北斗卫星通信在水利行业中的应用(DOC)

北斗卫星通信在水利行业中的应用(DOC)
北斗卫星通信在水利行业中的应用(DOC)

北斗卫星通信在水利行业中的应用

目录

1.北斗卫星系统简介 (3)

2.水利行业应用需求 (4)

2.1.水利工程测量 (4)

2.2.水情监测 (5)

2.3.水利设备监控 (6)

3.短报文通信在水情监测数据传输中的应用 (6)

3.1.短报文通信介绍 (7)

3.1.1.通信方式 (7)

3.1.2.通信优点 (8)

3.1.3.通信缺点 (8)

3.2.应用方案 (9)

3.2.1.硬件配置 (9)

3.2.2.服务提供 (9)

3.2.3.通信保障 (9)

3.2.4.系统整体结构 (10)

3.3.实际应用项目介绍 (10)

1.北斗卫星系统简介

北斗卫星是一个提供全中国范围内的卫星定位系统。它是中国自主开发的用于地面定位的卫星系统,现在已发展成为可供民用定位和数据通信的系统。系统包括“北斗一代”和“北斗二代”,北斗一代空间部分由两颗静止轨道卫星和一颗备份星组成;北斗二代空间部分由5 颗静止轨道卫星、27 颗中地球轨道卫星和3 颗倾斜同步轨道卫星组成。

北斗卫星系统由三个主要部分组成:空间卫星,地面站(LES)及分理平台(河南北斗卫星导航平台)和用户终端。

图1 北斗卫星系统结构

(1)空间卫星:空间卫星部分由2~3颗地球同步卫星组成,负责执行地面中心站与用户终端之间的双向无线电信号中继任务。每颗卫星的主要载荷是变频转发器,以及覆盖定位通信区域点的全球波束或区域波束天线。每颗卫星都有2个波束,定位在太平洋、印度洋二个区域。两颗工作卫星的波束分别为1、2、3、4。一颗备用星的波束为5、6。两颗卫星都可以覆盖中国全境。覆盖范围:北纬5~55度,东经70~145度。系统组成如图1所示。

(2)地面站:终端与终端之间相互通信的中转站。其功能是完成与卫星之间上、下行数据的处理;对各类用户发送的业务请求进行响应处理,完成全部用户定位数据的处理工

作和通信数据的交换工作,并把计算所得到的用户位置和经过交换的通信内容,分别送给有关用户;同时可对发送方用户进行通信回执确认。

(3)用户终端:卫星终端分为普通型和指挥型终端两种。民用终端由北斗卫星收发主机、北斗卫星全向收发天线、用户操作控制单元、民用通信协议等软硬件组成,能够完成用户终端与空间卫星之间上、下行数据的处理;发送用户业务请求,接收用户数据;具有通用的RS232C数据接口。

北斗卫星系统可以全天候时提供卫星导航信息,标志着我国成为继美国全球卫星定位系统(GPS)和前苏联的全球导航卫星系统(GLONASS)后,在世界上第三个建立了完善的卫星导航系统的国家,该系统的建立对我国国民国防和经济建设将起到积极作用。

2.水利行业应用需求

2.1.水利工程测量

在水利工程勘测和设计中,经常会遇到山岭、江河、峡谷等自然环境的阻隔,传统测量仪器很难找到合适的测量点,工作量也比较大,影响测量的精确度和工程进度。

北斗是完全由我国自行研制的定位系统,目前已经广泛运用到各项我国基础工程各项测量和定位中,基于北斗定位的RTK(实时动态差分)测量相比较传统观的水利工程测量而言,具有适用性强、操作简易、测量精度高等优点。在实际的运用上具有非常高的普及和推广价值。

图2 北斗定位RTK测量图示

2.2.水情监测

根据我国中小河流域山洪地质灾害防治项目的需要建设了很多水文自动测报系统,采用现代数字化科技手段实现对中小河流域、湖泊、水库等自然江河湖泊和水利工程的水文信息进行实时采集、传输、处理和水情预报等工作。

