:将封装胶均匀涂覆在基板上,并将器件放置在适当位置。
4. 热压封装:使用恰当的温度和压力,对封装胶进行热压,使其粘结在基板和器件上。
5. 金属线焊接:使用焊接工艺,将金属线连接到器件上,以实现电气连接。
6. 封装测试:对封装完的器件进行测试,包括外观检查、性能测试、耐压测试等。
7. 包装:符合要求的器件进行包装封装,以便运输和保护。
值得注意的是,不同类型的功率器件可能有不同的封装工艺流程,其中的一些步骤可能会有所变化。
此外,每一步骤中的具体工艺要求也会有所不同,需要根据实际情况进行调整。
在进行功率器件封装工艺时,需要严格按照相关要求和标准进行操作,以确保封装质量和产品性能。
功率器件封装工艺对于电子设备的性能和稳定性具有重要影响,因此在整个封装过程中,需要严格控制每一个环节,以确保封装质量和产品性能。
以下是对功率器件封装工艺流程的更详细的描述:1. 材料准备:在进行功率器件封装之前,需要先准备封装所需的材料,其中包括基板、封装胶、金属线、封装框架等。
这些材料需要符合相关的规范和标准,以确保封装后的器件能够满足性能和可靠性要求。
2. 基板处理:在进行封装之前,需要对基板进行清洗、腐蚀处理和表面处理。
清洗能够去除基板表面的污物和杂质,腐蚀处理能够增强基板表面的粗糙度,从而改善封装胶的粘结性能,表面处理可以提高基板的表面粗糙度和粘附性。
3. 封装胶涂覆:将封装胶均匀地涂覆在基板上,以确保封装胶能够完全覆盖器件。
这个步骤需要严格控制涂覆厚度和均匀性,以保证器件封装后的外观和性能。
4. 热压封装:在封装胶涂覆完成后,接下来是热压封装的步骤。
通过加热和施加一定的压力,使封装胶在基板和器件上形成良好的粘结,以确保器件在使用中不会出现脱落或漏胶等问题。
sic功率器件新型封装结构设计、仿真及封装工艺探索

sic功率器件新型封装结构设计、仿真及封装工艺探索1. 引言1.1 概述随着现代电子设备的快速发展和不断提升的功率需求,对于高效、高性能的功率器件的需求也日益增长。
碳化硅(Silicon Carbide, SiC)功率器件作为一种新兴的半导体材料,在高温、高压、高频等极端环境下具有出色的性能表现,因而引起了广泛关注。
然而,封装结构作为保护和连接器件的关键部分,对于SiC功率器件在实际应用中的性能和可靠性起着重要作用。
本文旨在通过探索新型封装结构设计,并结合仿真与封装工艺优化,提供一个综合解决方案来提升SiC功率器件的整体性能。
1.2 文章结构本文总共分为五个部分。
首先,在引言部分进行概述并阐明研究目的。
第二部分将介绍SiC功率器件新型封装结构设计,包括研究背景、已有封装结构分析以及设计原理与考虑因素。
第三部分将探讨数值建模方法,并展示仿真结果与分析,进而对SiC功率器件进行性能评估。
第四部分将对封装工艺进行探索和优化,包括市场调研、封装工艺流程设计和实施方法的探索,以及工艺优化策略与实践案例分享。
最后,在结论与展望部分对本文的研究成果进行总结,并提出下一步研究方向。
1.3 目的SiC功率器件的封装结构具有极大的改进空间,可以通过改变设计思路和优化工艺流程来提升整体性能。
本文旨在深入探讨新型封装结构设计,并通过数值仿真和性能评估来验证其效果。
同时,我们也将着重研究封装工艺探索和优化策略,以提供可行的实施方法,并分享相关实践案例。
期望本文所提供的综合解决方案能够为SiC功率器件封装技术的发展做出有效贡献,推动该领域的进一步发展。
2. sic功率器件新型封装结构设计:2.1 研究背景:随着SiC(碳化硅)功率器件的不断发展和应用,封装结构的设计对于其性能和可靠性至关重要。
然而,传统的封装结构往往无法满足SiC功率器件高温、高压、高频等特殊工作环境下的需求。
因此,研究和开发新型的封装结构成为了当前SiC功率器件领域的热门课题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
至诚至爱,共创未来
SI
SEMI.
21
功率器件后封装工艺流程 ——包装
新型的包装方式—编带
整洁的包 装车间
我公司今年新引 进的编带机
至诚至爱,共创未来
SI
SEMI.
22
产品一致性和可靠性
1、产品的一致性 a.芯片生产工艺控制 b.通过细分类进行控制 2、产品可靠性 a.优化芯片生产工艺提高可靠性 b.封装工艺的严格要求
至诚至爱,共创未来
SI
SEMI.
