硅烷偶联剂改性

合集下载

硅烷偶联剂KH550_改性白炭黑及其在环氧树脂中的应用

硅烷偶联剂KH550_改性白炭黑及其在环氧树脂中的应用

硅烷偶联剂KH550改性白炭黑及其在环氧树脂中的应用赵志明,李文琼,靳朝辉,于朝生(东北林业大学化学化工与资源利用学院,东北林业大学森林植物生态学教育部重点实验室,黑龙江哈尔滨150040)摘要:利用硅烷偶联剂KH550对白炭黑纳米粉体进行表面接枝改性,并制备改性白炭黑(mSiO 2)/环氧树脂(EP )浇铸体,利用傅里叶变换红外光谱(FTIR )、X 射线衍射(XRD )、粒度分析、拉伸性能测试、热重分析(TG )、扫描电镜(SEM )等手段对改性前后的白炭黑粒、mSiO 2/EP 浇铸体进行表征分析,探究了KH550对白炭黑的改性效果以及mSiO 2用量对浇铸体力学性能、耐热性和结构的影响。

结果表明:以异丙醇作为分散剂,当KH550质量分数为20%,反应温度为90℃,反应时间为5h ,在醇、水混合溶剂中可以实现KH550对白炭黑的表面改性;当改性白炭黑用量为8%(wt.)时,浇铸体综合性能最好,拉伸强度为41.29MPa ,较纯EP 提升了95.2%;其最大分解速率时的温度为377℃,较纯EP 提升了14℃。

关键词:KH550;白炭黑;改性;环氧树脂;拉伸强度中图分类号:TQ 127.2Study on Surface Modifi cation of Silica with KH550 and Its Application in Epoxy ResinZHAO Zhi-ming, LI Wen-qiong, JIN Zhao-hui, YU Chao-sheng( College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University; Key Laboratory of ForestPlant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China )Abstract: The silane coupling agent KH550 was used to modify the silica by surface grafting and to prepare modifi ed silica (mSiO 2)/epoxy resin (EP) casts. The silica pellets and mSiO 2/EP casts before and after modification were characterised by means of Fourier transform infrared spectroscopy (FTIR), X-ray diff raction (XRD), particle size analysis, tensile properties testing, thermogravimetric analysis (TG) and scanning electron microscopy (SEM). The eff ect of KH550 on the modifi cation of silica and the eff ect of mSiO 2 dosage on the mechanical properties, heat resistance and structure of the cast body were investigated. The results show that the surface modifi cation of silica by KH550 can be achieved in a mixed solvent of alcohol and water when the mass fraction of KH550 is 20%, the reaction temperature is 90°C and the reaction time is 5h, using isopropanol as the dispersant. Furthermore, the mechanical properties and thermal stability of the mSiO 2/EP composites were improved by the KH550 modifi cation. When the amount of mSiO 2 was 8% (wt.), the tensile strength of the mSiO 2/EP composite exhibited 41.29MPa, which resulted in an increase of tensile strength by 95.2%, and a maximum decomposition rate temperature of 377°C, which is 14°C higher than that of pure EP materials.Key words: KH550; silica; modifi cation; EP; tensile strength 作者简介:赵志明,硕士研究生,主要从事功能材料研究工作。

材料表面的硅烷化改性

材料表面的硅烷化改性

实验64 材料表面的硅烷化改性一.实验目的1.利用硅烷偶联剂改性有机或无机材料。

2.制备无机-有机杂化粉体或薄膜材料。

二.实验原理很多纳米材料都是重要的无机化工产品,是橡胶.塑料.油漆.油墨.造纸.农药及牙膏等行业不可缺少的优良原料。

以SiO2纳米颗粒为例,纯粹制备的SiO2颗粒表面上存在着大量的羟基基团,呈极性.亲水性强,众多的颗粒相互联结成链状,链状结构彼此又以氢键相互作用,形成由聚集体组成的立体网状结构,在这种立体网状结构中分子间作用力很强,应用过程中很难均匀分散在有机聚合物中,颗粒的纳米效应很难发挥出来。

