3.14 高斯光束的聚焦与准直资料
合集下载
激光原理-(9)-高斯光束

ω ( z ) ω 0,z ⇒ R( z ) θ 0 2. 任一 坐标 z 处的光斑半径 ω ( z )及等相面曲率半径 R( z )
ω 0(或共焦参量 f )与腰位置 z
ω ( z )
ω 0 ⇒ R( z ) z
NJUPT
高斯光束的 q 参数(复曲率半径)
x2 + y2 ω0 x2 + y2 exp − 2 ) − ϕ ( z ) u00 ( x , = y, z ) c exp − i k ( z + 2 R( z ) ω(z) ω (z)
第4章 高斯光束
NJUPT
高斯光束
高斯光束:所有可能存在的激光波型的概称。 理论和实践已证明,在可能存在的激光束形式中, 最重要且最具典型意义的就是基模高斯光束。 无论是方形镜腔还是圆形镜腔,基模在横截面上的光 强分布为一圆斑,中心处光强最强,向边缘方向光强 逐渐减弱,呈高斯型分布。因此,将基模激光束称为 “高斯光束”。
1 A B TF = = 1 C D − F 0 1
F
AR1 + B R2 = CR1 + D
(遵循ABCD变换法则) NJUPT
高斯光束q参数的变换规律——ABCD公式
在自由空间的传播 束腰处:
1 自由空间变换矩阵: TL = 0
πω 0 2 = = if = i z 0,q(0) λ
πω λ
2
1
B A+ R 1 R2 = B A+ C + R1
πω1 2 B + λ 2 2 D πω1 + BD R1 λ
第8章高斯光束

l2 f 2
f
2
1
l f
(3) F 1 R(l) 1 (l f 2 )时,
2
2l
(4)F
时,
w0 w0
1
lim w0 lim
F
w F 0
F (l F )2 f 2
lim F
1
1
(l
- F)2 F
f F
2 2
w0 1 w0
w0 w0
1
l f
2
1
RR
2
F
25
结论
只有 F 1 R(l) ,才有聚焦作用
F15 q
五、透镜对高斯光束的变换规律
q=l+if q=-l+if
q Fq Fq
q、q:透镜处物、像高斯光束q参数
l、l :物、像高斯光束腰到透镜距离
f、f :物像高斯光束焦参数
q q
f(w0)
O
f(w0) Z
O
l F l
16
例1 某高斯光束焦参数为f=1m,将焦距F=1m 的凸透镜置於其腰右方l=2m处,求经透镜变换 后的像光束的焦参数f及其腰距透镜的距离l
解 (1)
0
f
f
02
3.14 106 3.14 106
1m
z=0.5m
q(z) பைடு நூலகம் if 0.5 i(m)
(2)
w(z) w0
1
z2 f2
w0
1
0.52 12
1.12mm
f2
12
R(z) z 0.5 2.5m
z
0.5
8
例8-2 高斯光束在某处的光斑半径为w=1mm, 等相
优选高斯光束和准直器简介

典型光学系统的变换矩阵
q参数的变换规律—ABCD公式
• 基模高斯光束经过任意光学系统服从所谓的ABCD公 式:
q2
(z)
Aq1 (z) Cq1 (z)
B D
其中 CADB 为光学系统对伴轴光线的变换矩阵。
高斯光束的准直
高斯光束的准直—准直器简介
• 直接从普通单模光纤出射的高斯光束,由于其束腰太 小,因此瑞利距离太短,发散角太大,在应用中,我 们通常需要将其准直。
• 可通过调节准直器的后截距调节准直器的工作距离和束腰大小。
– 目前准直器的调节方法可分为master法和反射法; – 反射法对准直器的束腰控制方法有两种:单点反射和两点反射;
高斯光束耦合
两种光无源器件的制作工艺
公司目前存在两种无源器件的制作工艺,一种是焊接工 艺,另一种是全胶工艺。这两种工艺最直观的区别是所 用的调节架是不一样的,注意观察一下,主要有两个区 别:
1、全胶用的调节架是三维的,焊接用的调节架是五维的 ; 2、全胶用的调节架调节精度是0.5um的,焊接用的是 10um
为什么会有这些区别? 需要从基模高斯光束的耦合来解释。
高斯光束的四种耦合失配及其效率
q2
q3
w02
z2
参数说明: q0 – 光纤端面q值;q1 – c-lens平面前表面q值; q2 – c-lens球面后表面q值;q3 –出射光束腰处q值; W01 /w02 – 入/出射光束腰; L – c-lens 的长度; R – c-lens 的曲率半径;n – c-lens的折射率; 取原点在光纤端面,光传输方向为正方向; 准直器的工作距离为2z2。
