自动化检测技术与装置实验指导书doc
检测技术与自动化装置

method线性系统理论Linear systemtheory362秋机器人控制与自主系统Robotic control and autonomous system543春计算机控制理论与应用Computer control system theory and itsapplication543春自动测试理论Automatic measurement theory543春运筹学Operation research543秋系统工程理论与应用System engineering theoryand its applications543春复杂系统建模与仿真Modeling andsimulation of complex systems543秋非学位课现代控制理论专题Special topicof modern control theory362鲁棒控制系统Robust control systems362春最优控制Optimal control362春自适应控制Adaptive Control362春最优估计与系统辨识Optimal estimate and system identification362春过程控制Process control362秋非线性控制系统Nonlinear control systems362春离散事件动态系统Discrete eventdynamic systems362春PETRI网Petri net362秋人工智能原理及应用Artificial intelligence theoryand its applications362春智能化方法与技术Intelligent method and technology362模糊理论与应用Fuzzy theoryand applications362春模糊逻辑控制系统Fuzzy logic control system362春人工神经网络Artificial neural network362秋遗传算法与进化算法Genetic and evolutional algorithm362春实时控制系统Real-time control systems362秋机器人视觉Robotic visio362春nMAT L AB系统分析语言及应用MATLAB and its ToolboxApplication in Analysis and Design ofControl Systems362计算机网络与Internet/Intran et Computer Network and Internet/Intranet362秋现代检测技术Modern detection and measurement technology362秋多传感器融合理论与应用Multi-sensorsdata fusion theory and application362秋分布式计算机控制系统Distributed computer control system362春控制网络与现场总线Control net and field bus technology362秋模糊与神经网络工程导论Introduction to fuzzy andANN engineering362秋数字系统故障诊断技术Fault diagnosis technologyfor digital systems362秋智能化仪表truments362秋交流传动系统及控制AC Drive Control Theoryand System362春现代电力电子学Modern Power Electronics362秋电磁兼容性技术EMC Thechnology362春制造工业自动化设备与系统The Production Equipmentand System for Factory and WorkshopAutomation362计算机集成制造系统设计与实施概论Introduction to Design andImplement of Computer Integrated Manufacturing System362企业运营管理Enterprise Management362柔性制造自动化的原理与实践The Principleand Practiceof