如何将纳米SiO2均匀分散在高分子材料中,以提高聚合物材料的各项性能是一个重要的研究方向。

硅烷偶联剂发展至今已有一百多种产品,按Y有机官能团的不同,可分为链系基类硅烷偶联剂.氨基硅烷偶联剂.环氧基类硅烷偶联剂.烷基丙烯酰氧基类硅烷偶联剂及双官能基型硅烷偶联剂等。

硅烷偶联剂处理技术原理简单.操作方便,其与材料表面的作用机理一直是研究的重点,目前关于硅烷在材料表面行为的理论有很多假设,主要有化学键理论.物理吸附理论.表面浸润理论.可逆水解平衡理论和酸碱相互作用理论等。

硅烷偶联剂分子含有两种反应性基团,化学结构可以用X3SiRY来表示,其中,X是可进行水解反应并生成硅烃基(Si-OH)的基团,如卤素.氨基.烷氧基和乙酰氧基等,硅醇基团可和无机物(如无机盐类.硅酸盐.金属及金属氧化物等)发生化学反应,生成稳定的化学键,将硅烷与无机材料连接起来。

Y是非水解基团,可与有机基团如乙烯基.氨基.巯基.环氧基等起反应,从而提高硅烷与聚合物的粘连性。

R是具有饱和键或不饱和键的碳链,将官能团Y和Si原子连接起来。

因此硅烷偶联剂分子被认为是连接无机材料和有机材料的“分子桥”,能将两种性质悬殊的材料牢固地连接在一起,形成无机相/硅烷偶联剂/有机相的结合形态,从而增加了后续有机涂层与基地材料的结合力。

一般来说,硅烷分子中的两个端基团既能分别参与各自的反应,也能同时起反应。

硅烷偶联剂KH 570对电气石表面改性条件优化与表征

硅烷偶联剂KH 570对电气石表面改性条件优化与表征

矿产综合利用Multipurpose Utilization of Mineral Resources第1期2021年2月·193·硅烷偶联剂KH 570对电气石表面改性条件优化与表征安文峰,胡应模,张丹丹,李苗苗(中国地质大学(北京)材料科学与工程学院,非金属矿物和固废资源材料化利用北京市重点实验室,岩石矿物材料国家专业实验室,北京 100083)摘要:以KH 570为改性剂,采用湿法改性的方法,在中性条件下对电气石进行表面改性,以改性产物的接触角和吸油值为参数,对改性的工艺条件进行了优化。

结果表明,在改性剂KH 570用量为0.12 mL/g 、醇水比为1:5时,在90℃下与10 g 电气石反应2 h 得到具有优良疏水性能的改性电气石,其接触角为93接。

采用IR 、XRD 、SEM 对改性电气石的结构与形貌进行了表征,结果表明,电气石经过改性后,表面成功地接入了含有双键的有机链,改性前后电气石的晶体结构没有发生变化,而改性后电气石的团聚现象大大降低,分散性增加。

关键词:电气石;KH 570;表面改性;可聚合有机化电气石doi:10.3969/j.issn.1000-6532.2021.01.032中图分类号:TD989 文献标志码:A 文章编号:1000-6532(2021)01-0193-06收稿日期:2019-08-27;改回日期:2019-09-24基金项目:国家自然科学基金赞助(51372233)作者简介:安文峰(1995-),男,在读硕士,研究方向为矿物表面改性及其功能聚合物的合成。

通讯作者:胡应模(1964-),男,教授,博导,研究方向为矿物材料的改性及其功能复合材料。

电气石是非金属矿物领域中较为重要的一类非可再生硅酸盐类矿物[1]。

它广泛分布于沉积岩、变质岩、火成岩、伟晶岩发育地区及气成高温热液矿床中,与绿柱石、黄玉、云母等矿物共生[2],因其所处环境的差异,其内部化学组成与结构差异也较大,一般来说,除硼元素外,还含有钠、镁、铝等其他金属元素[3]。

