蛋白翻译后修饰(研究生高级生化)
蛋白质翻译后修饰

细胞应激反应
在应激条件下,如氧化应激和DNA损伤, 蛋白质翻译后修饰可以调控应激反应相关蛋 白的活性和功能,从而影响细胞的生存和凋
亡。
THANK YOU
泛素化作用
泛素化可以影响靶蛋白的稳定性、定位、活性以及与其他蛋白质的相互作用,从 而调控细胞内的多种生物学过程,如细胞周期、信号转导和自噬等。
泛素化可以标记受损或不需要的蛋白质,引导其被蛋白酶体降解,从而维持细胞 内蛋白质的平衡。
泛素化调控
泛素化过程受到严格的调控,涉及多种酶的协同作用。这些酶包括E1(泛素活化酶)、 E2(泛素结合酶)和E3(泛素连接酶)。
E3酶在泛素化过程中起着关键作用,它能够识别并结合特定的靶蛋白,将泛素分子准 确地连接到靶蛋白上。
此外,去泛素化酶能够逆转泛素化过程,去除已经结合在靶蛋白上的泛素分子,从而对 泛素化进行动态调控。
05
其他翻译后修饰
乙酰化
总结词
乙酰化是一种常见的蛋白质翻译后修饰,通过将乙酰基团连接到蛋白质的特定氨基酸残基上,可以调节蛋白质的 活性和功能。
翻译后修饰可以影响蛋白质的稳定性 ,通过增加或减少蛋白质的降解速率 ,从而影响细胞内蛋白质的水平和功 能。
蛋白质降解
某些翻译后修饰,如泛素化,可以标 记蛋白质进行降解,通过蛋白酶体途 径降解蛋白质,维持细胞内蛋白质的 动态平衡。
蛋白质功能调控
酶活性调节
亚细胞定位
许多蛋白质在翻译后被修饰以改变其酶活性, 例如,磷酸化可以激活或抑制酶的活性,从 而调控代谢过程和信号转导。
03
疾病与磷酸化
许多人类疾病与蛋白质磷酸化的异常有关。例如,一些癌症和神经退行
性疾病的发生与特定蛋白质的异常磷酸化有关。因此,对蛋白质磷酸化
生物大分子理论201年 硕士生课程 蛋白质翻译后修饰

真核生物蛋白质功能的一种主要调节机制。
特点及其意义
蛋白质翻译后修饰是调节蛋白质生物活性的重 要方式
蛋白质翻译后修饰异常导致人类众多的疾病 蛋白质翻译后修饰是蛋白质组研究的一个重要
内容
1、蛋白质翻译后修饰是调节蛋白生物活性的 重要方式
• MAPK信号通路介导的转录调控
• NF-κB信号通路
• 膜系统-胞核间的信号传导 JAKs and STATs
CREB的转录激活
Protein kinase A and DNA结合蛋白
MAPK信号通路介导的转录调控
MAPK信号通路介导的转录调控
膜系统-胞核间的信号传导 JAKs and STATs
• 组蛋白修饰种类
乙酰化--组蛋白乙酰化能选择性的使某些染色 质区域的结构从紧密变得松散,开放某些基因 的转录,增强其表达水平 。
甲基化-- 发生在H3、H4的 Lys 和 Arg 残基 上,可以与基因抑制有关,也可以与基因的激 活相关,这往往取决于被修饰的位置和程度。
磷酸化-- 发生在Ser 残基,一般与有丝分裂和 凋亡相关。
• 在老年痴呆和其它TAU异常导致的相关疾病中,各种因素(遗传因素、 代谢异常等)导致细胞内信号传导通路异常,磷酸化-去磷酸化之间 的动态平衡被打破,即大脑中某些的磷酸酶如PP2A蛋白水平下调,
继而导致TAU蛋白磷酸化水平升高,称为TAU的超磷酸化 (hyperphosphorylation);大脑葡萄糖摄取和代谢异常亦可导致