FlexibleManufacturingAutomation3628中国科学技术大学A16北京理工大学A24太原理工大学AB+等(36个):南昌航空工业学院、北京化工大学、四川大学、长春理工大学、合肥工业大学、中国矿业大学、南京航空航天大学、燕山大学、北京邮电大学、重庆大学、桂林工学院、山东大学、广东工业大学、湖南大学、武汉工程大学、河北工业大学、大连海事大学、武汉理工大学、北方工业大学、西安理工大学、重庆邮电大学、北京交通大学、上海理工大学、南京林业大学、杭州电子科技大学、华侨大学、上海大学、长春工业大学、沈阳理工大学、南京农业大学、浙江工业大学、安徽工业大学、中山大学、江南大学、山东轻工业学院、上海海事大学B等(36个):郑州大学、西安电子科技大学、西安工程大学、哈尔滨理工大学、河南大学、北京信息科技大学、河海大学、安徽大学、武汉大学、中北大学、广西大学、山东建筑大学、安徽工程科技学院、长江大学、长安大学、山东科技大学、东北电力大学、天津理工大学、青岛科技大学、兰州交通大学、华东交通大学、天津科技大学、西安科技大学、厦门大学、兰州理工大学、河北大学、西南科技大学、中国地质大学、北京工商大学、东华大学、南华大学、西安工业大学、中国石油大学、河南理工大学、沈阳化工学院、辽宁石油化工大学C等(25个):名单略。
AOI作业指导书

AOI作业指导书一、引言AOI(Automated Optical Inspection)自动光学检测是一种广泛应用于电子创造业的自动化检测技术。
本作业指导书旨在提供AOI作业的详细指导,以确保操作人员能够正确、高效地进行AOI检测。
二、设备准备1. 确保AOI设备处于正常工作状态,包括供电、通电、软件运行等。
2. 检查AOI设备上的镜头、光源等部件是否干净,如有污垢应及时清理。
3. 确保待检测的电子产品已经通过前序工序的生产流程,无明显的缺陷或者损伤。
三、操作流程1. 打开AOI软件,并登录操作账号。
2. 创建新的作业任务,输入相关信息,如产品名称、批次号、操作员等。
3. 设定AOI检测参数,包括亮度、对照度、增益等,根据实际情况进行调整。
4. 将待检测的电子产品放置在AOI设备的工作台上,确保产品位置准确。
5. 点击开始检测按钮,AOI设备会自动开始对产品进行光学检测。
6. 检测完成后,AOI软件会生成检测报告,显示产品的缺陷、位置等信息。
7. 检查检测报告,对于有缺陷的产品,进行分类标记或者处理。
8. 将检测通过的产品移至下一个工序或者包装区域,将有缺陷的产品进行修复或者报废处理。
9. 完成作业任务后,及时关闭AOI设备和软件。
四、注意事项1. 操作人员应熟悉AOI设备的使用方法和操作流程,确保操作的准确性和稳定性。
2. 在操作过程中,应注意保持工作环境的整洁,防止灰尘、杂物等对检测结果的影响。
3. 定期对AOI设备进行维护和保养,清洁镜头、光源等部件,确保设备的正常运行。
4. 如遇到异常情况或者设备故障,应及时住手作业并联系维修人员进行处理。
5. 检测报告应妥善保存,以备后续分析和追溯使用。
五、数据统计与分析1. 根据作业任务的要求,统计并记录检测通过和不通过的产品数量。
2. 对于不通过的产品,分析其缺陷类型、位置等信息,找出问题原因并采取相应的改进措施。
3. 定期汇总和分析AOI检测数据,评估设备的性能和作业的效率,提出改进建议。
单相智能电能表自动化检定装置技术规范书

单相智能费控电能表自动化检定装置技术规书甲方:乙方:2014年9月1日1 适用围本技术协议适用**单相智能电能表检定装置的招标、检验、验收等工作。
本技术协议规定了单相智能电能表检定装置的性能构造、安全防护、技术要求、验收、安装调试、运行维护以及技术服务等方面要求。
2 规性引用文件单相智能电能表检定装置(以下简称装置)的功能和技术条件应符合以下现行有效的国际、国家标准、检定规程、行业标准和企业标准的有关规定。
下列文件中的条款通过本规的引用而成为本规的条款,其随后所有的修改单、勘误容以及其最新版本均适用于本规。
除本规中规定的技术参数和要求外,其余均应遵循最新版本的国家标准、检定规程、电力行业标准和企业标准。