硅烷偶联剂a171,乙烯基三甲氧基硅烷可显著改善水性木器漆的附着力、光泽度、

硅烷偶联剂a171,乙烯基三甲氧基硅烷可显著改善水性木器漆的附着力、光泽度、

硅烷偶联剂a 171,乙烯基三甲氧基硅烷可显著改善水性木器漆的附着力、光泽度、在水性涂料中使用有机硅偶联剂助剂,可以显著的提高涂膜的流平性、爽滑性、光泽、防粘性、耐水性、耐化学品性、耐高温性、抗沾污性和耐印刷性等。

在水性木器涂料中有机硅的应用主要包括有机硅与树脂的物理混合和化学改性。

一种用于水性木器涂料助剂的改性有机硅聚合物,与水性木器涂料的相容性大大提高,能明显改善涂膜的流平性、润滑性、光泽、防粘连性和耐化学品性。

利用有机功能性硅烷(A-171)与乙烯基丙烯酸反应合成了稳定的有机硅丙烯酸酯乳液,该涂膜的耐甲乙酮擦洗性优异。

采用水解速度较慢的受阻乙烯基硅烷与丙烯酸进行乳液聚合,提高了有机硅接枝到丙烯酸树脂上的含量,改善了有机硅丙烯酸乳液的聚合稳定性和贮存稳定性,该乳液具有很好的耐酸碱、耐高低温及耐电解质稳定性。

水性聚氨酯和丙烯酸乳液是应用最多的两种水性木器涂料是涂料工业的新兴技术之一,尽管近年来得到了一定的发展,取得了相当不错的成绩,但是在生产技术和市场化等方面还有待进一步努力。

水性木器涂料的研究发展可从以下几方面着手:进一步完善和发展高性能无缺陷水性木器涂料体系;依靠分子设计和聚合物分子裁剪技术,在水性聚合物链上引入特殊功能结构的组分,如含氟、含硅聚合物,赋予聚合物涂膜多功能性;进一步开拓水性木器涂料市场。

随着对水性树脂结构、性能、成膜过程等的进一步研究,结合新的水性聚合物合成技术,水性木器涂料将会变得方便施工,涂膜性能易于设计和优化,以满足各种不同的用途。

进入21世纪,随着环保法规的进一步完善,以减轻地球负荷为目的,低VOC(挥发性有机化合物)或零VOC排放的新型涂料成为研发的热点。

水性木器涂料的研发更为引人注目随着人们环保、能源意识的增强,水性木器涂料得到迅猛的发展。

水性木器涂料中甲醛的含量要求都比较低,为此,如何选用水性木器涂料用树脂便成了关键,换句话说,水性木器涂料的配方和树脂要以此为基点,同时达到优异的性能和环保的规范要求。

硅烷偶联剂改性阳离子水性聚氨酯的研究

硅烷偶联剂改性阳离子水性聚氨酯的研究

硅烷偶联剂改性阳离子水性聚氨酯的研究叶锦刚;朱伟;张杰;汤嘉陵【摘要】Cationic waterborne polyurethane was hybrided by silane coupling agent KH550 as terminating agent and a new kind of silane coupling agent prepared by KH550 and KH560 via chemical reaction and physical blending, respectively. The structure, particle size, surface morphology was characterized by FTIR, size analyzar and AFM. The mechanical properties, water and solvent resistance of samples were also tested. The results confirmed the formation of SiO2 in the two systems and the diffusion of SiO2 in hybrid system was better than that in composite system. Chemical modification was better than physical blending on improvement of properties products.%以硅烷偶联剂γ-氨丙基三乙氧基硅烷(KH550)为封端剂对阳离子型水性聚氨酯进行杂化改性,并以KH550和γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)为原料合成新型偶联剂D,对聚氨酯进行复合改性,分别合成了纳米SiO2/PU杂化材料和纳米SiO2/PU复合材料.通过FT-IR、粒径分析、AFM对样品的结构进行表征,并对样品的力学性能和耐水性、耐溶剂性进行测试.结果表明:两种体系均生成了二氧化硅相,二氧化硅相在杂化体系中的分散性好于其在复合体系中的分散性.对提高产品性能而言,化学封端改性比物理共混改性更有效.【期刊名称】《涂料工业》【年(卷),期】2011(041)002【总页数】5页(P25-28,32)【关键词】阳离子型水性聚氨酯;硅烷偶联剂;纳米二氧化硅【作者】叶锦刚;朱伟;张杰;汤嘉陵【作者单位】四川大学高分子科学与工程学院,成都,610065;四川大学高分子科学与工程学院,成都,610065;四川大学高分子科学与工程学院,成都,610065;四川大学高分子科学与工程学院,成都,610065【正文语种】中文【中图分类】TQ630.4与溶剂型聚氨酯相比,水性聚氨酯具有较低的VOC含量和HAP(Hazardous Air Pollutant)值[1],符合环保的要求,因此愈来愈受到人们的青睐。