• 全美国约有四百万人被诊断为患有AD 。阿尔茨海默氏病 最常发生在 65 岁以上的人身上;但是,更年轻的人士也 可能患此病。当年龄超过 65 岁后,失智症患者的人数迅 速增加。2019 年,患有中度或重度记忆损伤的人数在 65 至 69 岁人群中为 4%,而在 85 岁以上的老年人中,该比 例则为 36%。在导致 65 岁以上老人死亡的原因中,AD 位居第九。
蛋白质的翻译后修饰

蛋白质的翻译后修饰蛋白质是生物体内最为重要的分子之一,其功能与结构多种多样,而这些功能与结构的多样性与蛋白质的翻译后修饰密切相关。
在蛋白质翻译过程结束后,细胞内往往还需要对蛋白质进行进一步的后修饰,以实现其功能的发挥。
这些后修饰包括糖基化、磷酸化、乙酰化等,它们能够调节蛋白质的结构与功能,从而对细胞的生理过程发挥重要作用。
一、糖基化修饰糖基化修饰是指在蛋白质分子上附加糖基的过程。
这种修饰可以发生在蛋白质的Asn残基上,形成N-糖基化,也可以发生在蛋白质的Ser或Thr残基上,形成O-糖基化。
糖基化修饰能够调节蛋白质的稳定性、可溶性和定位,还可以影响蛋白质与其他分子的相互作用。
例如,MUC1蛋白质的糖基化修饰在肿瘤细胞的侵袭和转移中起到重要的调节作用。
二、磷酸化修饰磷酸化修饰是指在蛋白质分子上附加磷酸基团的过程。
磷酸化修饰通过蛋白激酶的作用来实现,它能够调节蛋白质的活性、稳定性和相互作用,影响蛋白质的信号传导、细胞周期和调控等生理过程。
例如,磷酸化修饰能够激活转录因子NF-κB,参与细胞对炎症和免疫反应的应答。
三、乙酰化修饰乙酰化修饰是指在蛋白质分子上附加乙酰基的过程。
这种修饰通常发生在蛋白质的赖氨酸残基上,通过乙酰转移酶来实现。
乙酰化修饰能够调节蛋白质的稳定性、DNA结合能力和转录调控活性,对细胞发育、增殖和分化等过程具有重要作用。
例如,乙酰化修饰通过调控组蛋白交换和染色质结构的紧凑性,影响基因的表达。
四、其他修饰形式除了糖基化、磷酸化和乙酰化修饰外,蛋白质的翻译后修饰还包括甲基化、泛素化、酰化等多种形式。
这些修饰过程能够进一步改变蛋白质的结构与功能,从而参与调控细胞内的生物学过程。
例如,泛素化修饰能够调节蛋白质的降解和稳定性,参与细胞凋亡和细胞周期控制。
总结蛋白质的翻译后修饰是细胞内多种生物学过程的关键环节,它能够调节蛋白质的结构与功能,从而对细胞的生理过程发挥重要作用。
糖基化、磷酸化、乙酰化以及其他形式的修饰能够改变蛋白质的特性,对细胞信号传导、基因表达和细胞周期等起到调控作用。
蛋白质翻译后修饰及其在细胞信号传递中的作用

蛋白质翻译后修饰及其在细胞信号传递中的作用蛋白质是生命体内最基本的一种分子,负责维护细胞的生命活动,影响整个机体的生长和发育。
蛋白质翻译后修饰是指蛋白质的翻译完成后,在蛋白质的肽链上发生的多种化学反应,包括糖基化、磷酸化、乙酰化等等。
这些修饰可以改变蛋白质的结构和功能,从而对细胞信号传递过程中的生化反应起到重要的作用。
1. 磷酸化修饰磷酸化修饰是蛋白质翻译后修饰的一种常见方式。
在细胞中,磷酸化酶和蛋白激酶可以通过特定的信号途径,加入磷酸基到蛋白质中。
磷酸化后的蛋白质结构和功能都会发生变化,因为磷酸化基团可以增强蛋白质的亲水性,改变蛋白质的立体结构,导致蛋白质的活性发生改变。
磷酸化修饰对于细胞信号传递来说是非常关键的,因为它可以改变蛋白质的定位、配体结合等,从而参与到特定的信号通路中。
2. 乙酰化修饰乙酰化修饰是指加入乙酰基到蛋白质上的化学反应。
