精密和超精密加工的机床设备
超精密加工的机床设备

超精密加工的机床设备摘要:超精密加工技术的发展直接影响整个国家的制造业发展,影响尖端技术和国防工业的发展。
机床是实现超精密加工的重要载体,机床的制造水平和研究水平便显得非常的重要。
本文在论述目前国内外超精密加工机床的现状的同时,介绍了国内外有代表性的几种超精密加工机床,并介绍分析了超精密机床的精密主轴部件、进给驱动系统、误差建模和补偿技术和数控技术。
关键词:超精密加工机床发展关键技术1.引言制造业是一个国家或地区国民经济的重要支柱,其竞争能力最终体现在新生产的工业产品市场占有率上,而制造技术则是发展制造业并提高其产品竞争力的关键。
精密和超精密加工技术是制造业的前沿和发展方向。
精密和超精密加工技术的发展直接影响到一个国家尖端技术和国防工业的发展,世界各国对此都极为重视,投入很大力量进行研究开发,同时实行技术保密,控制关键加工技术及设备出口。
随着航空航天、高精密仪器仪表、惯导平台、光学和激光等技术的迅猛发展和多领域的广泛应用,对各种高精度复杂零件、光学零件、高精度平面、曲面和复杂形状的加工需求日益迫切。
目前,国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。
最近几年,我国的机床制造业虽然发展很快,年产量和出口量都明显增加,成为世界机床最大消费国和第一大进口国,在精密机床设备制造方面取得不小进展,但仍和国外有较大差距。
我国还没有根本扭转大量进口昂贵的数控和精密机床、出口廉价中低档次机床的基本状况。
由于国外对我们封锁禁运一些重要的高精度机床设备和仪器,而这些精密设备仪器正是国防和尖端技术发展所迫切需要的,我们必须投入必要的人力物力,自主发展精密和超精密加工机床,使我国的国防和科技发展不会受制于人。
2.超精密机床的发展现状2.1国外超精密机床发展现状目前在国际上处于领先地位的国家有美国、英国和日本, 这3个国家的超精密加工装备不仅总体成套水平高, 而且商品化的程度也非常高。
精密和超精密加工的机床设备技术

精密和超精密加工的机床设备技术引言精密和超精密加工技术在现代制造业中扮演着重要的角色。
为了满足高质量、高精度、高效率的加工需求,机床设备技术不断得到改进和发展。
本文将介绍精密和超精密加工的机床设备技术,并探讨其在制造业中的应用。
1. 精密加工的机床设备技术精密加工是指在工程加工中,对尺寸精度和表面质量要求较高的加工方法。
精密加工的关键在于机床设备的稳定性、刚性和精度。
以下是精密加工机床设备的几个关键技术:1.1 数控技术数控技术是精密加工中最为关键的技术之一。
通过数控技术,可以实现机床的高精度和高效率加工。
数控技术的应用可以大大提高生产效率,并且减少操作人员的工作强度。
1.2 精密传动系统精密传动系统是精密加工机床设备的核心组成部分。
精密传动系统的设计与制造涉及到轴承、传动装置、伺服驱动装置等多个方面。
通过精确的传动系统,可以提高机床的精度和稳定性。
1.3 线性驱动技术线性驱动技术是现代机床设备中的重要发展方向之一。
相比传统的滚动轴承驱动,线性驱动技术能够实现更高的速度和更高的精度。
线性驱动技术可以用于各种类型的机床设备,包括数控机床和超精密加工机床。
2. 超精密加工的机床设备技术超精密加工是指在微米甚至纳米级别下进行加工的技术。
超精密加工在光学、光电子、半导体等领域具有重要的应用。
以下是超精密加工机床设备技术的几个关键技术:2.1 超精密控制系统超精密控制系统是实现超精密加工的关键技术之一。