自动水文观测站选址一般为偏远山区,常规通信(包括:移动通信、电信和卫星通信)难以实现信号全覆盖,通信专线的建设又存在成本高、维护费用贵等缺点。

自动水文站数据传输系统一般由一个水文监控中心和若干个野外无人值守观测站组成,数据传输方向为多个观测站的气象数据向一个监控中心传输的“多点对一点”的通信模式,其传输方式有主动自报式和交互查询式。主动自报式是指观测站按照一定的协议机制主动将采集到的气象数据上报至监控中心,而交互查询式则是以监控中心为主动方,观测站解析监控中心的指令,并做出响应。主动上报式应用的场合要求一次通信成功率高,而交互查询式则要求系统的通信资源相当丰富,并且通信费用低廉。

根据水文监测对象的特点,正点上报、10分钟雨量加报、水位加报等测报数据随着观测站的数量的增长和天气情况的变化,成不规则增长方式,1分钟内可能会上报几百条数据。对接收端的数据处理能力和通信链路有很高的要求。

目前,通信成功率和通信费用是水文测报数据传输面临的两个主要问题。北斗卫星能够解决这两个问题。

北斗卫星通信信号覆盖范围广、可靠性高。水文测站终端是在其后端设备的控制指令下发送数据报告的,它在收到后端设备的发送数据报告指令后,直接向卫星发送信息,其信道编码与调制方式为码分多址即CDMA方式,利用冗余编码方法使得入站数量达到200站/每秒,按照水利水文信息传输整点报的需求,以10分钟收集全部站点数据计算此类用户理论上可容纳12万测站用户,所以其信道容量极大,可以不考虑信道拥挤问题。

目前支持北斗卫星通信的水文遥测设备RTU体积小功耗低、设备维护简单和易于组网布设站点,硬件费用比较低。

河南北斗卫星分理服务平台提供民用北斗卫星通信服务,用户只需要注册通信卡号,支付服务年费等方式实现卫星通信,服务费用较低。

图3 北斗卫星水情监测

2.3.水利设备监控

水利行业的发展越来越多的利用到信息技术,信息化设备投入日益增多。从雨量计到全要素气象仪,到自动水文观测站等等。由于水利工程自身的特点,这些信息化设备一般都安装在野外,分布范围广,无人值守。人工巡检工作量大、耗时,甚至有些地方很危险。

水利设备监控需要一种远程自动化的方式,不受地形、通信限制,可实时操作。北斗卫星的“多点对一点”方式可以满足这种需求。

3.北斗卫星通信在水情监测数据传输中的应用

从2002年起,我国就已经开始进行利用北斗卫星传输水情信息的试验研究,并陆续建设了多个北斗卫星水文遥测系统,2006年已有800多个水文测站使用北斗卫星系统。经

过十多年的发展,北斗卫星短报文通信可以大规模的应用于水文测报数据传输中。

图4 基于北斗卫星短报文通信的水文测报数据传输

3.1.短报文通信介绍

北斗卫星导航是我国自主研发的卫星导航系统,是利用地球同步卫星为用户提供快速定位、简短数字报文通信和授时服务的一种全天候、区域性的卫星定位系统。系统的主要功能是:

(1)定位,快速确定用户所在地的地理位置,向用户及主管部门提供导航信息

(2)通讯,用户与用户、用户与中心控制系统间均可实现双向简短数字报文通信(3)授时,中心控制系统定时播发授时信息,为定时用户提供时延修正值

水情监测数据传输主要是运用了北斗卫星系统的短报文通信功能,北斗一代卫星以及北斗二代卫星中的静止轨道卫星均提供通信服务。

3.1.1.通信方式

(1)点对点双向通信

北斗卫星系统具有点对点双向数据传输方式。它是以数据包的形式传输,一次发送共有210个字节,一般用户一次最多可发送110bytes信息。测站终端发送采用码分多址直接扩频序列调制,扩频伪码采用周期伪随机序列,发送频率为L波段,通过卫星转换为C波

段由地面站接收。测站型终端和指挥型终端的最大区别在于前者只能锁定在一个波束上,而后者可以同时锁定所有波束,发送信息时也是如此,前者每次只能在单波束上发送,后者则可以同时在所有波束上发送。