这种修饰通常发生在蛋白质的赖氨酸残基上,通过酶类催化反应实现。
乙酰化修饰可以改变蛋白质的立体结构,从而影响其功能。
事实上,乙酰化修饰对于细胞信号传递的调节作用非常显著。
许多转录因子(如p53)和调节蛋白(如Histone)的活性等都可以通过乙酰化修饰来发生改变,结果会影响细胞的基因表达、增殖等。
3. 糖基化修饰糖基化修饰是通过加入糖基到蛋白质上实现的,通常是在赖氨酸残基或羟基残基上发生的。
糖基化修饰可以增加蛋白质的亲水性,从而影响其立体结构和生物学功能。
它在诸如神经细胞间黏附分子(NCAM)和胶原蛋白等细胞外基质分子中常见,对于神经发育及其他细胞的黏附和移动、免疫系统中T细胞受体的功能等等都有重要的作用。
总的来说,蛋白质翻译后的修饰可以影响蛋白质的结构和功能,导致蛋白质参与到细胞信号传递中的生化反应中。
例如,如果一个蛋白质经过磷酸化修饰后,那么它可以改变其激活机制,从而参与到某些特定的信号通路中。
如果一个蛋白质经过乙酰化修饰,那么其功能和代谢可能都会改变,从而对细胞的生命活动和生物学特性起到影响。
翻译后修饰蛋白质结构和稳定性

翻译后修饰蛋白质结构和稳定性蛋白质是生物体内最基本的生化分子之一,它们在细胞中扮演着多种功能和作用。
翻译后修饰是指蛋白质分子合成出来后,通过一系列化学反应和修饰过程,对其结构和稳定性进行调节和改变。
这些修饰可以改变蛋白质的功能、稳定性、局部配位环境以及相互作用,进而引发生物体内多种生物学过程的展开。
本文将探讨翻译后修饰蛋白质结构和稳定性的重要性以及几种常见的翻译后修饰方式。
一、磷酸化修饰磷酸化修饰是指通过添加磷酸基团到蛋白质分子中的一种修饰方式。
磷酸化修饰可发生在氨基酸残基的羟基上,如丝氨酸、苏氨酸、酪氨酸等处。
该修饰方式由多种激酶和磷酸酶参与,它在调控蛋白质稳定性、酶活性、细胞定位和相互作用等方面起到关键作用。
磷酸化修饰还参与了多种细胞信号传导途径和基因表达的调节。
二、甲基化修饰甲基化修饰是指在蛋白质分子上添加甲基基团的修饰方式。
甲基化修饰主要发生在精氨酸、赖氨酸和组氨酸等残基上,并由甲基转移酶参与该过程。
甲基化修饰可以改变蛋白质的构象、稳定性和相互作用,对蛋白质的功能发挥起到重要作用。
此外,甲基化修饰还和细胞发育、基因表达及疾病发生等密切相关。
三、糖基化修饰糖基化修饰是指在蛋白质分子上加入糖基,并形成糖蛋白复合物的修饰方式。
糖基化修饰参与了多种生物学过程,如细胞黏附、分泌、信号传导等。
此外,糖基化修饰还通过调节蛋白质的半衰期和稳定性,起到维持蛋白质结构完整性和活性的作用。
糖基化修饰异常与多种疾病的发生和发展有关。
四、乙酰化修饰乙酰化修饰是指在蛋白质分子上添加乙酰基的修饰方式。
乙酰化修饰在调控蛋白质的功能和稳定性方面具有重要作用。
乙酰化修饰通过改变蛋白质的电荷和构象,调控蛋白质的相互作用和转录调控,从而参与细胞生理和病理过程。
总结翻译后修饰蛋白质结构和稳定性是生物体中非常重要的调控机制。
通过磷酸化、甲基化、糖基化和乙酰化等多种修饰方式,蛋白质的功能和稳定性得以改变和调节,进而对生物体的生理和病理过程产生重要影响。
蛋白质翻译后修饰指南

蛋白质翻译后修饰指南蛋白质是构成生物体的重要组成部分,其翻译后修饰对于蛋白质的功能和稳定性具有重要的影响。
本指南将介绍蛋白质翻译后修饰的主要类型和作用,以及在实验室中常用的技术和方法。