JJG596-2012 电子式电能表检定规程JJG597-2005 交流电能表检定装置检定规程GB/T11150-2001 电能表检验装置DL/T 460-2005电能表检验装置检定规程JJG307-2006 机电式交流电能表检定规程GB/T17215.211-2006 《交流电测量设备通用要求》试验和试验条件第11部分:测量设备GB/T17215.301-2007《多功能电能表特殊要求》GB/T17215.321-2008 《交流电测量设备特殊要求》第21部分:静止式有功电能表(1级和2级)GB/T 15284-2002 《多费率电能表特殊要求》DL/T614-2007 多功能电能表DL/T645-2007 多功能电能表通信规则IEC62052和IEC62053以及有关IEC规Q/GDW 354-2009《智能电能表功能规》Q/GDW 355-2009《单相智能电能表型式规》Q/GDW 364-2009《单相智能电能表技术规》Q/GDW 365-2009《智能电能表信息交换安全认证技术规》3 术语和定义本技术协议使用引用文件中给出的相关术语和定义。
4 技术要求装置具备自动压接功能。
被检电能表进入测试位置后,装置通过电动执行机构实现端子的自动插接。
(2014春版)《现代检测技术》实验指导书

《现代检测技术》实验指导书李学聪冯燕编广东工业大学自动化学院二0一四年二月实验一 热电偶测温及校验一、 实验目的1.了解热电偶的结构及测温工作原理;2.掌握热电偶校验的基本方法;3.学习如何定期检验热电偶误差,判断是否及格。
二、 实验内容和要求观察热电偶,了解温控电加热器工作原理; 通过对K 型热电偶的测温和校验,了解热电偶的结构及测温工作原理;掌握热电偶的校验的基本方法;学习如何定期检验热电偶误差,判断是否合格。
三、 实验主要仪器设备和材料1. CSY2001B 型传感器系统综合实验台(下称主机) 1台2. 温度传感器实验模块 1块3. 热电偶镍铬 ― 镍硅热电偶(K,作被校热电偶) 1支 镍铬 ― 锰白铜热电偶(E,作控温及标准热电偶) 1支4. 213位数字万用表 1只四、 实验方法、步骤及结果测试1.观察热电偶,了解温控电加热器工作原理。
①拿起热电偶并握紧黑柄,然后旋开热电偶的金属保护套,缓慢抽出,观察热电偶的外形。
观察完后,将其旋紧并注意不可以让热电偶和金属保护套接触。
②温控器:作为热源的温度指示、控制、定温之用。
温度调节方式为时间比例式,绿灯亮时表示继电器吸合电炉加热,红灯亮时加热炉断电。
2.仪器连线(如图1所示)① 首先将综合实验台的电源开关置“关”, 然后将电源插头(实验桌前面)和加热炉电源插座插入综合实验台面板上的“220V 加热电源出”处;② 将热电偶工作端插进温度传感器实验模块上的加热炉炉膛内, E 和K 分度热电偶的冷端按极性(注意区分“+”和“—”)分别接在“温控”和“测试”端。
3.开启电源 将综合实验台和加热炉的电源开关打“开”。
4.设定温度和测量数据将功能开关置“设定”,调节旋钮设定温度为50℃, 然后将开关拨至“测量”位置;当炉温达到设定值时, 等待3―5分钟炉温恒定后,分别测量“温控”和“测试”的电压(开关保持在“温控”状态),交互测量四次,把输出的热电势记录于表2中。
清华自动化系检测技术系列实验Asi部分实验报告

清华自动化系检测技术系列实验Asi部分实验报告实验名称:清华自动化系检测技术系列实验Asi部分实验报告一、引言在清华自动化系检测技术系列实验中,Asi部分是其中的一个重要实验。
本实验报告旨在详细描述实验的目的、原理、实验步骤、实验结果和分析,以及对实验过程中遇到的问题的讨论和解决方法。
二、实验目的本实验的主要目的是研究Asi(Analog System Interface)的基本原理和应用。
通过实验,我们将了解Asi的工作原理、信号传输特性,并能够使用Asi进行模拟信号的采集和处理。
三、实验原理Asi是一种用于模拟信号采集和处理的接口技术。
它通过将模拟信号转换为数字信号,并进行适当的处理,实现对模拟信号的测量、控制和监测。
Asi的基本原理包括信号采样、模数转换、数字信号处理和数据传输等。
四、实验设备和材料本实验所需的设备和材料如下:1. Asi接口卡:用于连接计算机和模拟信号源,实现信号的采集和处理。
2. 模拟信号源:用于产生模拟信号,供Asi接口卡采集和处理。
3. 计算机:用于控制Asi接口卡,进行数据采集和处理。
五、实验步骤1. 连接实验设备:将Asi接口卡连接到计算机,并将模拟信号源与Asi接口卡相连。
2. 软件设置:启动Asi接口卡的控制软件,并进行相应的设置,包括采样率、数据格式等。
3. 信号采集:使用Asi接口卡采集模拟信号,并将采集到的数据传输到计算机。
4. 数据处理:对采集到的数据进行处理,包括滤波、放大、频谱分析等。
5. 结果分析:根据处理后的数据,分析信号的特征和变化规律。