无源器件上。
基模高斯光束的一般表达式
Z轴方向传播的基模高斯光束均可表示为如下的一般形式:
高斯光束的聚焦和准直课件

高斯光束的参数如束腰半径、波长等 也会影响准直效果。
光学元件质量
透镜、反射镜等光学元件的质量对准 直效果有重要影响,如光学元件的加 工精度、表面质量等。
04
高斯光束聚焦和准直的应用
光学通信
总结词
高斯光束的聚焦和准直技术在光学通信领域具有广泛应用,能够实现高速、高效 、远距离的光信号传输。
详细描述
实时处理能力
对于动态变化的光束,需要具备实 时处理能力,以便快速响应和调整 。
研究方向
新型光学元件研究
研究新型的光学元件,以提高光 束的聚焦和准直精度。
光束质量提升技术
研究提高光束质量的方法和技术 ,以满足各种应用需求。
实时控制系统
研究实时的光学控制系统,以快 速响应和调整光束。
发展前景
应用领域拓展
比较不同聚焦透镜和不同输入光束参 数对聚焦效果的影响,得出结论和建 议。
06
高斯光束聚焦和准直的未来 发展
技术挑战
高精度控制
高斯光束的聚焦和准直需要高精 度的光学元件和控制系统,以实
现光束的稳定和精确控制。
光束质量提高
目前的高斯光束聚焦和准直技术受 到光束质量的限制,如何提高光束 质量是未来的一个重要挑战。
减小。
高斯光束的应用
1 2
3
激光加工
高斯光束可被用于激光切割、打标和焊接等加工领域。
光学测量
高斯光束可被用于光学测量领域,如干涉仪、光谱仪和全息 术等。
光学通信
高斯光束在光纤通信中用作信号传输的光源,具有传输损耗 低、信号稳定等优点。
02
高斯光束的聚焦
聚焦原理
高斯光束的聚焦是指将发散的高 斯光束通过透镜或反射镜系统, 使其在空间上形成一个能量集中
激光原理与技术 第7讲 高斯光束的聚焦和准直

激光原理与技术
第七讲 高斯光束的聚焦、准直
7.1 高斯光束通过薄透镜的变换
已知入射高斯光束束腰半径为0,束腰位置与透镜的距离为l,
透镜的焦距为F,各参数相互关系如下图,则有:
z
0处:q 0
q0
i
02
在B面处: q
1
B
q
1
A
1 F
在A面处:q A q0 l 在C面处:q C q B lC
研究其规律:
1
02
1
02
1
l F
2
f2
F
2
d dl
2 0
02
2 F2
l
F
d0
dl
03 02 F
2
F
l
7
7.2 高斯光束的聚焦
A、l F:
d0
dl
03 02 F
2
F
l
0
0 将随着l的减小而减小,
因此当l 0时有最小值:
此时像方高斯光束束腰位置:l
lC
F
F2 0 F 0 F 2 f 2
4
7.1 高斯光束通过薄透镜的变换
当不满足以上条件时,则不能套用几何光学的结论。
当l F时,可以求出l F,此时物方、像方高斯光束的束腰都位于 焦点处,这与几何光学中平行光成像于无穷远处的结论不相符。
当l F时,l仍可解出大于零的解。 例如当时l 0,即入射的物方高斯光束的束腰位于透镜上,可以得到:
2
0 F l k 0 l F l
几何光学薄透 镜成像垂轴
放大率公式
束腰半径是高斯光束所有光斑半径的最小值,可以将其类比为几何光学中
光束的焦点,在满足假设条件的情况下,物方、像方高斯光束经过薄透镜
第七讲 高斯光束的聚焦、准直
7.1 高斯光束通过薄透镜的变换
已知入射高斯光束束腰半径为0,束腰位置与透镜的距离为l,
透镜的焦距为F,各参数相互关系如下图,则有:
z
0处:q 0
q0
i
02
在B面处: q
1
B
q
1
A
1 F
在A面处:q A q0 l 在C面处:q C q B lC
研究其规律:
1
02
1
02
1
l F
2
f2
F
2
d dl
2 0
02
2 F2
l
F
d0
dl
03 02 F
2
F
l
7
7.2 高斯光束的聚焦
A、l F:
d0
dl
03 02 F
2
F
l
0
0 将随着l的减小而减小,
因此当l 0时有最小值:
此时像方高斯光束束腰位置:l
lC
F
F2 0 F 0 F 2 f 2
4
7.1 高斯光束通过薄透镜的变换
当不满足以上条件时,则不能套用几何光学的结论。