一、蛋白质翻译后修饰的类型1. 糖基化:糖基化是一种常见的蛋白质翻译后修饰方式,它可以增加蛋白质的稳定性和溶解性,并调节蛋白质的功能。
糖基化的糖链可以通过N-糖基化和O-糖基化两种方式与蛋白质结合。
2. 磷酸化:磷酸化是一种通过添加磷酸基团来改变蛋白质功能的修饰方式。
磷酸化可以调节蛋白质的酶活性、亲和力和细胞定位,从而影响细胞信号传导和许多生物学过程。
3. 乙酰化:乙酰化是一种通过添加乙酰基团来改变蛋白质的修饰方式。
乙酰化可以影响蛋白质的结构和亲和力,从而调节其功能、稳定性和细胞定位。
4. 甲基化:甲基化是一种通过添加甲基基团来改变蛋白质的修饰方式。
甲基化可以影响蛋白质的稳定性、DNA或RNA结合能力,从而调节基因表达和细胞分化。
二、蛋白质翻译后修饰的作用1. 调节蛋白质功能:翻译后修饰可以改变蛋白质的结构和活性,进而影响其功能。
例如,磷酸化可以调节酶的活性,糖基化可以影响蛋白质的折叠和稳定性。
2. 控制蛋白质降解:某些翻译后修饰方式可以促进或抑制蛋白质的降解,从而控制蛋白质在细胞内的寿命和稳定性。
例如,泛素化是一种促进蛋白质降解的修饰方式。
3. 调控细胞信号传导:许多翻译后修饰方式可以调节细胞内的信号传导通路。
例如,磷酸化可以激活或抑制信号蛋白的功能,从而影响细胞的生理过程。
三、蛋白质翻译后修饰的实验方法1. 质谱分析:质谱分析是研究蛋白质翻译后修饰的重要方法之一。
通过质谱仪可以检测修饰蛋白质的质量和结构,从而确定修饰的类型和位置。
2. 免疫印迹:免疫印迹是一种常用的蛋白质检测方法,可以用于检测特定修饰的蛋白质。
通过使用特异性的抗体,可以识别和分析特定修饰方式下的蛋白质。
3. 免疫组织化学:免疫组织化学是一种用于研究修饰蛋白质在细胞或组织中的定位和表达的方法。
蛋白质翻译后修饰研究进展

蛋白质翻译后修饰研究进展蛋白质是人体最基本的生物分子之一,是构成人体各种细胞和组织的重要组成成分,扮演着重要的生理和生化功能。
翻译后修饰是指蛋白质翻译成链式多肽后,通过一系列的生化反应,发生改变,最终形成成熟、可功能化的生物分子。
对蛋白质翻译后修饰的研究,不仅有助于深入了解蛋白质功能及其调节机制,还可以为人类疾病的治疗提供新思路和方法。
首先,蛋白质翻译后修饰可分为多种类型。
其中,最为常见的是糖基化修饰和磷酸化修饰。
糖基化修饰是指蛋白质分子中的氨基酸残基与糖分子发生共价结合,从而改变蛋白质的物理、化学特性,影响其生物学功能。
而磷酸化修饰是指磷酸分子与特定的氨基酸残基结合,通过改变蛋白质结构和性质,进而调控细胞生长、分化、凋亡等生理过程。
其次,蛋白质翻译后修饰的研究领域也越来越广泛。
从最初对少数蛋白质的修饰研究,到现在对于蛋白质组修饰的系统分析,人们对翻译后修饰的研究日益深入。
例如,近年来出现了原位磷酸化检测技术,可以通过荧光等方式实时监测单个细胞中特定蛋白质的磷酸化状态变化,为探究细胞信号转导等生理过程提供了新的途径和手段。
此外,蛋白质翻译后修饰的研究也在医学领域发挥着重要的作用。
一些疾病的发生和发展可能与蛋白质翻译后修饰异常有关,例如:糖尿病与蛋白质糖基化修饰、癌症与蛋白质磷酸化修饰等。
因此,针对不同疾病的研究,可以通过改变蛋白质翻译后的修饰方式,来达到治疗和预防疾病的效果,例如:通过抑制PDPK1(对多种恶性肿瘤的治疗潜在靶点)的磷酸化修饰来抑制肿瘤细胞的增殖等。