通过超精密控制系统,可以实现对微小位移和应力的精确控制。
超精密控制系统需要具备高精度、高灵敏度和高稳定性的特点。
2.2 超精密磨削技术超精密磨削技术是超精密加工的核心技术之一。
超精密磨削技术可以实现对工件表面的精确修整和光洁度的提高。
超精密磨削技术需要借助特殊材料和磨削工具,并配合高精度的机床设备。
2.3 超精密检测技术超精密加工过程中,对工件的检测和测量要求非常高。
超精密检测技术可以实现对工件尺寸、形状和表面质量的高精度测量。
精密和超精密加工的机床设备

高精度、高效率、高表面质量、 低误差、低能耗等。
应用领域
01
02
03
04
航空航天
制造飞机发动机叶片、涡轮盘 等关键部件。
汽车制造
加工发动机缸体、曲轴等精密 零部件。
能源领域
制造核聚变反应堆中的超导线 圈、太阳能电池板等。
医疗器械
制造人工关节、牙科种植体等 医疗器件。
发展历程与趋势
发展历程
从20世纪50年代开始,精密和超精密加工技术经历了从简单磨削 到复杂切削,再到超精密切削的发展过程。
航空航天领域的应用案例
案例一
某航空发动机制造企业使用超精密加 工机床,对涡轮叶片进行高精度磨削 和抛光,提高了发动机性能和可靠性 。
案例二
某飞机制造企业采用精密加工机床, 对机身结构件进行高精度切割和加工 ,确保飞机整体装配精度和质量。
汽车工业领域的应用案例
案例一
某汽车零部件制造企业使用精密加工 机床,对发动机缸体进行高精度加工, 提高缸体质量和性能,降低发动机故 障率。
柔性化
为了满足多品种、小批量生产的需求,未来精密和超精密加工机床将采用模块化设计、可 重构制造系统等技术,提高机床的加工范围和适应能力。
新材料、新工艺的应用
新材料
随着新材料技术的发展,未来精密和超精密加工机床将采用新型高强度、高硬 度、轻质材料,提高加工效率和加工质量。
ห้องสมุดไป่ตู้新工艺
为了满足复杂形状和特殊材料的加工需求,未来精密和超精密加工机床将采用 新的切削工艺、光整加工工艺和复合加工工艺等,提高加工精度和表面质量。
伺服驱动技术
采用先进的伺服驱动技术, 实现高精度的位置控制和 速度控制。
插补算法
第七讲精密加工和超精密加工

工艺过程的优化
五、游离磨料的高效加工
(一)超声研磨工艺
• 超声研磨是一种采用游离磨料(研磨膏或研磨液)进 行切削的加工方法。磨料通过研磨工具的振动产生切 削功能,从而把研磨头(工具)的形状传递到工件 上。 • 超声研磨正是利用脆性材料的这一特点。有目的有控 制地促进材料表层的断裂和切屑的形成。
二、金刚石车削技术及其应用
1. 金刚石车床的技术关键
• 除了必须满足很高的运动平稳性外,还必须具有很高 的定位精度和重复精度。镜面铣削平面时,对主轴只 需很高的轴向运动精度,而对径向运动精度要求较 低。金刚石车床则须兼备很高的轴向和径向运动精 度,才能减少对工件的形状精度和表面粗糙度的影 响。 • 目前市场上提供的金刚石车床的主轴大多采用气体静 压轴承,轴向和径向的运动误差在50nm以下,个别主 轴的运动误差已低于25nm。金刚石车床的滑台在90年 代以前绝大部分采用气体静压支承,荷兰的Hembrug 公司则采用液体静压支承。进入90年代以来,美国的 Pneumo公司(现已与Precitech公司合并)的主要产品 Nanoform600和250也采用了具有高刚性、高阻尼和高
(二)超声研磨加工玻璃