当l F时,可以求出l F,此时物方、像方高斯光束的束腰都位于 焦点处,这与几何光学中平行光成像于无穷远处的结论不相符。
当l F时,l仍可解出大于零的解。 例如当时l 0,即入射的物方高斯光束的束腰位于透镜上,可以得到:
2
0 F l k 0 l F l
几何光学薄透 镜成像垂轴
放大率公式
束腰半径是高斯光束所有光斑半径的最小值,可以将其类比为几何光学中
光束的焦点,在满足假设条件的情况下,物方、像方高斯光束经过薄透镜
高斯光束-聚焦与准直

2 2
高斯光束的聚焦
F f
ω0 ' ω0
(2)F< f
ω0 ' ω0
1 F f
1
f 1+ ( F ) 2
2
1
有:
ω0' =1 ω0
ω0
0
F− F − f2
F
F+ F2 −f 2
l
结论: ①若F< f,总有聚焦作用 ②若F > f,只有
l < F − F2 − f 2
1
f 1+( F) 2
证:令 ω
'
(2)
① ②
+ z2 =1 f
1 1 1 1− i 1 1 1 λ (= )= = = − i (= − ) q z + if 1+ i 2 2 2 R πω 2 2λ 1 λ 1 1 ω= = = π πω 2 2 R 2
R = 2m
=
2 × 3 .14 × 10 − 6 = 1 .414 mm 3 .14
ω0' 有极大值 ω0
ω0' = ω0
1 1 + ( )2 f
F =l+
f2 l
高斯光束的聚焦 将 F =l+
代入
ω0' = ω0
ω0' = ω0
f 2 l2 + f 2 = l l F (l − F ) 2 + f 2
2 2
(3) F = R(l ) = (l + (4)F →∞时,
l + f l f4 + f l2
λ z2 (f + ) π f
2 2
R( z ) = z +
高斯光束的聚焦
F f
ω0 ' ω0
(2)F< f
ω0 ' ω0
1 F f
1
f 1+ ( F ) 2
2
1
有:
ω0' =1 ω0
ω0
0
F− F − f2
F
F+ F2 −f 2
l
结论: ①若F< f,总有聚焦作用 ②若F > f,只有
l < F − F2 − f 2
1
f 1+( F) 2
证:令 ω
'
(2)
① ②
+ z2 =1 f
1 1 1 1− i 1 1 1 λ (= )= = = − i (= − ) q z + if 1+ i 2 2 2 R πω 2 2λ 1 λ 1 1 ω= = = π πω 2 2 R 2
R = 2m
=
2 × 3 .14 × 10 − 6 = 1 .414 mm 3 .14
ω0' 有极大值 ω0
ω0' = ω0
1 1 + ( )2 f
F =l+
f2 l
高斯光束的聚焦 将 F =l+
代入
ω0' = ω0
ω0' = ω0
f 2 l2 + f 2 = l l F (l − F ) 2 + f 2
2 2
(3) F = R(l ) = (l + (4)F →∞时,
l + f l f4 + f l2
λ z2 (f + ) π f
2 2
R( z ) = z +
高斯光束与准直器简介

Z A = 2πp −3 8.14 ×10 −3 N 0 = 1.5868 + λ2 5.364 ×10 −3 2.626 ×10 − 4 A = 0.3238 + + 2 λ λ4
• 其中 为透镜周期,透射端与反射端的G-lens周期 分别为 其中p为透镜周期,透射端与反射端的 周期p分别为 为透镜周期 周期 0.23与0.25 与
角度失配 径向失配 轴向失配 模场失配
光无源器件中高斯光束耦合损耗分析
LOSS = −10 logη
按照光无源器件的各项公差的影响来看: • 束腰大小在10um左右的高斯光束(光纤出光) – 轴向失配>径向失配>角度失配 • 束腰大小在300um左右的高斯光束(准直器出 光) – 角度失配>径向失配>轴向失配
称矩阵M为介质的传输矩阵。
傍轴子午光学系统的传输矩阵
• 若光线连续通过传输矩阵为M1,M2…Mn的光学 系统 rn r0 = Mn …… M 2 ⋅ M 1⋅ θ θ n 0
即整个光学系统的传输矩阵M=Mn×…M2×M1 已知入射光线的离轴距离和入射角,通过传输矩 阵追踪光线传输性质的模拟方法,称为光路追迹。