最后,蛋白质翻译后修饰的研究依然面临着许多未知的难题。
例如:对蛋白质翻译后修饰的定量、定位等技术仍需不断完善,同时食品、环境等外部因素对蛋白质翻译后修饰的影响也需进一步探究等。
通过对这些问题的不断解决,我们可以更好地了解和利用蛋白质翻译后修饰的知识,为人类健康和医学进步做出更大的贡献。
总而言之,蛋白质翻译后修饰在生物学、医学等多个领域具有广泛的应用前景。
蛋白质翻译后修饰及其功能

蛋白质翻译后修饰及其功能
蛋白质的修饰指的是对蛋白质分子的化学结构进行改变,从而影响蛋白质的功能和活性。
蛋白质修饰通常可以分为两大类:翻译后修饰和转录后修饰。
1.翻译后修饰:指的是在蛋白质合成完成后,通过一系列酶催化反应对蛋白质分子的氨基酸残基进行的化学修饰。
常见的翻译后修饰包括:-磷酸化:将磷酸基团(PO4)添加到蛋白质分子上,通过调节蛋白质的构象和活性,参与细胞信号转导、基因表达等过程。
-甲基化:在蛋白质的赖氨酸残基上添加甲基基团(CH3),参与DNA 修复、转录调控等生物学过程。
-乙酰化:在蛋白质的赖氨酸残基上添加乙酰基团(CH3CO),参与细胞代谢、染色体结构的调控等过程。
-泛素化:在蛋白质分子上附加小型蛋白物质泛素,参与蛋白质的降解、DNA修复等过程。
2.转录后修饰:指的是在蛋白质合成后,由酶催化将其他化学分子如糖类、脂类等与蛋白质分子非共价地连接起来,从而改变蛋白质的结构和性质。
常见的转录后修饰包括:
-糖基化:将糖类分子附加到蛋白质分子上,形成糖蛋白;参与细胞信号传导、免疫应答等过程。
-脂基化:将脂类分子如脂肪酸、胆固醇等附加到蛋白质分子上,形成脂蛋白;参与细胞信号传导、细胞膜的结构和功能调节等过程。
-辅酶修饰:将辅酶分子如辅酶A、辅酶FAD等与蛋白质分子结合,
参与能量代谢、酶催化等生物过程。
这些修饰能够调节蛋白质的稳定性、活性和功能,在细胞过程中起着
重要的调控作用。
不同的修饰方式和位置会导致蛋白质的不同功能和亚型,从而在生物体内发挥不同的生理作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白翻译后修饰(齐以涛老师)上课老师没说重点1.蛋白的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物。
2.蛋白后修饰概念和意义(PPT4-5)3.蛋白后修饰种类1. 切除加工2. 糖基化3. 羟基化4. 甲基化5. 磷酸化6. 乙酰化7. 泛素化8. 类泛素化9. …200. …磷酸化修饰1.概念:磷酸化是通过蛋白质磷酸化激酶将ATP的磷酸基转移到蛋白的特定位点上的过程。
大部分细胞过程实际上是被可逆的蛋白磷酸化所调控的,至少有30%的蛋白被磷酸化修饰2.作用位点:丝氨酸、苏氨酸和酪氨酸是主要的磷酸化氨基酸,大多数磷酸化蛋白质都有多个磷酸化位点,并且其磷酸化位点是可变的。
3.实例(MAPK途径):分裂原活化的蛋白激酶(MAPK)、分裂原活化的蛋白激酶的激酶(MAPKK)、分裂原活化的蛋白激酶的激酶之激酶(MAPKKK)。
在真核细胞中,这3种类型的激酶构成一个MAPK级联系统(MAPK cascade),通过MAPKKK-MAPKK-MAPK逐级磷酸化,将外来信号级联放大并传递下去。