6. 实验记录:记录实验过程中的关键步骤、数据和结果,以备后续分析和报告。
六、实验结果和分析在本次实验中,我们成功采集了模拟信号,并进行了相应的处理和分析。
通过对采集到的数据进行滤波和频谱分析,我们得到了信号的频谱特征和频率分布情况。
进一步分析发现,信号存在一定的周期性和噪声干扰,需要采取适当的处理方法进行去噪和降低干扰。
检测技术与自动化仪表课程设计指导书

《传感器与检测技术》课程设计一.课程设计目的课程设计的目的是使学生能够将《传感器与检测技术》课程的内容有机的联系起来,形成系统的概念,培养学生综合应用知识的能力,掌握智能检测(或仪表)系统设计的基本思想和方法。
二.设计方法(一)智能化测量控制仪表的总体设计在设计一台智能化测量控制仪表时,首先要进行仪表的总体设计。
在课程设计中要考虑以下两点。
1.从整体到局部(自顶向下)的设计原则开始时,根据仪表功能和设计要求提出仪表设计的总任务,分别并绘制硬件和软件总框图,然后将总任务分解成一批可以独立表征的子任务,这些子任务再向下分,直到每个低级的子任务足够的简单,可以直接而且容易实现为止。
这些低级子任务可用模块化的方法来实现,有些子任务可以采用某些通用化的模块(模件)实现。
2.经济性要求为了获得较高的性能价格比,设计仪表时不应盲目地追求复杂高级的方案。
在满足性能指标的前提下,应尽可能采用简单的方案,因为方案简单意味着元器件少,可靠性高,从而也比较经济。
在进行实际的产品设计时,还应考虑仪表的可靠性要求、操作和维护的要求等。
(二)智能化测量控制仪表的硬件电路设计1.单片机芯片的选择课题中指定在MCS-51系列单片机中选择机种。
选择时,应考虑单片机的时钟频率、内部程序存储器和数据存储器容量、片内功能部件,以及相关的技术支持等因素。
2.存储器设计如果仪表中所涉及的程序或者数据量使单片机内部存储器难以满足要求时,应设计片外存储器。
3.输入/输出接口的设计单片机从测量环节或者说前向通道(包括A/D转换器和输入电路)输入测量信息、从键盘输入仪表需要的各种数据和信息(如功能选择,量程范围、阈值等)以及向显示器输出测量结果、仪表的工作状态(如报警信息)都需要通过接口电路实现,因此要设计相应的接口电路。
4.测量部分的设计测量部分通常由两大部分组成,即模拟测量部分和A/D转换器。
模拟测量部分如传感器、传感器测量电路、信号放大电路、滤波电路以及其它的信号调理电路都是一些独立的模块或组件,如果已有相应的模块芯片出售,设计时只要选用合适(符合技术要求)的芯片即可;如果没有相应的模块供应,则在设计时要根据仪表的技术指标,自行设计这些组件。
自动化仪表中的计量检测技术分析

自动化仪表中的计量检测技术分析摘要:计量是检测技术的重要手段之一。
然而,随着科学技术的不断发展,对检测装置提出了更高的要求。
随着社会经济的快速发展,很多高校都会加大对仪表装置的投资和购置,以提高实验的效率,促进教学水平的提高。
为了保证教学质量,一些高校还采用了引进的方法。
另外,对仪表装置的检测进行管理也是十分重要的。
关键词:计量检测;管理策略;工作流程1以计量检测为基础的管理目标1.1加强高校实验教学质量加强对自动化仪表检测技术的研究,对提升其在相关专业招生中的竞争力具有重要意义。
不同院校在开展相关专业实验教学时,不仅在专业人才、实验质量上存在着较大的竞争,而且在实验手段上也有较大的差异。
因此,加强对电子仪表装置的检测工作,提升学校实验室业务素质,增强学校招生竞争能力的一项重要措施。
为了保证管理工作的顺利进行,各高校实验室都十分重视对检测仪表装置的质量,加强对人员的管理,从而不断地提升实验技术。
另外,在计量管理工作中,也能通过计量检测,找出各类安全隐患。
比如仪表的指针转动有问题,内部接线不牢固等。
有关管理者应尽量降低对仪表检测的人为影响,尽量使用先进的检测技术,提高计量检测的精度,这样才能给高校实验室更多的发展机遇,使高校实验室的总体仪表计量能力得到提高,为有关产业输送更多高素质的人才。
1.2如何提高检测的准确性自动化仪表是一种非常重要的检测装置,它的好坏对检测结果的准确性有很大的影响。
尤其进入了新世纪,各行各业都需要更高的计量精度。
本项目的实施,不仅可以提升高校实验室的地位,也可以为自动化仪表的应用理念提供有力支撑,解决因检测精度不高而影响仪表实际应用的问题。
所以,如何保证其在计量工作中充分发挥其优越性,就成为计量与检测仪表管理的重要目的。