• C-lens
– 聚焦方式:球面 – 长度和后截距互相制约 – 一致性差,价格低,替代0.23 p G-lens
Grin lens 光学特性
Ar 2 N (r ) = N 0 (1 − ) 2
C-lens准直器 lens准直器
• C-Lens的参数(SF11) Lens的参数(SF11) 的参数
AB 其中 为前面提到的光学系统对伴轴光线的传输矩阵。 C D
准直器的q 准直器的q传输图示
高斯光束

2)当场振幅为轴上( x2 y 2 0 )的值的e-1倍,即强度为轴上的值的e-2倍时, 所对应的横向距离 z 即z 处截面内基模的有效截面半径为;
z f w0 , w z w0 1 f 3)共焦场中等相位面的分布如图所示。
2
x2 y 2 1 z 00 ( x, y , z ) k z tg 2 R (z ) f 2 w2 2 f 0 R z z 1 z z z
2
f R (z) z z
2
3、q参数
(1)定义 (2)计算
1 1 i 2 q(z) R (z) w ( z )
w02 if 束腰位置处 z 0 ,有 q0 i
q (z) z if
禳 镲1 1 = Re 镲 睚 镲 R( z ) q( z ) 镲 铪 禳 镲 1 1 镲 = p / l Im 睚 镲 w2 ( z ) q( z ) 镲 铪
1 1 1 3.14 10 i 2 i 2i 3 2 q R w 0.5 3.14 (10 ) 1 2i 2i q 0.4 0.2i (m) 2 i 4 1 5
6
(2)
w( z ) w0 1
2
z z ( f ) 2 f f
2r 2 I (r ) I 0 exp 2
r2 A(r ) A0 exp 2
P T P
I (r )2 rdrd 1 exp 2 I (r )2 rdrd 孔径半径 a
1. 高斯光束在其轴线附近可看作是一种非均匀高斯
球面波,
2.在其传播过程中曲率中心不断改变
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 0' 2
1
02
0
R(l ) / 2
R (l )
F
一、高斯光束的聚焦
2. l一定时,ω0’随F 的变化情况 表明,当l一定时,透镜的焦距只有小于光束 在透镜处波阵面曲率半径的一半时,透镜对高斯 光束才有聚焦作用。
一、高斯光束的聚焦
例题1:波长为3.14微米的高斯光束,束腰半径1 毫米,使用焦距F=0.1m的透镜对它进行聚焦, 分别将透镜置于束腰处、距离束腰2m处,求:聚 焦后的束腰半径及位置。
1 03 F2 f1 2 F2 f1 2 M ' 1 ( ) 1 ( ) 2 3 01 01 F1 f1 F1
F2 F1 2 F2 1 ( ) M F1 f1 F1 F2 M (几何压缩比) F1
二、高斯光束的准直
3. l1>>F1时,利用望l一定时,ω0’随F 的变化情况
1 2 0'
1
02
0
R(l ) / 2
R (l )
F
一、高斯光束的聚焦
2. l一定时,ω0’随F 的变化情况
令式中0 0' F 2 (l F ) 2 f 2 l 2 F 2 2lF f 2 1 f2 1 F (l ) R(l ) 2 l 2 R(l )为透镜处波阵面的曲率半径, 1 1 1 当F R (l )时, 2 2 , 即0 ' 0 2 0 ' 0
一、高斯光束的聚焦
② 当 l >>F 时,有:
02 F 02 F F 0 ' 2 2 2 f (l ) 0 (l ) l 2 l f (l ) f 0 1 ( ) f
lF 2 l' F 2 F 2 l f
0 F
02 F
式中ω(l)为入射光束在透镜处的光斑尺寸, 在l>>F 情况下,焦斑半径与波长与透镜焦距成正 比,而与透镜处的光斑尺寸成反比。
F1 02 , l1 ' F1 F1 2 f1 2 1 ( ) 1 ( ) f1 F1
01
(短焦距)
l2=F2时,
F2 F2 F2 03 02 1 f2 02 01
f1 2 F1
二、高斯光束的准直
2. l1=0情况下,利用望远镜准直高斯光束 望远镜对高斯光束的准直倍率为:
一、高斯光束的聚焦
例题2:波长为3.14微米的高斯光束,束腰半径1 毫米,分别将透镜置于束腰处、距离束腰2m处, 问:使用多大焦距的透镜对它有聚焦作用?