无机粉体的硅烷偶联剂改性

无机粉体的硅烷偶联剂改性

无机粉体的硅烷偶联剂改性硅烷偶联剂是一类具有特殊结构的低分子有机硅化合物,其通式为RSiX3,式中R代表与聚合物分子有亲和力或反应能力的活性官能团,如氧基、硫基、乙烯基、环氧基、酰胺基、氨丙基等;X代表能够水解的烷氧基,如卤素、烷氧基、酰氧基等。

在进行偶联时,首先X基与水形成硅醇,然后与无机粉体颗粒表面上的羟基反应,形成氢键并缩合成-SiO-M共价键(M表示无机粉体颗粒表面)。

同时,硅烷各分子的硅醇又相互缔合齐聚形成网状结构的膜覆盖在粉体颗粒表面,使无机粉体表面有机化。

1、硅烷偶联剂种类及适用对象(1)硅烷偶联剂种类根据分子结构中R基的不同,硅烷偶联剂可分为氨基硅烷、环氧基硅烷、硫基硅烷、甲基丙烯酰氧基硅烷、乙烯基硅烷、脲基硅烷以及异氰酸酯基硅烷等。

(2)硅烷偶联剂适用对象硅烷偶联剂可用于许多无机粉体,如填料或颜料的表面处理,其中对含硅酸成分较多的石英粉、玻璃纤维、白炭黑等效果最好,对高岭土、水合氧化铝、氧化镁等效果也比较好,对不含游离酸的钛酸钙效果欠佳。

(3)硅微偶联剂选择选择硅烷偶联剂对无机粉体进行表面改性处理时,一定要考虑聚合物基料的种类,也即一定要根据表面改性后无机粉体的应用对象和目的来仔细选择硅烷偶联剂。

2、硅烷偶联剂使用方法及用量(1)硅烷偶联剂使用方法:应用硅烷偶联剂的方法有两种:一种是将硅烷配成水溶液,用它处理无机粉体后再与有机高聚物或树脂基料混合,即预处理方法,该方法表面改性处理效果好,是常用的表面改性方法。

另一种方法是将硅烷与无机粉体(如填料或颜料)及有机高聚物基料混合,即迁移法。

多数硅烷偶联剂在使用之前要配成水溶液,即使其预先水解。

水解时间依硅烷偶联剂的品种和溶液的pH值不同而异,从几分钟到几十分钟不等。

配置时水溶液的pH值一般控制在3-5之间,pH值高于5或低于3将会促进聚合物的生成。

因此,已配置好的、已水解的硅烷偶联剂不能放置太久,否则会自行缩聚而失效。

(2)硅烷偶联剂用量计算:硅烷偶联剂用量与偶联剂的品种及填料的比面积有关,假设为单分子层吸附,可按下式进行计算:硅烷偶联剂用量=(填料质量×填料比表面积)/硅烷偶联剂最小包覆面积硅烷偶联剂最小包覆面积以硅烷偶联剂的品种不同而异。

硅烷偶联剂改性水性聚氨酯涂层[1]