具体过程如下:•MAPKKK位于级联系统的最上游,能够通过胁迫信号感受器或者信号分子的受体,或者其本身就直接感受胞外信号刺激而发生磷酸化•MAPKKK磷酸化后变为活化状态,可以使MAPKK磷酸化•MAPKK始终存在于细胞质中,MAPKK磷酸化以后通过双重磷酸化作用将MAPK激活•MAPK被磷酸化后有3种可能的去向:(1)停留在细胞质中,激活一系列其它的蛋白激酶(2)在细胞质中使细胞骨架成分磷酸化(3)进入细胞核,通过磷酸化转录因子,调控基因的表达4.功能和意义:一:调节酶蛋白及生理代谢①糖分解代谢中糖原磷酸化酶活性的调节,被磷酸化的酶具有活性,去磷酸化的酶无活性②磷酸化或去磷酸化使胞内已存在酶的活性被激活或失活,调节胞内活性酶的含量二:调节转录因子活性转录因子通常包含DNA结合结构域和转录激活结构域.转录因子在转录激活结构域或调控结构域发生磷酸化,直接影响其转录活性. c-Jun转录激活结构域的两个丝氨酸残基磷酸化,正调控c-Jun的转录活性.三:调节转录因子核转位•TGF-b与其I型、II型受体结合,结合后的TGF-b I型受体识别R-Smad包括Smad2和Smad3,作用于C末端的丝氨酸使其磷酸化而被激活,激活后的R-Smad与Smad4结合转入细胞核内,发挥转录调节活性•NF-kB与其抑制因子IkB形成复合体时存在于胞质。
当IkB磷酸化、泛素化后,与NF-kB解离后,NF-kB失去其抑制,得以转入核内,间接调节基因转录活性。
四:调节转录因子与DNA结合活性•ATF/CREB家族成员ATF-1(activating transcription factor 1)和CREB (cAMP response element binging protein)都可以与DNA序列TGACG 结合。
ATF-1在Ser残基上磷酸化可以增强其与DNA位点的结合,从而增强转录因子DNA结合活性•紫外线照射激活p53的DNA结合活性,主要通过p38蛋白激酶磷酸化p53的Ser残基•c-Jun DNA结合结构域附件的3个氨基酸磷酸化,就不能与DNA 结合。
5.功能和意义总结:•蛋白质磷酸化是生物体内普遍存在的一种调节方式,几乎涉及所有生理及病理过程•尤其对细胞因子、生长因子的信号转导及细胞生长、分化和凋亡有重要作用•包括细胞信号转导、肿瘤发生、新陈代谢、神经活动、肌肉收缩、细胞增殖、发育和分化,细胞骨架调控和细胞凋亡等。
乙酰化修饰1.概念:在乙酰化酶催化下将乙酰基团转移到底物蛋白质赖氨酸残基上的过程。
其逆反应由蛋白质脱乙酰酶催化,称为蛋白质的脱乙酰化。
首次发现组蛋白被乙酰化修饰。
2.意义和功能;一:刺激DNA转录•组蛋白N端包裹于DNA外使DNA无法暴露,乙酰化后组蛋白与DNA结合减弱,DNA得以暴露,从而刺激DNA的转录二:调节转录因子与DNA结合活性•1.刺激转录因子与DNA结合:p53, E2F1, GATA1和EKLF(erythroid kruppel like factor)的乙酰化位点靠近其DNA结合结构域•2.阻止转录因子与DNA结合: HMG1(high mobility group 1)乙酰化的赖氨酸残基位于DNA结合结构域内。
三:调节蛋白质间相互作用•1.TCF(T-cell specific transcription factor)与其共刺激因子armadillo 的结合可被TCF的乙酰化干扰• 2. 核受体的乙酰化影响其与共刺激因子ACTR(activator of the thyroid and retinoicacid receptor)的结合。
