iSIGHT优化设计—Optimization

合集下载

Isight-11-多学科设计优化-MDO-介绍

Isight-11-多学科设计优化-MDO-介绍

多学科设计优化—— 基本概念
• 多学科设计优化(Multidisciplinary Design Optimization) – 美国国家航空宇航局(NASA)Langley 研究中心的多学科分支机构 (MDOB)对多学科设计优化的定义如下: • Multidisciplinary Design Optimization (MDO) is a methodology for the design of complex engineering systems and subsystems that oherently exploits the synergism of mutually interacting phenomena. – 多学科设计优化是一种针对于涵盖多个学科领域的复杂系统进行设 计优化的方法,强调各学科子系统在独自设计优化的基础上的相互 之间的并行协作 – 多学科设计优化的主要思想是在复杂系统设计的整个过程中集成各 个学科的知识、分析不建模理论和计算方法,应用有效的设计优化 策略组织和管理计算过程,充分发挥学科与家的技术优势,通过实 现并行设计优化,获得系统的整体最优解
多学科设计优化—— 特点
• 按系统中各学科属性将复杂系统分解为子系统,其分解形 式不工业界通用的设计组织形式相一致
• 各子系统具有相对独立性,便于发挥学科与家在某一领域 的技术优势,应用适合于该学科的分析和优化工具进行建 模和优化,提高子系统分析求解的准确度和效率,同时便 于对学科优化设计模型进行调控
• 方法:通过学科级优化,采用松弛因子等方法实现系统级协调的方式 ,将多学科问题分解为系统级和学科级两层优化。
• 原理:协同优化算法的原理是将一复杂的目标函数分解成简单的子目 标函数,然后再将这些子目标函数进行协同优化。 – 基本思想是每个子空间在设计优化时可暂时丌考虑其它子空间的 影响,只需满足本子系统的约束,它的优化目标是使该子空间设计优 化方案不系统级优化提供的目标方案的差异最小 – 各个子系统设计优化结果的丌一致性,通过系统级优化来协调, 通过系统级优化和子系统优化之间的多次迭代,最终找到一个一致性 的最优设计

ISIGHT里面的优化方法

ISIGHT里面的优化方法

ISIGHT里面的优化方法大致可分为三类:1 数值优化方法数值优化方法通常假设设计空间是单峰值的,凸性的,连续的。

iSIGHT中有以下几种:(1)外点罚函数法(EP):外点罚函数法被广泛应用于约束优化问题。

此方法非常很可靠,通常能够在有最小值的情况下,相对容易地找到真正的目标值。

外点罚函数法可以通过使罚函数的值达到无穷值,把设计变量从不可行域拉回到可行域里,从而达到目标值。

(2)广义简约梯度法(LSGRG2):通常用广义简约梯度算法来解决非线性约束问题。

此算法同其他有效约束优化一样,可以在某方向微小位移下保持约束的有效性。

(3)广义虎克定律直接搜索法:此方法适用于在初始设计点周围的设计空间进行局部寻优。

它不要求目标函数的连续性。

因为算法不必求导,函数不需要是可微的。

另外,还提供收敛系数(rho),用来预计目标函数方程的数目,从而确保收敛性。

(4)可行方向法(CONMIN):可行方向法是一个直接数值优化方法,它可以直接在非线性的设计空间进行搜索。

它可以在搜索空间的某个方向上不断寻求最优解。

用数学方程描述如下:Design i = Design i-1 + A * Search Direction i方程中,i表示循环变量,A表示在某个空间搜索时决定的常数。

它的优点就是在保持解的可行性下降低了目标函数值。

这种方法可以快速地达到目标值并可以处理不等式约束。

缺点是目前还不能解决包含等式约束的优化问题。

(5)混合整型优化法(MOST):混合整型优化法首先假定优化问题的设计变量是连续的,并用序列二次规划法得到一个初始的优化解。

如果所有的设计变量是实型的,则优化过程停止。

否则,如果一些设计变量为整型或是离散型,那么这个初始优化解不能满足这些限制条件,需要对每一个非实型参数寻找一个设计点,该点满足非实型参数的限制条件。

这些限制条件被作为新的约束条件加入优化过程,重新优化产生一个新的优化解,迭代依次进行。

在优化过程中,非实型变量为重点考虑的对象,直到所有的限制条件都得到满足,优化过程结束,得到最优解。

ISIGHT工程优化案例分析

ISIGHT工程优化案例分析

iSIGHT工程优化实例分前言随着设备向大型化、高速化等方向的发展,我们的工业设备(如高速列出、战斗机等)的复杂程度已远超乎平常人的想象,装备设计不单要用到大量的人力,甚至已牵涉到了数十门学科。