硅烷偶联剂改性水性聚氨酯涂层[1]
联剂改性水性聚氨酯涂层
王 浩 1,唐黎明 1,陈久军 1,金凤友 2,刘利军2
(1.清华大学 化学工程系,北京 100084;2.绥化学院 实验中心,黑龙江 绥化 152061)
摘要 :合成了系列端酰肼基阴离子型水性聚氨酯,并用 GPC、IR 及 1H-NMR 分析其结构,通过其与硅烷偶联剂 γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷(KH 560)的室温固化反应,得到了性能优异的聚氨酯涂层。 关键词 :水性聚氨酯 ; 硅烷偶联剂 ; 室温固化 ; 涂层 中图分类号:TQ 637.0 文献标识码:B 文章编号:1004-1672(2006)04-0001-02 Modification of Water-Based Polyurethane Coatings with Silane Coupling Agent / Wang Hao et al // Department of Chemical Engineering, Tsinghua University A b s t r a c t : A series of water-based anionic polyurethanes with terminal hydrazide groups were synthesized and their struc- tures were analysed by GPC, IR and 1H-NMR. They were further cured with silane coupling agent γ-( 2,3-epoxy propoxy) propyltrimethoxysilicane (KH 560) at ambient temperature to form coatings of good performances. K e y W o r d s : water-based polyurethane; silane coupling agent; curing at ambient temperature; coating

硅烷偶联剂改性水性聚氨酯胶黏剂

硅烷偶联剂改性水性聚氨酯胶黏剂

硅烷偶联剂改性水性聚氨酯胶黏剂张大鹏何立凡王海侨李效玉( 北京化工大学碳纤维与功能高分子教育部重点实验室,北京 100029)摘要: 以聚已二酸-1,4-丁二醇酯( PBA2000) 、甲苯二异氰酸酯( TDI) 、二羟甲基丙酸( DMPA) 和一缩二乙二醇( DEG) 为原料合成了一种聚氨酯预聚体,通过在预聚体中引入可室温交联的硅烷偶联剂,制备得到了一种单组份自交联的水性聚氨酯胶黏剂。

探讨了硅烷偶联剂加入方式,用量对乳液及胶膜性能的影响。

结果表明: 当硅烷偶联剂用量为预聚体质量分数的 1. 5%时,胶黏剂对塑料薄膜 PET/CPP 的粘接强度显著提高,由改性前的 1. 3 N/15mm 增大至 1. 7 N /15 mm; 复合薄膜经过沸水煮后,T 剥离强度由 1. 0 N /15 mm 变为 1. 5 N /15 mm。

关键词: 水性聚氨酯; 复合薄膜; 硅烷偶联剂; 自交联中图分类号: TQ433. 4引言水性聚氨酯胶黏剂以其对各种薄膜广泛的适应性,胶膜优异的柔韧性,耐化学品性等特点而备受人们关注[1 -2]。

大多数水性聚氨酯胶膜遇水易溶胀,耐水性及耐热性不佳,限制了其使用场合[3 -4]。

提高聚氨酯的交联度是改善以上缺点的一个有效途径。

Lewandowski 等[5]向聚氨酯分子链中引入了硅烷衍生物,通过控制硅烷衍生物用量来控制交联结构的密度,适度的交联可以改善胶膜的耐水性和耐热性。

也有文献[6 -8]报导,将有机硅( 一般为端基或侧基带有活性基团的聚硅氧烷) 引入到聚氨酯分子链上可以有效地改善胶膜的耐水性和耐热性,但由于有机硅与聚氨酯相容性差,导致了胶膜力学性能的降低。

而使用小分子的硅烷偶联剂改性水性聚氨酯[9 -10]可以增加相容性,同时改善了聚氨酯胶膜的耐水性、耐热性。

此种交联体系在水性涂料以及双组分的水性胶黏剂中已经得到了广泛的应用[11]。

本文选用 3-氨基丙基三乙氧基硅烷( KH-550)对聚氨酯预聚体进行改性制备出单组份的水性聚氨酯乳液,将此体系引入到复合薄膜用胶黏剂领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