四:影响蛋白质稳定性•E2F1乙酰化延长其半衰期•a-微管蛋白乙酰化影响微管稳定性五.组蛋白乙酰化•组蛋白低乙酰化,由于组蛋白N末端富含正电荷的氨基酸,与带负电的DNA靠静电招募结合紧密,因此转录因子很难与DNA的启动区域结合,基因表达被抑制•组蛋白乙酰化时,乙酰化中和了组蛋白赖氨酸和精氨酸残基的正电荷,降低了与DNA相互作用的能力,转录因子可以很容易的与DNA 的启动子区域结合,介导基因表达。
六.乙酰化与疾病•组蛋白乙酰化酶p300/CBP(CREB binding protein)广泛参与涉及白血病的染色体移位,导致多种包含HAT(Histone acetyltransferase)活性的融合蛋白产生,与白血病的发生发展密切相关•组蛋白去乙酰基酶亦通过多种机制参与癌症进程•多聚谷氨酰胺疾病是一种神经退行性遗传病,是由致病基因CAG 重复片段的扩大引起的。
在扩大的多谷氨酰胺诱导的疾病中,蛋白的乙酰化和去乙酰化的失衡是一个关键的过程。
泛素化修饰1.概念:泛素化是一种高度保守的翻译后水平的蛋白质修饰过程,可以将泛素共价结合到目的底物蛋白质的赖氨酸残基上。
也是一种可逆性的过程,可由去泛素化酶将泛素从蛋白质上除去。
•泛素由76个氨基酸组成,高度保守,普遍存在于真核细胞内,故名泛素•共价结合泛素的蛋白质能被蛋白酶识别并降解,这是细胞内短寿命蛋白和一些异常蛋白降解的普遍途径•与消化道内进行的蛋白质水解不同,从泛素与蛋白的结合到将蛋白水解成小的肽段,整个水解过程需要能量参与•20世纪70年代中期,首次从牛胸腺中分理出泛素•1977年,H.Busch首次发现泛素可以共价结合在H2A上,形成H2A单泛素化2.泛素化(泛素化介导的蛋白质降解途径)过程:(图示如下)•泛素-蛋白酶系统存在于所有真核生物细胞的调控系统,需要三种酶的参与:激活酶E1、结合酶E2和连接酶E3•在ATP酶作用下,E1在其半胱氨酸(Cys)和泛素羧基端的甘氨酸(Gly)之间形成巯酯键(thiol ester bond),即E1-SH-Ub,激活泛素•在E2酶作用下,泛素从E1转移到E2,同样以巯酯键的方式结合(E2-SH-Ub)•E3可特异性识别底物蛋白质,并与之结合。
与此同时,E2将激活的泛素直接转移到E3结合的底物上,经过多次重复,多个泛素之间通过K48相互连接,在底物上形成多泛素链(polyubiquitin chain)。
•26S蛋白酶体可以特异性识别多泛素化的蛋白质,并将之完全水解为小多肽片段•去泛素酶可以重新回收泛素3.功能和意义:一.介导蛋白质降解•调节细胞周期:Cdc34是E2酶,cyclinA, cyclinB,cyclinE, p21和p27可被泛素化修饰降解•与DNA修复、肿瘤和凋亡有关:p53降解受泛素介导的蛋白酶解调节,mdm2是其E3酶。
•与免疫炎症反应有关:①NF-kB与其抑制蛋白IkB结合,无活性状态存在于胞浆内。