通过对其进行检测,可使其准确度得到适当的提高,从而使其符合试验检测工作的实际要求。
温度计和压力传感器是目前最常见的一种自动化仪表,它们的检测精度对检测结果的可信度有很大影响。
CS2000DCS实验指导书

五.实验内容步骤
1)对象的连接和检查:
(1)将CS2000 实验对象的储水箱灌满水(至最高高度)。
(2)打开以水泵、电动调节阀、孔板流量计组成的动力支路至上水箱的出水阀门.关闭动力支路上通往其他对象的切换阀门。
如图2-1所示:这是由两个一阶非周期惯性环节串联起来,输出量是下水箱的水位h2。当输入量有一个阶跃增加 Q1时,输出量变化的反应曲线如图2-2所示的 h2曲线。它不再是简单的指数曲线,而是就使调节对象的飞升特性在时间上更加落后一步。在图中S形曲线的拐点P上作切线,它在时间轴上截出一段时间OA。这段时间可以近似地衡量由于多了一个容量而使飞升过程向后推迟的程度,因此,称容量滞后,通常以τC代表之。设流量Q1为双容水箱的输入量,下水箱的液位高度h2为输出量,根据物料动态平衡关系,并考虑到液体传输过程中的时延,其传递函数为:
CS2000实验对象的检测及执行装置包括:
检测装置:扩散硅压力变送器。分别用来检测上水箱、下水箱液位的压力;孔板流量计、涡轮流量计分别用来检测单相水泵支路流量和变频器动力支路流量;Pt100热电阻温度传感器分别用来检测锅炉内胆、锅炉夹套和强制对流换热器冷水出口、热水出口。
执行装置:单相可控硅移相调压装置用来调节单相电加热管的工作电压;电动调节阀调节管道出水量;变频器调节副回路水泵的工作电压。
二.实验设备
CS2000型过程控制实验装置, PC机,DCS控制系统与监控软件。
三、系统结构框图
单容水箱如图1-1所示:
图1-1、 单容水箱系统结构图
四、实验原理
阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验目录实验一金属箔式应变片——单臂性能实验实验二金属箔式应变片——半桥性能实验实验三金属箔式应变片——全桥性能实验实验四金属箔式应变片——电子秤实验实验五差动变压器的性能测定实验六电容式传感器的位移特性实验实验七直流激励时霍尔传感器位移特性实验实验八热敏电阻的特性研究实验九光电二极管和光敏电阻的特性研究附录1 实验箱温度控制简要原理附录2 温度控制器使用说明实验一 金属箔式应变片——单臂电桥性能实验一、 实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、 基本原理:金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。
金属的电阻表达式为: Sl R ρ= (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ∆,横截面积相应减小S ∆,电阻率因晶格变化等因素的影响而改变ρ∆,故引起电阻值变化R ∆。
对式(1)全微分,并用相对变化量来表示,则有:ρρ∆+∆-∆=∆S S l l R R (2) 式中的l l ∆为电阻丝的轴向应变,用ε表示,常用单位με(1με=1×mmmm 610-)。
若径向应变为r r ∆,电阻丝的纵向伸长和横向收缩的关系用泊松比μ表示为)(ll r r ∆-=∆μ,因为S S ∆=2(r r ∆),则(2)式可以写成:ll k l l l l l l R R ∆=∆∆∆++=∆++∆=∆02121)()(ρρμρρμ (3) 式(3)为“应变效应”的表达式。
0k 称金属电阻的灵敏系数,从式(3)可见,0k 受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是)(ρερ∆,是材料的电阻率ρ随应变引起的(称“压阻效应”)。
对于金属材料而言,以前者为主,则μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。
实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。
通常金属丝的灵敏系数0k =2左右。
用应变片测量受力时,将应变片粘贴于被测对象表面上。
在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。
通过转换电路转换为相应的电压或电流的变化,根据(3)式,可以得到被测对象的应变值ε,而根据应力应变关系εσE = (4)式中 σ——测试的应力;E——材料弹性模量。