改性剂用量对沉降体积的影响改性剂用量与沉降体积的关系曲线,见图1。

从图1可看出,沉降体积随着改性剂用量的增加而增加,但是提高幅度不是很大。

在实际应用中真正起到改性作用的是少量的改性剂所形成的单分子层,因此过多的增加改性剂的用量是不必要的,不仅会在粒子间搭桥导致絮凝,使稳定性变差,而且还增加不必要的经济付出。

实验所选择的硅烷偶联剂的用量在1%~2%。

2.2 改性时间对沉降体积的影响实验结果见图2。

从图2可看出,当改性时间为10min时,沉降体积达到极大值,然后随着改性时间的增加,沉降体积缓慢下降。

在改性时间为30min 和60min时,均保持在一个相对稳定的水平。

但是改性时间为40min时出现异常,沉降体积大幅度下降。

硅烷偶联剂对高岭土进行表面改性,理论上以化学键合作用为主,改性效果不会出现较大的变化,出现异常的原因还有待进一步的研究。

2.3 改性温度对沉降体积的影响采用硅烷偶联剂作为改性剂时,为了保证较好的改性效果,需要确定适宜的表面改性温度。

改性温度对沉降体积的影响,见图3。

从图3可看出,沉降体积随改性温度的增加而增加。

当温度升高至90℃时,沉降体积达到最大值14.4ml。

继续提高温度,则沉降体积下降。

因此,改性剂对高岭土的最佳改性温度为90℃。

沉降性能分析称取2g改性前后的纳米高岭土,置于50ml液体石蜡中,磁力搅拌10min,倒入刻度试管,静置观察沉降性能。

纳米高岭土在液体石蜡中的沉降体积随时间的变化关系,见图4。

从图4可看出,未经改性的纳米高岭土由于表面具有亲水性,在有机相中倾向于团聚,大粒子沉降较快,小粒子被沉降较快的大粒子所夹带,所以在开始的时间内沉降很快,沉降速度随时间增加逐渐减慢;而高岭土经过改性处理后,表面呈现亲有机性,在有机相中倾向于分散均匀,所以在开始的时间内沉降速度较未改性高岭土慢。

随着沉降时间的增加,沉降体积均达到平衡。

未改性高岭土的平衡沉降体积为13.4ml,而经过硅烷偶联剂改性处理后,样品的平衡沉降体积为21.3ml。

在相同的实验条件下,沉积物的体积变大,说明改性高岭土在液体石蜡中的分散性和稳定性提高。

2.5 FT-IR分析硅烷偶联剂改性前后的纳米高岭土的红外吸收光谱,见图5。

从图5可看出,改性处理后,高岭土在2800cm-1~3000cm-1之间出现的微弱峰是-CH3 和-CH2 的伸缩振动吸收峰;在1120cm-1 ~1000cm-1之间的Si-O和Si-O-Si振动吸收区变宽,这是由于硅烷偶联剂与高岭土表面形成的R-Si-O-Si与高岭土的Si-O-Si振动吸收带重合所致;出现在1034cm-1处的Si-O的伸缩振动吸收峰移至1036cm-1处;在3670cm-1处的微弱的OH吸收峰消失,这是表面官能团化学键的振动模式受到影响的结果。

上述吸收峰的变化均说明硅烷偶联剂与高岭土发生了化学键合作用。

从表1可看出,硅烷偶联剂改性后,高岭土表面O元素的含量下降15.92%,C元素的含量为17.03%,而Si和Al元素的含量变化不大。

硅烷偶联剂改性前后纳米高岭土的C1s价带谱图,见图7。

从图7可知C1s峰发生偏移,在287.5eV附近出现C-O峰,另外,硅烷偶联剂引入了Si元素,其特征峰发生偏移,从102.35eV移至102.85eV,上述现象均说明硅烷偶联剂对于纳米高岭土的改性不是一种物理吸附而是一种化学键合作用。

相关文档
最新文档