二、高斯光束的准直
1. 单透镜对高斯光束发散角的影响 θ-物高斯光束发散角,θ’-像高斯光束发散角。
2 0 ' 0 2 0 ' ' '0 若0 ' 0 (聚焦情况), ' 发散角更大了; 只有0 ' 0 (扩束情况),才有 ' 准直。
二、高斯光束的准直
当0'达到极大值时, '达到极小。 什么条件下,0'达到极大值? l F时,0'极大, F 此时,0 ' 0 F , 代入上式得: f 0
' 0 02 ,可见: 0 ' F ()在 1 l F 条件下,0 ' 极小,因而 ' 可达到极大;
(2)F越大, ' 越小; (3)0 越小, ' 越小;
二、高斯光束的准直
(4)一个启示:
如果预先用一个短焦距的透镜将高斯光束聚焦,
得到一个小的腰斑,然后再用一个长焦距透镜来改
善其方向性,就可以得到很好的准直效果。
二、高斯光束的准直
二、高斯光束的准直
2. l1=0情况下,利用望远镜准直高斯光束
所以: 2 02 2 3 F1 03 F2 F2 (l1 ) 2 F1 2 F2 (l1 )
二、高斯光束的准直
3. l1>>F1时,利用望远镜准直高斯光束 望远镜对高斯光束的准直倍率为:
1 2 (l1 ) F2 M ' 3 01 2 F1
3.14 高斯光束的聚焦与准直
高斯光束的聚焦与准直
聚焦: 经过光学系统(透镜)使高斯光束的腰斑变小, (需要研究ω0’、l、F的变化规律) 准直: 利用光学系统改善光束的方向性(压缩束散
角),这个问题通常称为高斯光束的准直问题。
一、高斯光束的聚焦
(l F ) F 2 l' F (l F ) 2 f 2 F 0 ' 0 (l F ) 2 f 2
F2 (l1 ) F2 l1 2 1 ( ) F1 01 F1 f1 l1 2 M 1 ( ) , f1 F2 M (几何压缩比) F1
二、高斯光束的准直
一般情况下,因为ω(l1)>ω01,因而望远镜对高斯 光束的准直倍率M’总是比它对普通傍轴光学的几 何压缩比要高。
02 f
一、高斯光束的聚焦
1. F一定时,ω0’随l的变化情况 (1)l<F情况 ① ω0’随l减小而减小;②当l=0时, ω0’最小。
一、高斯光束的聚焦
②当l=0时, ω0’最小,此时:
0 ' 0
f 2 1 ( ) F F l' F F 2 1 ( ) f 0
可见,当l=0时, ω0’总比ω0小,因而不论透镜焦 距F多大,它都有一定的聚焦作用,并且像方腰 斑位置处在前焦点以内。
一、高斯光束的聚焦
(2)l=F 情况,此时:
F 0 ' 0 f l' F
只有F<f(短焦距)时,透镜才有聚焦作用。 (3)l>F 情况,此时: ① ω0’随 l 增大而减小;
1
2 F1条件下)
01 2 2 ,02 F1 (在l1 02 (l1 )
F2 3 ,03 02 , 03 f2 2
2 02 ( f2 )
F2 02
(l2 F2情况)
二、高斯光束的准直
3. l1>>F1时,利用望远镜准直高斯光束
1
02
0
R(l ) / 2
R (l )
F
一、高斯光束的聚焦
2. l一定时,ω0’随F 的变化情况 表明,当l一定时,透镜的焦距只有小于光束 在透镜处波阵面曲率半径的一半时,透镜对高斯 光束才有聚焦作用。
一、高斯光束的聚焦
例题1:波长为3.14微米的高斯光束,束腰半径1 毫米,使用焦距F=0.1m的透镜对它进行聚焦, 分别将透镜置于束腰处、距离束腰2m处,求:聚 焦后的束腰半径及位置。
1 03 F2 f1 2 F2 f1 2 M ' 1 ( ) 1 ( ) 2 3 01 01 F1 f1 F1
F2 F1 2 F2 1 ( ) M F1 f1 F1 F2 M (几何压缩比) F1
二、高斯光束的准直
3. l1>>F1时,利用望l一定时,ω0’随F 的变化情况
1 2 0'
1
02
0
R(l ) / 2
R (l )
F
一、高斯光束的聚焦
2. l一定时,ω0’随F 的变化情况
令式中0 0' F 2 (l F ) 2 f 2 l 2 F 2 2lF f 2 1 f2 1 F (l ) R(l ) 2 l 2 R(l )为透镜处波阵面的曲率半径, 1 1 1 当F R (l )时, 2 2 , 即0 ' 0 2 0 ' 0
一、高斯光束的聚焦
② 当 l >>F 时,有:
02 F 02 F F 0 ' 2 2 2 f (l ) 0 (l ) l 2 l f (l ) f 0 1 ( ) f
lF 2 l' F 2 F 2 l f
0 F
02 F
式中ω(l)为入射光束在透镜处的光斑尺寸, 在l>>F 情况下,焦斑半径与波长与透镜焦距成正 比,而与透镜处的光斑尺寸成反比。
F1 02 , l1 ' F1 F1 2 f1 2 1 ( ) 1 ( ) f1 F1
01
(短焦距)
l2=F2时,
F2 F2 F2 03 02 1 f2 02 01
f1 2 F1
二、高斯光束的准直
2. l1=0情况下,利用望远镜准直高斯光束 望远镜对高斯光束的准直倍率为:
一、高斯光束的聚焦
例题2:波长为3.14微米的高斯光束,束腰半径1 毫米,分别将透镜置于束腰处、距离束腰2m处, 问:使用多大焦距的透镜对它有聚焦作用?