可以测得应力值σ。
通过弹性敏感元件,将位移、力、力矩、加速度、压力等物理量转换为应变,因此可以用应变片测量上述各量,从而做成各种应变式传感器。
电阻应变片可分为金属丝式应变片,金属箔式应变片,金属薄膜应变片。
三、需用器件与单元:应变式传感器实验模板、砝码、数显表、±15V电源、±5V电源、万用表(自备)。
四、实验内容与步骤:1、应变片的安装位置如图(1-1)所示,应变式传感器已装到应变传感器模块上。
传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。
可用万用表进行测量,R1=R2=R3=R4=350Ω。
R1R2R4R3图1-1 应变式传感器安装示意图2、接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,顺时针调节Rw2使之大致位于中间位置,再进行差动放大器调零,方法为:将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器Rw3,使数显表显示为零,(数显表的切换开关打到2V档)。
关闭主控箱电源。
(注意:当Rw2的位置一旦确定,就不能改变。
)3、按图1-2将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥,(R5、R6、R7模块内已接好),接好电桥调零电位器Rw1,接上桥路电源±5V,此时应将±5V地与±15V地短接(因为不共地)如图1-2所示。
检查接线无误后,合上主控箱电源开关。
调节Rw1,使数显表显示为零。
4、在砝码盘上放置一只砝码,读取数显表数值,以后每次增加一个砝码并读取相应的数显表值,直到200g砝码加完。
记下实验结果填入表1-1,关闭电源。
图1-2 应变式传感器单臂电桥实验接线图重量(g)电压(mv)(输出电压的变化量,重量变化量)和非线性误差δf1=Δm/y FS ×100%式中m∆(多次测量时为平均值)为输出值与拟合直线的最大偏差:y FS满量程输出平均值,此处为200g.五、实验注意事项:1、不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。
2、电桥的电压为±5V,绝不可错接成±15V,否则可能烧毁应变片。
六、思考题:1、单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以。
七、实验报告要求:1、记录实验数据,并绘制出单臂电桥时传感器的特性曲线。
2、从理论上分析产生非线性误差的原因。
实验二 金属箔式应变片——半桥性能实验一、实验目的:1、了解半桥的工作原理。
2、比较半桥与单臂电桥的不同性能、了解其特点。
二、基本原理:把不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。
当应变片阻值和应变量相同时,其桥路输出电压U O2=EG ε/2。
式中E 为电桥供电电压。
三、需用器件与单元:应变式传感器实验模板、砝码、数显表、±15V 电源、±5V 电源。
四、实验内容与步骤:1、接入模板电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,进行差动放大器调零,方法为:将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi 相连,调节实验模板上调零电位器Rw3,使数显表显示为零,(数显表的切换开关打到2V 档)。
关闭主控箱电源。
2、根据图2-1接线。
R1、R2为实验模板左上方的应变片,注意R2应和R1受力状态相反,即将传感器中两片受力相反(一片受拉、一片受压)的电阻应变片作为电桥的相邻边。
接入桥路电源±5V ,调节电桥调零电位器Rw1进行桥路调零,重复实验一中的步骤4、5,将实验数据记入表2-1,计算灵敏度W U S ∆∆=/2,非线性误差2f δ。
若实验时显示数值不变化说明R1与R2两应变片受力状态相同。
则应更换应变片。
图2-1 应变式传感器半桥实验接线图 重量(g )1、不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。
2、电桥的电压为±5V,绝不可错接成±15V,否则可能烧毁应变片。