例如,高速车辆设计就涉及通信、控制、计算机、电子、电气、液压、多体动力学、空气动力学、结构力学、接触力学、疲劳、可靠性、维修性、保障性、安全性、测试性等若干学科。

随着时代的进步,如今每个学科领域都形成了自己特有研究方法与发展思路,因此在设计中如何增加各学科间的沟通与联系,形成一个统一各学科的综合设计方法(或平台),成为工程和学术界所关注的重点。

多年来,国外已在该领域做了许多著有成效的研究工作,并开始了多学科优化设计方面的研究。

就国外的研究现状而言,目前已经实现了部分学科的综合优化设计,并开发出了如iSIGHT、Optimus等多学科商业优化软件。

iSIGHT是一个通过软件协同驱动产品设计优化的多学科优化平台,它可以将数字技术、推理技术和设计搜索技术有效融合,并把大量需要人工完成的工作由软件实现自动化处理。

iSIGHT软件可以集成仿真代码并提供智能设计支持,对多个设计方案进行评估和研究,从而大大缩短了产品的设计周期,显著地提高了产品质量和可靠性。

目前市面上还没有关于iSIGHT的指导书籍,而查阅软件自带的英文帮助文档,对许多国内用户而言尚有一定的难度。

基于以上现状,作者根据利用iSIGHT做工程项目的经验编写了这本《iSIGHT工程优化实例》。

本书分为优化基础、工程实例和答疑解惑三个部分,其中工程实例中给出了涉及铁路、航空方面多个工程案例,以真实的工程背景使作者在最短的时间内掌握这款优化的软件。

本书在编写的过程中,从互联网上引用了部分资料,在此对原作者表示衷心地感谢!我要真诚地感谢大连交通大学(原大连铁道学院)和王生武教授,是他们给了我学习、接触和使用iSIGHT软件机会!仅以本书献给所有关心我的人!赵怀瑞2007年08月于西南交通大学目录第一章认识iSIGHT (1)1.1 iSIGHT软件简介 (1)1.2 iSIGHT工作原理简介 (5)1.3 iSIGHT结构层次 (6)第二章结构优化设计理论基础 (8)2.1 优化设计与数值分析的关系 (8)2.2 优化设计基本概念 (8)2.3 优化模型分类 (10)2.4 常用优化算法 (11)2.5大型结构优化策略与方法 (25)第三章iSIGHT软件界面与菜单介绍 (32)3.1 iSIGHT软件的启动 (32)3. 2 iSIGHT软件图形界面总论 (32)3.3 任务管理界面 (36)3.4 过程集成界面 (43)3.5 文件分析界面 (46)3.6 过程监控界面 (49)3.4 多学一招—C语言的格式化输入/输出 (53)第四章iSIGHT优化入门 (54)4.1 iSIGHT优化基本问题 (54)4.2 iSIGHT集成优化的一般步骤 (54)4.3 iSIGHT优化入门—水杯优化 (55)第五章模压强化工艺优化 (76)5.1 工程背景与概述 (76)5.2 优化问题描述 (76)5.3 集成软件的选择 (77)5.4有限元计算模型介绍 (77)5.5 模压强化优化模型 (78)5.8 iSIGHT集成优化 (81)5.9优化结果及其分析 (88)5.10 工程优化点评与提高 (89)第六章单梁起重机结构优化设计 (90)6.1 工程与概述 (90)6.2 优化问题描述 (90)6.3 集成软件的选择 (91)6.4起重机主梁校核有限元计算模型介绍 (92)6.5 主梁优化模型 (92)6.8 iSIGHT集成优化 (94)6.9优化结果及其分析 (99)6.10 工程优化点评与提高 (100)6.11 多学一招—ANSYS中结果输出方法 (100)第七章涡轮增压器压气机叶片优化设................................................... 错误!未定义书签。