• 在玻璃上钻孔时,超声加工已经可以与金刚石钻削竞 争,优化后的超声钻孔已经达到金刚石钻削时的材料 切除速度。根据孔径和孔深的不同,超声钻孔时的进 钻速度可也达到20~40mm/min。 • 用金刚石钻削玻璃上的孔时,需要从两面进刀,以免 钻透时出现玻璃崩裂,采用超声钻孔时,则可从一侧 直接钻通,工具出口时不会出现玻璃的崩裂。从而可 以省去金刚石钻孔时的校正和倒角等加工工序。 • 在玻璃上钻小孔时,超声研磨的作用变得更为重要。 普通的金刚石钻孔,最小孔径大约在2mm左右。超声 钻孔时的最小孔径几乎没有任何限制,目前在实验室 中进行的实验表明,用超声研磨可在3mm厚的玻璃上 钻出直径为0.5~1.0mm的小孔
国外超精密数控机床概述

国外超精密数控机床概述20世纪50年代后期,美国首先开始进行超精密加工机床方面的研究,当时因开发激光核聚变实验装置和红外线实验装置需要大型金属反射镜,急需反射镜的超精密加工技术和超精密加工机床。
人们通过使用当时精度较高的精密机床,采用单点金刚石车刀对铝合金和无氧化铜进行镜面切削,以此为起点,超精密加工作为一种崭新的机械加工工艺得到了迅速发展。
1962年,Union Carbide公司首先开发出的利用多孔质石墨空气轴承的超精密半球面车床,成功地实现了超精密镜面车削,尺寸精度达到士0.6 um,表面粗糙度为Ra0.025um,从而迈出了亚微米加工的第一步。
但是,金刚石超精密车削比较适合一些较软的金属材料,而在航空航天、天文、军事等应用领域的卫星摄像头方面,最为常用的却是如玻璃、陶瓷等脆性材料的非金属器件。
用金刚石刀具对这些材料进行切削加工,则会使己加工表面产生裂纹。
而超精密磨削则更有利于脆性材料的加工。
Union Carbide公司的另一代表性产品是其在1972年研制成功的R-0方式的非球面创成加工机床。
这是一台具有位置反馈的双坐标数控车床,可实时改变刀座导轨的转角0和半径R,实现非球面的镜面加工。
加工直径达380mm,工件的形状精度为士0.63um,表面粗糙度为Ra0.025 um。
摩尔公司(Mood Special Tool)于1968年研制出带空气主轴的Moori型超精密镜面车床,但为了实现脆性材料的超精密加工,该公司又于1980年在世界上首次开发出三坐标控制的M-18AG型超精密非球面金刚石刀具车削、金刚石砂轮磨削机床。
该机床采用空气主轴,回转精度径向为0.075pm;采用Allen-Braley 7320数控系统;X,Z 轴行程分别为410mm和230mm,其导轨的平直度在全长行程范围内均在0.5um以内,B轴的定位精度在3600范围内是0.38um;采用金刚石砂轮可加工最大直径为356mm的各种非球面的金属反射镜。
精密和超精密加工的机床设备

单击此处添加小标题
单击此处添加小标题
缺点:电机发热,容易使主轴产生热变形。
单击此处添加小标题
措施:电动机采用强制通气冷却,或通过恒温油(水)冷却。
单击此处添加小标题
将机床主轴与电机轴合二为一,即将电机的定子、转子直接装入主轴组件的内部,期间不再使用皮带或齿轮传动副,也称电主轴。
单击此处添加大标题内容
轴承内圆柱面上,等间隙地开有几个油腔(通常为4个)。 各油腔之间开有回油槽。 用过的油一部分从这些回油槽流回油箱(径向回油),另一部分则由两端流回油箱(轴向回油)。 油腔四周形成适当宽度的轴向封油面和周向封油面,它们和轴颈之间的间隙一般为0.02~0.04mm。 油泵供油压力为ps,油液经节流器T进入各油腔,将轴颈推向中央,油液最后经封油面流回油箱,压力降低为零。 当主轴不受载荷且忽略自重时,则各油腔的油压相同,保持平衡,轴在轴承正中心,这时轴颈表面与各腔封油面之间的间隙相等,均为h0。 当主轴受径向载荷(包括自重)F作用后,轴颈向下移动产生偏心量e。