二、高斯光束的准直
1. 单透镜对高斯光束发散角的影响 θ-物高斯光束发散角,θ’-像高斯光束发散角。
2 0 ' 0 2 0 ' ' '0 若0 ' 0 (聚焦情况), ' 发散角更大了; 只有0 ' 0 (扩束情况),才有 ' 准直。
二、高斯光束的准直
当0'达到极大值时, '达到极小。 什么条件下,0'达到极大值? l F时,0'极大, F 此时,0 ' 0 F , 代入上式得: f 0
' 0 02 ,可见: 0 ' F ()在 1 l F 条件下,0 ' 极小,因而 ' 可达到极大;
(2)F越大, ' 越小; (3)0 越小, ' 越小;
二、高斯光束的准直
(4)一个启示:
如果预先用一个短焦距的透镜将高斯光束聚焦,
得到一个小的腰斑,然后再用一个长焦距透镜来改
善其方向性,就可以得到很好的准直效果。
二、高斯光束的准直
二、高斯光束的准直
2. l1=0情况下,利用望远镜准直高斯光束
所以: 2 02 2 3 F1 03 F2 F2 (l1 ) 2 F1 2 F2 (l1 )
二、高斯光束的准直
3. l1>>F1时,利用望远镜准直高斯光束 望远镜对高斯光束的准直倍率为:
1 2 (l1 ) F2 M ' 3 01 2 F1
3.14 高斯光束的聚焦与准直
高斯光束的聚焦与准直
聚焦: 经过光学系统(透镜)使高斯光束的腰斑变小, (需要研究ω0’、l、F的变化规律) 准直: 利用光学系统改善光束的方向性(压缩束散
角),这个问题通常称为高斯光束的准直问题。
一、高斯光束的聚焦
(l F ) F 2 l' F (l F ) 2 f 2 F 0 ' 0 (l F ) 2 f 2
F2 (l1 ) F2 l1 2 1 ( ) F1 01 F1 f1 l1 2 M 1 ( ) , f1 F2 M (几何压缩比) F1
二、高斯光束的准直
一般情况下,因为ω(l1)>ω01,因而望远镜对高斯 光束的准直倍率M’总是比它对普通傍轴光学的几 何压缩比要高。
02 f
一、高斯光束的聚焦
1. F一定时,ω0’随l的变化情况 (1)l<F情况 ① ω0’随l减小而减小;②当l=0时, ω0’最小。
一、高斯光束的聚焦
②当l=0时, ω0’最小,此时:
0 ' 0
f 2 1 ( ) F F l' F F 2 1 ( ) f 0
可见,当l=0时, ω0’总比ω0小,因而不论透镜焦 距F多大,它都有一定的聚焦作用,并且像方腰 斑位置处在前焦点以内。
一、高斯光束的聚焦
(2)l=F 情况,此时:
F 0 ' 0 f l' F
只有F<f(短焦距)时,透镜才有聚焦作用。 (3)l>F 情况,此时: ① ω0’随 l 增大而减小;
1
2 F1条件下)
01 2 2 ,02 F1 (在l1 02 (l1 )
F2 3 ,03 02 , 03 f2 2
2 02 ( f2 )
F2 02
(l2 F2情况)
二、高斯光束的准直
3. l1>>F1时,利用望远镜准直高斯光束