Isight优化算法之——混合整型优化法

Isight优化算法之——混合整型优化法

Isight优化算法之——混合整型优化法混合整型优化⽅法-MOST⾸先认定所给的设计问题是连续的,并使⽤连续⼆次规划法得到⼀个初始的峰值。

如果所有的设计变量都是实数型的,优化过程停⽌。

否则,对每⼀个⾮实数型参数寻找⼀个最近的设计点,该点满⾜⾮实数型参数的限制条件。

这些峰值作为新的迭代的起始点。

在这个过程中,连续的⾮实数型参数被作为重点考虑的对象,直到所有的限制条件都得到满⾜,优化过程结束。

混合整型优化-MOST技术起源于⼀个优化包,MOST(Multifunctional Optimization System Tool)。

MOST结合了⽤来解决实值问题的连续⼆次规划优化、处理整数型和离散型参数的⼀个分歧定限法(branch-and-bound)外部回路、处理多⽬标问题的⼀系列标准程序、和让⽤户提供梯度的能⼒。

这个优化包的界⾯⽀持除了多⽬标优化问题之外的所有特性。

这些特性的组合使⽤这种技术类似连续⼆次规划-DONLP或连续⼆次规划-NLPQL和逐次逼近法的组合。

这种技术从忽略设计变量的所有整数型和离散型限制开始,并且在连续设计空间上应⽤了SQP。

开始时提出⼀个优化值的初始值X。

如果所有的设计变量事实上是实数型的,那么X很可能不能满⾜那些限制。

在这种情况下,这种技术会应⽤⼀个分歧定限法搜索来找到适合限制的点。

分歧定限过程开始时独⽴地考虑整数型和离散型的设计变量。

典型的情况下,设计变量v的值xv会处在两个允许的值当中(例如,如果v的值必须是个整数,对于⼀些N来说是N和N 1)。

这个技术通过把xv放置在这些允许的值当中来构建两个设计点x‘和x’‘,评估这两个点,并且不管哪⼀个⽣成更好的⽬标值都先将它们放在⼀边。

在这个分⽀过程结束的时候,会积累下⼀个满⾜⼀个整数型或离散型变量限制的⼀个新序列。

然后,将每个分⽀点依次处理,通过应⽤每个整数型或离散型的值作为⼀个新的输⼊约束来限定问题,并且重新进⾏完整的分歧定限法循环,从分⽀点开始。

基于iSIGHT的多学科设计优化技术研究与应用

基于iSIGHT的多学科设计优化技术研究与应用

基于iS IGHT 的多学科设计优化技术研究与应用泰山石膏股份有限公司 任 利 山东农业大学机械与电子工程学院 邵园园临沂师范学院工程学院 韩 虎 摘 要:阐述了多学科设计优化技术,在iSI GHT 、Pr o /E 和Ansys 软件集成环境下,对轴承座进行多学科设计优化。

并对在单学科设计优化和多学科设计优化的环境下得到的优化结果进行了比较,得出了多学科设计优化结果更加有效地达到了优化目标的结论。

关键词:多学科设计优化;iSI GHT;软件集成Abstract:The technol ogy of multidisci p linary design op ti m izati on is elaborated 1Bearing bl ock multidisci p linary de 2sign op ti m izati on is conducted under the integrated envir on ment of iSI GHT,Pr o /E and Ansys,and the op ti m izati on result is better than that fr om single -disci p linary design op ti m izati on 1Keywords:multidisci p linary design op ti m izati on;iSI GHT;s oft w are integrati on1 多学科设计优化技术多学科设计优化(Multidisci p linary Design Op 2ti m izati on -MDO )是当前国际上飞行器设计研究中一个最新、最活跃的领域。

按照Jar osla w Sobieszczanski -Sobieski 的看法[1],MDO 是用于进行系统设计的方法,这种系统包括多个相互耦合的学科,设计师可以在这些学科上显著地影响系统的性能。

达索系统SIMULIA平台多参多学科优化软件Isight

达索系统SIMULIA平台多参多学科优化软件Isight

达索系统SIMULIA平台多参多学科优化软件Isight国内CAE仿真经过近二十年的发展,企业目前已不仅仅关注仿真本身,而是更多的考虑以下的三大领域:(1) 关注点从一般仿真分析向优化分析的过渡;(2) CAE仿真分析专业化,规范化和流程化;(3) CAE仿真分析问题的复杂化,涉及跨领域多学科复合问题。

我们将对上述三点分别进行解说。

1.1 从仿真分析到优化的过渡对于现今机械行业的从业人员来说,计算机辅助仿真分析方法已经被大家熟知并被广泛应用于各行各业,以实现仿真数字样机虚拟试验替代物理样机真实试验的最终目标。