立式空气轴承
特点: 下止推面大于上止推面,平衡主轴重量; 圆弧面径向轴承,自动调心、提高精度。
三、超精密机床主轴和轴承的材料
要求:不易磨损,不易生锈腐蚀,热膨胀系数小,且主轴和轴套的热膨胀系数要接近,材料的稳定性好。 主要材料:轴和轴套均采用38CrMoAl氮化钢,经表面氮化和低温稳定处理;不锈钢、多孔石墨和轴承钢;此外还有铟钢、花岗岩、线膨胀系数接近零的微晶玻璃、陶瓷等。
缺点:
圆柱径向轴承和端面止推空气静压轴承
结构与液体静压轴承主轴结构基本相同,只是节流孔和气腔大小形状不同。要求有很高的同轴度和垂直度。 1号车床的径向轴承的轴套制成外面鼓形,能自动调整定心。轴套的外表面做凸形球面,与轴承盖及轴承座上的凹形球面相配合。当轴变形时,轴套可以自动调整位置,从而保证轴颈与轴鼓为面接触。用多孔石墨的轴衬代替小节流孔。
第5章 精密、超精密加工技术

• 和表面粗糙度的检验,而且要测量加工设备 的精度和基础零部件的精度。 • 高精度的尺寸和几何形状可采用分辨率为 0.1~0.01µ m,的电子测微计、分辨率为 0.01~0.001µ m的电感测微仪或电容测微仪来 测量。圆度还可以用精度为0.01µ m的圆度仪 来测量。
加工设备必须具有高精度的主轴系统、进给 系统(包括微位移装臵),现在的超精密车 床,其主轴回转精度可达0.02µ m,导轨直线 度可达1000000:0.025,定位精度可达 0.013µ m,进给分辨率可达0.005µ m。其回转 零件应进行精密的动平衡。
• 2)高刚度
• 包括静刚度和动刚度,不仅要注意零件本身
• 精密和超精密磨料加工是利用细粒度的磨粒 和微粉主要对黑色金属、硬脆材料等进行加 工,按具体地加工方法分为精密和超精密磨 削,加工精度可达5~0.5µ m,表面粗糙度 Ra0.05~0.008µ m);精密和超精密研磨(加 工精度可达10~0.1µ m,表面粗糙度 Ra0.01~0.008µ m);
合金等刀具进行精密和超精密切削,这些刀
具材料的切削效果不如金刚石,但能加工黑
色金属。对黑色金属等硬脆材料的精密加工
和超精密加工,一般多采用磨削、研磨、抛
光等方法。
• 精密和超精密磨削时,通常采用粒度240#~W7
或更细的白刚玉或铬刚玉磨料和树脂结合剂
制成的紧密组织砂轮,经金刚石精细修整后
• 进行加工。
• 出现了精密电火花加工、精密电解加工、精
密超声波加工、分子束加工、电子束加工、
离子束加工、原子束加工、激光加工、微波
加工、等离子体加工、光刻、电铸及变形加
工等。
• 4.复合加工
• 复合加工是将几种加工方法叠合在一起,发 挥各种加工方法的长处,达到高质量(加工
精密和超精密加工技术的发展

精密和超精密加工技术的发展我国目前已是一个“制造大国”,制造业规模名列世界第四位,仅次于美国、日本和德国,近年来在精密加工技术和精密机床设备制造方面也取得了不小进展。
但我国还不是一个“制造强国”,与发达国外相比仍有较大差距。
目前国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。
为了使我国的国防和科技发展不受制于人,我们必须投入必要的人力物力,自主发展精密和超精密加工技术,争取尽快将我国的精密和超精密加工技术水平提升到世界先进水平。
下面对国内外精密和超精密加工技术的最新发展情况介绍如下。
精密机床技术的发展精密机床是精密加工的基础。