五、思考题:1、半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:(1)对边(2)邻边。
2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性(2)应变片应变效应是非线性的(3)调零值不是真正为零。
七、实验报告要求:1、记录实验数据,并绘制出单臂电桥时传感器的特性曲线。
2、分析为什么半桥的输出灵敏度为什么比半桥时高了一倍,而且非线性误差也得到改善。
实验三金属箔式应变片——全桥性能实验一、实验目的:了解全桥测量电路的原理及优点。
二、基本原理:全桥测量电路中,将受力性质相同的两个应变片接入电桥对边,当应变片初始阻值:=KEε。
其R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到明显改善。
三、需用器件和单元:应变式传感器实验模板、砝码、数显表、±15V电源、±5V电源。
四、实验内容与步骤:1、根据3-1接线,实验方法与实验二相同。
将实验结果填入表3-1;进行灵敏度和非线性误差计算。
重量(g)电压(mV)图3-1 应变式传感器全桥实验接线图五、实验注意事项:1、不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。
2、电桥的电压为±5V,绝不可错接成±15V。
六、思考题:1、全桥测量中,当两组对边(R1、R3为对边)值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。
2、某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如何利用这四片电阻应变片组成电桥,是否需要外加电阻。
图3-2 应变式传感器受拉时传感器周面展开图七、实验报告要求:1、根据所记录的数据绘制出全桥时传感器的特性曲线。
2、比较单臂、半桥、全桥输出时的灵敏度和非线性度,并从理论上加以分析比较,得出相应的结论。
实验四直流全桥的应用——电子秤实验一、实验目的:了解应变直流全桥的应用及电路的标定。
二、基本原理:电子秤实验原理为实验三,利用全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始的电子秤。
三、需用器件和单元:应变式传感器实验模板、砝码、数显表、±15V电源、±5V电源。
四、实验内容与步骤:1、按实验一中2的步骤,将差动放大器调零,按图3-1全桥接线,合上主控箱电源开关,调节电桥平衡电位器Rw1,使数显表显示0.000V(2V档)。
2、将10只砝码全部置于传感器的托盘上,调节电位器Rw2(增益即满量程调节)使数显表显示为0.200V或—0.200V。
3、拿去托盘上的所有砝码,调节电位器Rw1(零位调节)使数显表显示为0.000V。
4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V改为重量量纲g,就可以称重,成为一台原始的电子秤。
5、把砝码依次放在托盘上,填入下表4-1。
五、实验注意事项:1、不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。
2、电桥的电压为±5V,绝不可错接成±15V。
六、实验报告要求:1、记录实验数据,绘制传感器的特性曲线。
2、分析什么因素会导致电子秤的非线性误差增大,怎么消除,若要增加输出灵敏度,应采取哪些措施。
实验六 电容式传感器的位移特性实验一、实验目的:了解电容式传感器结构及其特点。
二、基本原理:利用平板电容C =εS /d 和其它结构的关系式通过相应的结构和测量电路可以选择ε、S 、d 中三个参数中,保持两个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d )和测量液位(变S )等多种电容传感器。
变面积型电容传感器中,平板结构对极距特别敏感,测量精度受到影响,而圆柱形结构受极板径向变化的影响很小,且理论上具有很好的线性关系,(但实际由于边缘效应的影响,会引起极板间的电场分布不均,导致非线性问题仍然存在,且灵敏度下降,但比变极距型好得多。
)成为实际中最常用的结构,其中线位移单组式的电容量C 在忽略边缘效应时为: ()12ln 2r r l C πε= (1) 式中 l ——外圆筒与内圆柱覆盖部分的长度;12r r 、——外圆筒内半径和内圆柱外半径。