感染或收到某种信号,IkB被泛素化降解,NF-kB进入核内激活靶基因③泛素为MHC-I类分子提供多肽,提呈给T淋巴细胞抗病毒感染•调节基因转录水平:(PPT 33-35)①影响转录因子在细胞内定位:②控制转录共刺激因子活性:③3. 调整转录因子蛋白水平:二.泛素化的非蛋白酶解功能•K63泛素化的蛋白质与细胞表面受体的胞吞、DNA损伤后修复、核糖体功能、应激反应及蛋白激酶的激活有关•组蛋白H2A的单泛素化与基因转录激活有关,并不导致其降4.功能和意义总结:•Cells are continually building proteins, using them for asingle task, and then discarding them•Signaling or controlling proteins (eg. transcription regulators and the cyclins) - lead very brief lives, carrying their messages and then being thrown away•Specialized enzymes - built just when they are needed,allowing cells to keep up with their minute-by-minute synthetic needs•The approach may seem wasteful, but it allows each cell to respond quickly to constantly changing requirements.SUMOylation(SUMO化修饰)1.概念:SUMO(小泛素样修饰):是泛素和泛素样的家族成员。
SUMO的氨基酸序列和空间结构高度相似,与泛酸具有相同的功能。
共有四个成员,分别为SUMO1-4。
2.SUMO化修饰(PPT44)和去SUMO化修饰(PPT 47)过程:3.SUMO连接酶E3的种类和底物(PPT 45)4.SENP(SUMO特异性蛋白酶)特征和种类PPT 46SENP是去SUMO化酶5.SUMO修饰的蛋白(底物):PPT 506.SUMO 和Ubiquitin异同(PPT 51):这两种蛋白质具有非常相似的二级和三级结构。
泛素和SUMO1的比对表明只有18%的氨基酸序列是相同的。
与泛素系统不同,SUMO系统主要针对底物蛋白的蛋白酶,SUMO1缀合有不同的细胞功能。
7.SUMO化的功能(PPT 56 表格)PPT 52-588.SENP2的作用一.SENP2在肌肉的发生中的作用•SENP2去SUMO化修饰MEF2A,在骨骼肌中促进肌肉生成抑制素的表达并且抑制肌细胞的生成。
•SENP2在调节肌肉生成抑制素以诱导肌细胞生成中发挥关键作用•SENP2是骨骼肌再生的潜在的治疗靶标。
二.SENP2对于神经元的功能至关重要多种蛋白修饰•各种翻译后修饰的过程不是孤立存在的,在很多细胞活动中,需要各种翻译后修饰的蛋白共同作用•同一个蛋白可以拥有一种以上的后修饰过程•各种翻译后修饰形式相互影响和协调翻译后修饰的蛋白质组学•由于蛋白质翻译后修饰并不是直接由基因决定的,研究蛋白质翻译后修饰对蛋白组学的研究具有更重要的意义,因此诞生了翻译后修饰的蛋白质组学•蛋白质翻译后修饰在体内是一个动态的变化过程,有效探明细胞和组织内蛋白质修饰谱的“翻译后修饰蛋白质组学”成为当今功能蛋白质组学研究的重要内容•翻译后修饰的蛋白质组学研究,不仅有助于理解翻译后修饰在生命过程中的重要意义,还对未来的药物开发提供了极大的保证。