24
提高产品可靠性 -封装工艺的严格控制
一、降低热阻 二、控制“虚焊” 三、增强塑封气密性
至诚至爱,共创未来
SI
SEMI.
25
功率器件的重要参数-热阻
降低器件发热量的三个途径 一、通过优化电路,避免开关器件进入放大区,减 小器件上的功率消耗 。 二、降低器件的热阻,即提高器件的散热能力。 三、提高器件的电流性能,降低饱和压降 。 在电路和芯片都已固定的情况下,避免器件发热 失效重要的途径就是降低器件的热阻 。
至诚至爱,共创未来
SI
SEMI.
33
热阻测试筛选设备的优点
优点2:筛选率高 如粘片有空洞,脉冲测试在很短功 率脉冲内,由于热量来不及传导, 芯片 有空洞的地方就会形成一个热点 (即温度比粘结面其他地区高出很 多的小区域)(如右图示 )。
热点 粘片空洞 焊料 框架
热点处温度高,Vbe将比其他地方的Vbe变化大。整个 pn结的△Vbe将主要受热点处的△Vbe的影响,因此,有 空洞的管子的△Vbe比正常管子的△Vbe要大很多。
SEMI.
35
控制“虚焊” —造成虚焊的因素与对策措施
因素 技术要求 对策措施 1、严格执行公司的原材料进料检验制度。 2、不定期上供应商生产线考察质量体系进 行情况。 1、定期清洗劈刀,保证端面清洁完整。 2、劈刀安装位置准确,高度合适。 加强表面镜检,剔除不合格品。 1、在N2保护中压焊。 2、专职检验员,每隔 1h巡检一次。 _ 3、引线强度的 X -R管理图。 1、调整塑封工艺,以达到充分填充。 2、加强浸锡前,管脚处理。 3、老化烘箱采用N2保护。
引线材料 抗拉强度、延伸性良好,硬度适 中。
劈刀 1、劈刀端面平整,与引线形变后 尺寸一致。 2、确保劈刀端面有合适的振幅。
芯片铝层 铝层不氧化,无划伤,具有一定 质量 厚度 引线强度 不同的线径,规定不同的工艺条 不够 件,压力 、功率、时间。 框架管脚 1、管脚牢固、平整。 质量 2、管脚锡层光亮平整、不氧化。 3、高温老化后锡层不变色。
实物图
划片
粘片
压焊
塑封
打印
至诚至爱,共创未来
SI
SEMI.
6
我公司粘片的特点
1、自动粘片机,芯片和引线框架的粘结牢固, 一致性好。 2、优质的框架及焊接材料使用,获得良好的 热学和电学特性。 3、芯片与框架的热匹配性良好,芯片和框架 之间的应力达到最小,热阻小,散热性好。 4、氮氢气体保护,避免高温下材I.
7
功率器件后封装工艺流程——粘片车间
粘片员工在认真操作
至诚至爱,共创未来
SI
SEMI.
8
功率器件后封装工艺流程——粘片车间
全新的TO-220粘片机
至诚至爱,共创未来
SI
SEMI.
9
功率器件后封装工艺流程-压焊
划片 粘片 压焊 塑封 打印
压焊:用金丝或铝丝 将芯片上的电极跟外 引线(框架管脚)连 接起来。 金丝-金丝球焊 铝丝-超声波焊
至诚至爱,共创未来
SI
SEMI.
36
控制“虚焊”的措施
压焊工序对引线拉力进行了严格的控制
至诚至爱,共创未来
SI
SEMI.
37
塑封气密性的工艺控制
相关因素 工艺措施 检测措施 1、引线框架的管脚增加两条密封槽, 引线框架和 增加此处引线框架表面的粗糙度,使 塑料粘接表 其与塑封料粘结更紧密 面机械强度 2、在塑料型号上挑选收缩率低、流动 性好的材料,使其之间的机械粘结更 加紧密。 1、定期检查设备运行 状况,确保工艺参数稳 定。 2、严格原料检验。 3、采用热强酸腐蚀比 较法,定期检查密封性。 引线框架和 对每种封装形式均需作材料热匹配的 4、借助广州五所的先 塑料热膨胀 对比试验,通过样品测量和批量试用, 进分析手段,不定期的 系数匹配 选择最佳的材料组合。 对产品密封性能进行抽 1、增大注塑压力和时间,使塑料达到 查。 5、产品测试前增加老 充分填充。 化工序,使存在隐患的 注塑工艺方 2、增加保压时间,使塑料充分固化后 产品提前失效,加严测 出模,防止出模时摩擦大,塑料发生 面的调整 试漏电的参数项,剔除 形变而减弱与引线框架之间的粘结强 可能存在缺陷的产品。 度。
塑封机
至诚至爱,共创未来
SI
SEMI.
14
功率器件后封装工艺流程 ——塑封车间
塑封生产车间的景象
至诚至爱,共创未来
SI
SEMI.