在北斗卫星通信点对点方式中,还有一种通播的方式。即在一个用户群(用户系统)中,将一个作为主站(中心站)的终端设备号码写入本群中其它测站的终端设备的映像地址中,当此中心站作通播方式发送时,则群中的所有使用同一波束的测站都能同时收到此信息。此功能可以用作系统的广播回执,即在系统的一次定时报后一定时间内,将收到系统中的测站和未收到的测站的信息广播出去,未收到自报信息的测站则再次发送信息,从而提高了系统的畅通率,同时也减少了系统中心站的发送次数。如果用户系统的主站采用指挥型终端则回执可一次在全部波束上发送,用户系统的所有测站可以同时收到主站的回执。

(2)多点对一点通信

与上面的通播方式有些类似,该通信方式主要采用了指挥机的通信特点。在指挥机上面安装指挥卡,每个指挥卡一般可以管辖200张子卡;其他终端上安装子卡,并设定接收卡为指挥卡。这样,这些终端都可以向该指挥机发送短报文信息。实现多点对一点的通信。在水文遥测站数据上报中就采用这种方式。

3.1.2.通信优点

北斗卫星通信系统覆盖范围广、没有通信盲区、信息加密传输安全。用户终端机分为指挥型用户机和通信型用户机,指挥型用户机可以监收其所有下属用户机的通信数据,并可以向其任一下属用户机发送命令或与其进行数据通信。

3.1.3.通信缺点

北斗卫星短报文通信也有其局限的地方:

(1)单次通信容量有限,民用通信容量仅有100 字节左右

(2)通信频度受控,民用通信频度在1min 左右

(3)没有通信回执,可靠通信需要采取相关辅助措施

3.2.应用方案

结合北斗卫星通信的特点,水文测报数据传输采用短报文主动上报的方式,即“多点对一点”,各个水文测报站向统一的接收终端发送报文。北斗卫星分理服务平台接收到报文后再转发到用户指定的存储位置,用户通过监控软件,查询显示报文的接收、解析情况。

3.2.1.硬件配置

各个水文观测站均配备一台北斗通信型用户机和一台编码器,由各观测站的风光互补供电系统供电。

工作时,设置为主动自报模式,前端编码器负责将观测站定时采集到的数字水情数据进行编码和加密,并转换为北斗协议格式的通信申请信号,再传至北斗通信型用户机,通过北斗卫星系统发送到北斗分理服务平台的指挥机。再由指挥机解密后转发到用户指定的数据库或其他存储设备中。

(1)北斗通信型用户机

(2)编码器

(3)应用/数据库服务器等

3.2.2.服务提供

根据国家北斗卫星导航服务规定,河南北斗卫星分理服务平台可以提供民用卫星导航服务。协助用户注册北斗通信卡号,提供指挥机接收/转发通信,按照用户需求定制开发一些北斗通信相关软件(通信数据入库软件、监控软件)。

(1)用户注册

(2)通信转发

(3)软件定制

3.2.3.通信保障

北斗卫星短报文通信有优点也有缺点。实际应用过程中,需要增加通信保障,确保水文测报数据传输正常。

(1)报文协议

水情数据上报过程中,按照约定的报文协议,使用ASCII码格式输出,减少字节数及乱码情况。

(2)通信频率

使用指挥型用户机,1分钟内,1张指挥卡可以接收200个终端的报文上报。

(3)监控日志

开发报文接收日志、报文解析日志、软件运行过程的文件日志,通过监控平台及后台日志,能够看到整个通信过程的运行情况。另外,提供观测站设备运行情况监控,能够远程查看到设备的正常、异常情况。

3.2.

4.系统整体结构

图5 北斗卫星水文测报数据传输系统

3.3.实际应用项目介绍

2015年10月,在河南省水利厅北斗卫星数据传输系统中,通过水文遥测终端和北斗指挥机,采用短报文通信方式,实现1台指挥机接收转发100多个遥测终端的水文测报数据传输功能。

在河南北斗卫星分理服务平台中,遥测设备卡号与北斗指挥机卡号绑定,通过北斗卫星,实现遥测设备向北斗指挥机发送雨水情报文。北斗指挥机接收到所辖的遥测设备发送的报文后,通过水利厅IP+端口公网传输方式,将接收到的原始报文推送到水利厅北斗卫星数据库中。

北斗卫星

遥测终端IP+端口通信

指挥机程序将报文推送

到北斗卫星库

本系统主要由五部分构成:

遥测终端RTU 报文发送软件

北斗卫星报文接收/转发软件

北斗分理平台报文接收/转发软件

数据入库软件

数据监控软件

该系统解决了目前水利厅水文测报数据传输中的两个主要问题:

数据丢失,很多水文测站都在山区等偏远地方,通信条件差,数据发送过程中容

易丢失。使用北斗卫星短报文通信,不受地形等通信限制。

数据并发,水文测报数据上报中有集中并发特点,如早8:00平安报,通常是100

多个终端同时发送上报,要求接收端能够处理存储。使用北斗指挥机,一张指挥卡1分钟内可以同时接收200个终端的报文发送。

北斗卫星通信在水利行业中的应用(DOC)

北斗卫星通信在水利行业中的应用

目录 1.北斗卫星系统简介 (3) 2.水利行业应用需求 (4) 2.1.水利工程测量 (4) 2.2.水情监测 (5) 2.3.水利设备监控 (6) 3.短报文通信在水情监测数据传输中的应用 (6) 3.1.短报文通信介绍 (7) 3.1.1.通信方式 (7) 3.1.2.通信优点 (8) 3.1.3.通信缺点 (8) 3.2.应用方案 (9) 3.2.1.硬件配置 (9) 3.2.2.服务提供 (9) 3.2.3.通信保障 (9) 3.2.4.系统整体结构 (10) 3.3.实际应用项目介绍 (10)

1.北斗卫星系统简介 北斗卫星是一个提供全中国范围内的卫星定位系统。它是中国自主开发的用于地面定位的卫星系统,现在已发展成为可供民用定位和数据通信的系统。系统包括“北斗一代”和“北斗二代”,北斗一代空间部分由两颗静止轨道卫星和一颗备份星组成;北斗二代空间部分由5 颗静止轨道卫星、27 颗中地球轨道卫星和3 颗倾斜同步轨道卫星组成。 北斗卫星系统由三个主要部分组成:空间卫星,地面站(LES)及分理平台(河南北斗卫星导航平台)和用户终端。 图1 北斗卫星系统结构 (1)空间卫星:空间卫星部分由2~3颗地球同步卫星组成,负责执行地面中心站与用户终端之间的双向无线电信号中继任务。每颗卫星的主要载荷是变频转发器,以及覆盖定位通信区域点的全球波束或区域波束天线。每颗卫星都有2个波束,定位在太平洋、印度洋二个区域。两颗工作卫星的波束分别为1、2、3、4。一颗备用星的波束为5、6。两颗卫星都可以覆盖中国全境。覆盖范围:北纬5~55度,东经70~145度。系统组成如图1所示。 (2)地面站:终端与终端之间相互通信的中转站。其功能是完成与卫星之间上、下行数据的处理;对各类用户发送的业务请求进行响应处理,完成全部用户定位数据的处理工

北斗卫星导航系统定位原理及应用

xxxx导航系统定位原理及其应用 北斗卫星定位系统是由中国建立的区域导航定位系统。该系统由四颗(两颗工作卫星、2颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。美国的GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。。 北斗一号导航定位卫星由中国空间技术研究院研究制造。四颗导航定位卫星的发射时间分别为: 2000年10月31日; 2000年12月21日; 2003年5月25日, 2007年4月14日,第三、四颗是备用卫星。2008年北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥?双保险?作用。北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。北斗二代卫星定位系统的英文为Compass(即指南针),在ITU登记的无线电频段为L波段。北斗一号系统的基本功能包括: 定位、通信(短消息)和授时。北斗二代系统的功能与GPS相同,即定位与授时。 其工作原理如下: ?北斗一号?卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标

铱(北斗)卫星通信终端使用说明_透传功能_

CT2013-0822-V1.0 铱卫星数据通讯终端使用说明 version1.0 2013-8-22 <图1>

声明 Copyright ? 2013 <>版权所有,保留所有权利未经北京xxxx通讯设备有限公司明确书面许可,任何单位或个人不得擅自仿制、复制、誊抄或转译本书部分或全部内容。不得以任何形式或任何方式(电子、机械、影印、录制或其他可能的方式)进行商品传播或用于任何商业、赢利目的。 本手册所提到的产品规格和资讯仅供参考,如有内容更新,恕不另行通知。除非有特殊约定,本手册仅作为使用指导,本手册中的所有陈述、信息等均不构成任何形式的担保。