当今精密机床技术的发展方向是:在继续提高精度的基础上,采用高速切削以提高加工效率,同时采用先进数控技术提高其自动化水平。
瑞士DIXI公司以生产卧式坐标镗床闻名于世,该公司生产的DHP40高精度卧式高速镗床已增加了多轴数控系统,成为一台加工中心;同时为实现高速切削,已将机床主轴的最高转速提高到24000r/min。
瑞士MIKROM公司的高速精密五轴加工中心的主轴最高转速为42000r/min,定位精度达5μm,已达到过去坐标镗床的精度。
从这两台机床的性能可以看出,现在的加工中心与高速切削机床之间已不再有严格的界限划分。
使用金刚石刀具的超精密切削技术超精密切削技术的进展金刚石刀具超精密切削技术是超精密加工技术的一个重要组成部份,不少国防尖端产品零件:如陀螺仪、各种平面及曲面反射镜和透镜、精密仪器仪表和大功率激光系统中的多种零件等:都需要利用金刚石超精密切削来加工。
使用单晶金刚石刀具在超精密机床上进行超精密切削,可以加工出光洁度极高的镜面。
超精密切削的切削厚度可极小,最小切削厚度可至1nm。
超精密切削使用的单晶金刚石刀具要求刃口极为锋锐,刃口半径在0.5,0.01μm。
因刃口半径甚小,过去对刃口的测量极为困难,现在已可用原子力显微镜:AFM:方便地进行测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/8/12
三、精密超精密机床类型和精度指标
2020/8/12
二、典型机床简介
Moore 车床
由Moore 3型坐标测量机改 造而成。采用卧式主轴, 三坐标精密数控,消振和 防振措施,加强恒温控制等。 M-18AG型超精密非球面车床, 基本结构同Moore 3,采用空 气静压轴承主轴、气浮导轨、 双坐标双频激光测量系统、 优质铸铁床身,有恒温油浇 淋机和空气隔振垫支承。
2020/8/12
在滑动轴承与轴颈表面之间输入 高压润滑剂以承受外载荷,使运动副 表面分离的润滑方法成为流体静压润 滑。
止推轴承(推力轴承)
轴承座
Fa
径向轴瓦 止推轴瓦
径向轴承(向心轴承) Fr
止推轴承受力Fa与 轴的中心线平行
2020/8/12
径向轴承的受力Fr 与轴的中心线垂直
2020/8/12
2020/8/12
第1节 精密和超精密机床发展概况 及典型机床简介
二、典型机床简介
Union Carbide 公司 的半球机床
能加工直径100mm的半球,达到尺寸精
度正负0.6μm,表面粗糙度0.025μm。
精密空气轴承主轴采用多孔石墨制成 轴衬,径向空气轴承的外套可以调整 自动定心,可提高前后轴承的同心度, 以提高主轴的回转精度。
Precision and ultraprecision machining
精密和超精密加工技术
第4章 精密和超精密加工的机床设备
2020/8/12
3.1 精密和超精密机床发展概况及典型机床 简介
3.2 精密主轴部件 3.3 床身和精密导轨部件 3.4 进给驱动系统 3.5 微量进给装置 3.6 机床运动部件位移的激光在线检测系 3.7 机床的稳定性和减振隔振 3.8 减少变形和恒温控制
2020/8/12
二、典型机床简介
Pneumo 公司的MSG-325超精密车床 采用T形布局,机床空气主轴的径向圆跳动和轴向
跳动均小于等于0.05μm。床身溜板用花岗岩制造,导 轨为气浮导轨;机床用滚珠丝杠和分辨率为0.01μm的 双坐标精密数控系统驱动,用HP5501A双频激光干涉仪 精密检测位移。
2020/8/12
二、典型机床简介
DTM-3大型超精密车床 采用精密数控伺服方