15
功率器件后封装工艺流程
塑封 打印 电镀 切筋 老化 测试
激光打标
在管体打上标记
激光打印机
至诚至爱,共创未来
SI
SEMI.
16
功率器件后封装工艺流程-电镀切筋
塑封 打印 电镀 切筋 老化 测试
至诚至爱,共创未来
SI
SEMI.
29
热阻的工艺控制 —粘片工艺
热阻偏大的原因分析与工艺保证 原因 技术要求 工艺保证 每片先试粘一条,试推力, 符合工艺规范才下投。 与芯片、框架两者之间的浸 润性良好,溶化后无颗粒状。 焊料点上熔化后,焊料与之 的浸润好。 芯片背面金 金属层平整清洁无氧化, 属层质量 且有一定厚度。 焊料 表面清洁光亮,无氧化及 斑点、粘污等不良现象。 表面平整、清洁、光亮无 氧化,无斑点。
引线框架
粘接强度
1、推力:mm2>1kg 2、焊料覆盖芯片面积 >95%(空洞面积<5%) 3、芯片、焊料、框架三者 之间无缝隙。
1、专职检验员每隔1小时 巡查一次。 2、N2、H2气体保护。
3、X-R管理图
至诚至爱,共创未来
SI
SEMI.
30
热阻的工艺控制 —测试筛选
晶体管的热阻测试原理: 在一定范围内pn结的正向压降Vbe 的变化与结 温度的变化△T有近似线性的关系: △Vbe=k△T 对于硅pn结,k约等于2,热阻的计算公式为: Rth=△T/P 只需加一个稳定的功率,测量晶体管的△Vbe即 可计算出晶体管的热阻 RT。
至诚至爱,共创未来
SI
SEMI.
31
热阻测试筛选设备的优点
进行热阻测试筛选,我们用的是日本 TESEC的△Vbe测试仪 。
至诚至爱,共创未来
SI
SEMI.
32
热阻测试筛选设备的优点
△Vbe测试仪的性能参数及优点: 测试精度:0.1mV 脉冲时间精确度:1us 最高电压:200V 最大电流:20A 优点: 1.精度高,且精度高可达到0.1mV,重复性好。 2.筛选率高
公司功率器件封装工艺
至诚至爱,共创未来
2
SI
SEMI.
主要内容
主要内容介绍 一、功率器件后封装工艺流程 二、产品参数一致性和可靠性的保证 三、产品性价比 四、今后的发展
至诚至爱,共创未来
SI
SEMI.
2
功率器件后封装工艺流程
划片 粘片 Die bonding 测试 压焊 塑封 打印
Die saw
划片
划片:将圆片切割成单个分离的芯片 划片特点:日本DISCO划片机,具有高稳 定性,划片刀的厚度25um,芯片损耗小。
至诚至爱,共创未来
SI
SEMI.
4
功率器件后封装工艺流程-划片车间
日本DISKO划片机
至诚至爱,共创未来
SI
SEMI.
5
功率器件后封装工艺流程 ——粘片
(将单颗芯片粘结到引线框架上)
二、晶体管热阻的组成
1、RT1内热阻-由芯片 的大小及材料决定。 2、 RT2接触热阻-与 封装工艺有关。 3、 RT3与封装形式及 是否加散热片有关。
RT2 RT3 RT1 芯片 背面金、银层 焊料层 铜底座 (框架)
至诚至爱,共创未来
SI
SEMI.
28
热阻的工艺控制
我们工艺控制过程中,最重要的是解决 接触热阻。主要的控制手段: 1、粘片工艺对接触热阻的控制。 2、高效的测试手段进行筛选 。
至诚至爱,共创未来
SI
SEMI.
26
功率器件的重要参数-热阻
一、热阻的定义 热阻(Rth)是表征晶体管工作时所产生 的热量向外界散发的能力,单位为℃/W, 即是当管子消耗掉1W时器件温度升高的 度数。 RTH总= RT1+ RT2+ RT3
至诚至爱,共创未来
SI
SEMI.
27
功率器件的重要参数-热阻
至诚至爱,共创未来
SI
SEMI.
41
产品的特点
1、电流特性好,饱和压降小,在输出相同的 功率下,晶体管消耗的功率小,发热量低 2、产品种类型号丰富,专门针对节能灯、电 子镇流器进行设计 封装形式:TO-92、TO-126、TO-220、 TO-262、TO-263、TO251 带抗饱和电路的系列 L(低电压)系列晶体管
至诚至爱,共创未来
SI
SEMI.
19
功率器件后封装工艺流程
电镀 切筋 老化
成品管 不合格品 测试分选 合格 不合格 QC 抽检 合格 成品包装 不合格 QA 检验 合格 入成品库 不合格 抽检 合格 客户使用 返工 返工 粉碎
测试
检验
包装