随着国内CAE仿真分析水平的提升,在仿真分析方法和模式已经比较成熟的基础上,为了更有效的应用仿真分析结果,达到仿真分析结果指导产品设计的目的,优化方法和相应优化软件逐渐被引入到CAE部门的工作环节中。

如何应用优化软件搭建优化流程,以及通过什么样的优化方法和模式实现优化过程,成为很多企业CAE团队关注的问题。

根据上述需求,达索系统提供了Isight软件,作为多参数多学科优化工具平台,可以结合仿真分析工具(例如ABAQUS)实现仿真优化流程的搭建,解决产品设计与仿真联合优化的问题。

1.2 仿真规范化和流程化随着企业CAE团队的日益壮大与成熟,以及仿真数据的积累,这些企业都对仿真规范流程的搭建提出了迫切需求。

如今高性能计算资源极大丰富,并且可预见到在不久的将来量子计算机的发展和实用化将会带来计算资源的飞跃式增长。

对于CAE行业来说,计算机硬件将不再是仿真分析的瓶颈与桎梏,而大量的仿真模型处理任务和大量的待处理仿真数据将成为CAE团队的极大负担。

首先,如何将仿真流程规范化;其次,如何结合软件工具将相应流程固化;最终,如何尽可能使仿真流程自动化。

以上三点已经成为CAE行业想要发展壮大必须解决的问题。

在Isight中,我们可以通过有机的组合应用流程组件和应用组件创建仿真流程模板,通过源生应用组件和二次开发实现与第三方软件之间的调用和信息交互,通过Isight丰富的开发接口创建和开发仿真模板和定制模块。

iSIGHT优化技术

iSIGHT优化技术
二、 优化技术的分类
21
本部分对 iSIGHT 中每种优化技术进行简要的介绍。 iSIGHT 中的优化技术分为三类: l 数值型优化技术(Numerical Optimization Techniques) l 探索型优化技术(Exploratory Techniques) l 专家系统技术(Expert System Techniques) 这些优化技术如下所示:
其中,J 是起作用和冲突的约束的集合
Φ 是一个大的正数 Θ j 是约束的一个偏离因子 对于起作用的约束 Θ j = 0 对于冲突的约束 Θ j > 0
起作用和冲突的约束如下确定:
如果 CT ≤ g j (x) ≤ CTMIN , g j (x) 是起作用的 如果 g j (x) > CTMIN , g j (x) 冲突
这种技术使用广义既约梯度法解决约束非线性优化问题。既约梯度法是目前求解非线性 优化问题的最有效的方法之一。这种方法使用一种搜索方向,在这个方向上对于一些小偏移 所有约束都仍然起作用。同时这种方法通过消去某些变量在降维空间中的运算,能够较快的 确定最优解,可用来求解大型的问题。
广义既约梯度法有如下特性: l 适合于非线性的设计空间; l 不适合不连续的设计空间; l 在初始设计点周围遍寻局部空间; l 依照起作用的约束来优化设计; l 直接处理不等和等式约束。 LSGRG2 用一般既约梯度算法来解决约束非线性优化问题。算法用一条使得活动约束仍 在小偏移上起作用的搜索路径。广义既约梯度方法是对原始的既约梯度法的扩展。这个扩展 包括在每一个不等约束上加上一个松弛变量:
次的迭代中将原问题在 X i 处以一阶泰勒级数展开。如此反复,以线性规划问题去近似非线
性规划问题,希望每次迭代得到的新的设计点都比前一个设计点更接近原问题的最优点。而 在新的设计点上的近似子问题,也愈来愈接近原非线性问题最优点的附近区域。最终线性规 划问题的最优点可以以很高的精度接近原问题的最优点。