式,控制部分为内装式 CNC装置和激光干涉测长 仪,精确测量定位,在 DC伺服机构内装有压电 微位移机构,实现纳米 级微位移。
2020/8/12
2020/8/12
二、典型机床简介
大型光学金刚石车床LODTM
机床采用立式结构,采用止 推轴承,7路高分辨力双频激光 测量系统,4路激光检测横梁上 溜板的运动,3路激光检测刀架 上下运动位置,使用在线测量 和误差补偿,各发热部件用大 量恒温水冷却,用大的地基, 地基周围有防振沟,且整个机 床用4个大空气弹簧支承。
2020/8/12
2020/8/12
二、典型机床简介
OAGM 2500大型超精密机床 机床的x和y向导轨采用液 体静压,z向的磨轴头和 测量头采用空气轴承。床 身采用型钢焊接结构,用 精密数控驱动,双频激光 测量系统检测运动位置。
2020/8/12
二、典型机床简介
AHNIO型高效专用车削、磨削超精密机床
作台、床身等基础零件,液体淋浴或空气淋浴控 制温度 ➢ 抗振性:材料,隔离振源,缩短传动链或改用柔 性连接 ➢ 控制性能好:数控 ➢ 模块化设计
第2节 精密主轴部件
一、主轴轴承 主轴回转精度
回转精度——在主轴空载手动或机动低速旋转情况下, 在主轴前端安装工件或刀具的基面上所测得的径向跳动、 端面跳动和轴向窜动的大小。
0.005um,加工表面粗糙度Ra0.003um,温 控精度为20± 0.0005℃。
四、精密超精密机床结构特点
➢ 高精度:静态和动态精度,主要部件的材料,轴 承,工作台和刀架,微进给(电致伸缩、磁致伸 缩,弹性元件等),闭环控制系统
➢ 高刚度:受力变形对加工精度影响 ➢ 高稳定性:热导率低,热膨胀系数小的材料做工
影响回转精度的因素 (1)轴承精度和间隙的影响。 (2)主轴、支承座等零件中精度的影响。 关键在于精密轴承。
2020/8/12
主轴轴承
➢ 高精度滚动轴承 ➢ 液体滑动轴承 ➢ 空气滑动轴承 ➢ 陶瓷轴承 ➢ 磁悬浮轴承
(一)、滑动轴承的分类
• 按滑动轴承工作时轴瓦和轴颈表面间呈现的摩擦 状态,滑动轴承可分为:
类型:普通(各种精密超精密车、铣等)、专 用(磁盘超精密车床) 按工艺方法:超精密车床、超精密铣床、超精 密磨床、超精密研磨机、超精密抛光机床、超 精密特种加工机床、精密和超精密加工中心等
精度指标:目前,主轴回转精度为0.025um, 导轨直线度为1000000:0.025,定位精度为 0.013um/1000um,进给分辨率为
2020/8/12
第1节 精密和超精密机床发展概况 及典型机床简介
一、发展概况
精密机床是实现精密加工的首要基础条件。 1)美国:50年代首先发展了金刚石刀具的超精密切 削技术,并发展了相应的空气轴承主轴的超精密机 床;1983~1984研制成功大型超精密金刚石车床 DTM-3型和LODTM大型超精密车床。 2)英国:1991粘研制成功大型超精密机床 OAGM2500。 3)日本:现在在中小型超精密机床生产上已经具有 一定的优势,甚至超过了美国。 4)中国:JCS-027超精密车床、JCS-031超精密 铣床、JCS-035超精密车床等。
液体摩擦轴承
液体动压润滑轴承 液体静压润滑轴承承受载荷的方向可分为:
径向滑动轴承(向心) 推力滑动轴承(止推)
2020/8/12
根据润滑膜的形成原理不同分为:
动压润滑轴承
静压润滑轴承
利用相对运动副表面的相对运动 和几何形状,借助流体粘性,把润滑 剂带进摩擦面之间,依靠自然建立的 流体压力膜,将运动副表面分开的润 滑方法为流体动压润滑。