基于iSIGHT的多学科设计优化平台的研究与实现

基于iSIGHT的多学科设计优化平台的研究与实现

基于iSIGHT的多学科设计优化平台的研究与实现一、本文概述随着现代工程技术的快速发展,产品设计的复杂性日益增加,涉及多个学科领域的知识和技术。

这种复杂性要求设计师在设计过程中必须考虑多种因素,如性能、成本、可靠性、可制造性等,从而实现整体最优设计。

然而,传统的设计优化方法往往只能针对单一学科进行优化,难以处理多学科之间的耦合和冲突。

因此,开发一种基于多学科设计优化(MDO)的平台,对于提高产品设计的质量和效率具有重要意义。

本文旨在研究并实现一种基于iSIGHT的多学科设计优化平台。

iSIGHT作为一种先进的优化算法平台,具有强大的优化求解能力和丰富的优化算法库,为多学科设计优化提供了有力支持。

本文将首先介绍多学科设计优化的基本原理和方法,然后详细阐述基于iSIGHT 的多学科设计优化平台的架构、功能和技术实现,并通过具体案例验证平台的可行性和有效性。

通过本文的研究和实现,旨在为设计师提供一个高效、可靠的多学科设计优化工具,帮助他们在设计过程中综合考虑多个学科因素,实现整体最优设计。

本文也希望为相关领域的研究者和技术人员提供一些有益的参考和启示,推动多学科设计优化技术的发展和应用。

二、多学科设计优化概述随着现代工程技术的不断发展和复杂性的增加,传统的单学科设计优化方法已经无法满足许多复杂系统的设计要求。

因此,多学科设计优化(MDO,Multidisciplinary Design Optimization)应运而生,它通过将不同学科的知识、方法和工具集成在一起,实现复杂系统整体性能的最优化。

MDO旨在解决在产品设计过程中出现的跨学科耦合问题,以提高产品的设计质量和效率。

MDO的核心思想是在产品设计阶段就考虑不同学科之间的相互影响和约束,通过协同优化各个学科的设计参数,实现整个系统的全局最优。

这种方法能够有效地减少设计迭代次数,缩短产品开发周期,并降低成本。

同时,MDO还能够提高产品的综合性能,使其在满足各项性能指标要求的同时,达到最优的整体效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

iSIGHT优化设计—Optimization 1 概述
1.1 传统劳动密集型的人工设计
1.2 iSIGHT智能软件机器人驱动的设计优化
1.3 优化问题特征
(1)约束
(3)非线性
(6)组合问题
(7)优化问题按特征分类
对优化设计的研究不断证实,没有任何单一的优化技术可以适用于所有设计问题。

实际上,单一的优化技术甚至可能无法很好地解决一个设计问题。

不同优化技术的组合最有可能发现最优设计。

优化设计极大地依赖于起始点的选择,设计空间本身的性质(如线形、非线形、连续、离散、变量数、约束等等)。

iSIGHT 就此问题提供两种解决方案。

第一,iSIGHT 提供完备的优化工具集,用户可交互式选用并可针对特定问题进行定制。

第二,也是更重要的,iSIGHT 提供一种多学科优化操作模式,以便把所有的优化算法有机组合起来,解决复杂的优化设计问题。

2 优化算法概述
iSIGHT 包含的优化方法可以分为四大类:数值优化、全局探索法、启发式优化法和多目标多准则优化算法。

数值优化(如爬山法)一般假设设计空间是单峰的,凸起的和连续的,本质
上是一种局部优化技术。

全局探索技术则避免了局限于局部区域,一般通过评估整个设计空间的设计点来寻找全局最优。

启发式技术是按用户定义的参数特性和交叉影响方向寻找最优方案。

多目标优化则需要权衡,iSIGHT 正是提供了一种易于使用的多目标准则权衡分析框架。

另外自iSIGHT v9.0 开始新增加了Pointer 优化器,它是GA、MPQL、N-M 单纯形法以及线性单纯形法的组合。

iSIGHT 包含的具体算法按分类列表如下:
2.1 数值方法
iSIGHT 纳入了十二种数值优化算法。

其中八种是直接法,在数学搜索过程中直接处理约束条件。

而Exterior Penalty 方法和Hooke-Jeeves 方法是罚函数法,它们通过在目标函数中引入罚函数将约束问题转化为无约束问题。

2.2 全局探索法
iSIGHT 全局探索法包括遗传算法和模拟退火算法,它们不受凸(凹)面性、光滑性或设计空间连续性的限制。

在iSIGHT 遗传算法中,初始设计种群通过选择、杂交、突变等遗传操作得
到进化,新的设计种群根据适者生存的法则从上一代种群中挑选出来。

具有批量评估功能的遗传算法会收集受扰动的种群子集,集中地成组传送给iSIGHT 进行评估,而不是一次一个的评估,从而极大地提高了评估种群的效率,比如多岛遗传算法。

与其他遗传算法一样,多岛遗传算法也是根据目标函数和约束条件对每个设计点进行评估,但不同的是,多岛遗传算法将设计种群分解为子种群,也称为“岛”。

部分个体会在各“岛”之间定期进行迁移。

这种迁移操作通常会使多岛遗传算法
比其他遗传算法更加高效。

iSIGHT 中的模拟退火技术是一种自适应模拟退火算法。

这种算法模仿金属的退火过程,当金属冷却时分子会从高能级向低能级跃迁,但偶尔一个分子会跳回高能级状态。

与此类似,当这一算法开始向一个解收敛时,偶尔会跳出这一趋势去尝试一个设计变量数值完全不同的设计点。

2.3 启发式搜索
定向启发式搜索(DHS)技术是一种iSIGHT 软件(受专利保护)的特有算法,它根据用户在如右图所示的相关表中提供的信息对设计参数进行操作。

在该图中,用户对每一个参数和其特性进行描述,告诉DHS如何按一种与其大小量级以及影响力相一致的方式调整设计变量。

通过告诉优化引擎怎样改变设计变量,用户可以有效地将大部分冗余设计点从设计空间剔除。

因为这个原因,当参数的关系确定后,DHS 可以比标准数学优化技术更高效地进行设计探索。

2.4 多目标多准则优化算法
优化按照优化目标的个数分为单目标优化和多目标优化。

实际的优化问题很少是单目标的,比如,追求高性价比就是要求在成本低的同时质量好,是两个目标优化的问题。

多目标优化是提高产品竞争力的重要手段。

多目标优化需要权衡。

iSIGHT 提供了一种易于使用的图形界面驱动的多准则权衡分析框架。

工程师需要不断重复的过程——一点一点放宽约束条件从而得到一条最优设计方案的权衡曲线,在iSIGHT 中可以实现完全的自动化。

对于如何调整各个设计准则从而在所有的设计准则间产生一个平衡得最好的设计方案,多准则权衡分析可以提供非常有价值的信息。

2.5 Pointer全能优化器
Pointer 全能优化器让工程师无需了解优化算法,只需在优化某问题之前对优化器进行相似问题求解训练,当优化器了解该问题的求解经验后,便能组合使用四种优化算法快速优化这一类设计问题,得到高效的优化结果。

Pointer Optimizer 可以控制4 种优化算法的组合:
1、对线性问题:
线性单纯形法Linear Simplex
高效解决线性问题
2、对光滑连续问题:
序列二次规划的Schittowski 版本:NLPQL
具有非常好的收敛性和数值稳定性
3、对非光滑连续问题:
Nelder-Mead 下降单纯形法
具有非常好的效率
4、对全局问题、非连续、函数特征复杂的问题:
遗传算法(Professor Schwefel, Dr. Mathias Hadenfeld)
具有很好全局性,具有普适性,但是计算时间长。

2.6 多学科优化
在现实的工程设计问题中,不同学科不同子系统之间的高度耦合是很常见的。

例如在下图所示的飞机系统设计中,气动系统将载荷传给结构系统,这些载荷导致结构变形并反馈回气动系统,然而,载荷同时也是结构变形的函数,因此对每种设计方案的评估都需要在这两个系统之间进行迭代。

一个结构系统性能最好的设计方案未必会满足气动系统的要求,反之亦然,因此,不同设计目标之间存在着冲突。

类似的关系在控制系统与结构系统,控制系统与气动系统之间也存在。

这种不同学科设计目标之间的冲突问题,以及设计方案的权衡问题通常是在会议室里解决的,这里,不同的学科的代表陈述他们的方案,并声明为什么他们的要求应该是整个系统设计的原始驱动力。

这种过程不仅耗时、低效,而且常常导致折衷设计,而不是优化设计。

为解决这些问题,有必要对不同工程或科学规律进行有效集成,以获知和平衡它们之间的相互关系。

iSIGHT 提供的多学科优化框架,多层次的任务机制,以及MDOL 语言,可以很方便地进行这种继承和优化。

具体的特征包括:
1、框架结构
易于进行系统分解和创建子任务
主任务和子任务参数系统的匹配
2、流程定义
灵活的优化问题定义
近似方法
组合优化策略
3、运行机制
优化算法的分布和并行
设计任务的分布和并行
仿真软件的并行计算
iSIGHT 包括多种任务分解,任务求解和任务协同的多学科优化设计策略,并已在许多工程和研究项目中得到验证和应用。

这些策略如上图所示。

相关文档
最新文档