目录 1产品概述 (4) 1.1产品简介 (4) 1.2产品特征 (4) 2硬件描述 (4) 2.1设备尺寸及重量 (4) 2.2正面面板 (4) 2.3右侧面板 (4) 2.3.1电源 (5) 2.3.2铱卫星天线 (5) 2.3.3GPS天线 (5) 2.4左侧面板 (5) 2.4.1用户串口 (6) 2.4.2LED指示灯 (6) 3快速使用指南 (7) 3.1GPS定位功能 (7) 3.1.1GPS定位功能信息详解 (7) 3.1.2GPS定位功能设置指令详解 (7) 3.2数据透明传输功能 (9) 3.2.1用户透传数据格式详解 (9) 4系统管理员指令 (11)

1产品概述 1.1产品简介 本产品是基于铱卫星系统的数据传输模块9602集成开发的一款卫星数据传输设备,可实现远程位置信息定时传输、短数据透明传输。支持远程更改发送时间间隔指令,支持无发送时休眠、自存储功能。 可应用于海洋环境下的浮标定位、短数据传输,无人区气象监测参数的数据传输,高空探测飞艇(气球)环境监测参数的数据传输,无人驾驶汽车的GPS定位监控,偏远地区特种车辆的GPS定位监控和指令互通等等。 我司也可根据客户具体需求集成定制设备(核心模块有9602、9603、9522B、9523等)。 1.2产品特征 宽电源输入:DC 9V-30V 采用卡口式电源连接方式,使用便捷,锁紧可靠 内部采用防电源反接电路,有效防止内部元器件的损坏 LED状态指示 上电待GPS信号可用后即发送一条定位信息,表明设备工作状态良好 提供了一个用户串口,通过串口,用户可轻松掌握设备运行状态以及进行数据透传 回传位置信息的时间间隔可根据需求设置 铱卫星信号强度实时检测功能 可以根据铱卫星信号强度的不同,决定信息是否发送,确保信息发送成功 在铱卫星信号强度不好的情况下,系统可自动存储100条用户信息,待铱卫星信号强度达到要求时依次发送 具有GPS秒连续检测功能,有效防止系统误动作 2硬件描述 2.1设备尺寸及重量 尺寸:100mm*50mm*23mm 重量:90g 2.2正面面板 <图2> 2.3右侧面板 <图3>

北斗卫星导航系统测量型终端通用规范(预)要点

北斗卫星导航系统测量型终端通用规范(预) 2014.08.14 1 范围 本标准规定了北斗卫星导航系统测量型终端(以下简称北斗测量型终端)的技术要求、检验方法、检验规则以及标志、包装、运输和贮存等。 本标准适用于利用载波相位观测值进行静态测量、后处理动态测量、RTK测量的北斗测量型终端的研制、生产和使用。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 ?GB/T 191 包装储运图标志 ?GB/T 2828.1—2003 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划 ?GB 4208—2008 外壳防护等级(IP代码) ?GB/T 4857.5 包装运输包装件跌落试验方法 ?GB/T 5080.1—1986 设备可靠性试验总要求 ?GB/T 5080.7—1986 设备可靠性试验恒定失效率假设下的失效率与平均无故障时间的验证试验方案 ?GB/T 5296.1—1997 消费品使用说明总则 ?GB/T 6388 运输包装收发货标志 ?GB 9254—2008 信息技术设备的无线电骚扰限值和测量方法 ?GB/T 9969—2008 工业产品使用说明书总则 ?GB/T 12267-1990 船用导航设备通用要求和试验方法 ?GB/T 12858-1991 地面无线电导航设备环境要求和试验方法 ?GB/T 13384—2008 机电产品包装通用技术条件 ?GB/T 15868—1995 全球海上遇险与安全系统(GMDSS)船用无线电设备和海上导航设备通用要求、测试方法和要求的测试结果 ?GB/T 16611—1996 数传电台通用规范 ?GB/T 17626.3—2006 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 ?GB/T 19391—2003 全球卫星定位系统(GPS)术语及定义 ?GB/T 20512 GPS接收机导航定位数据输出格式

中国北斗卫星导航产业发展现状分析

中国北斗卫星导航产业发展现状分析 中投顾问产业研究中心 中国北斗卫星导航产业发展现状分析 中投顾问在《2016-2020年中国北斗卫星导航产业深度调研及投资前景预测报告》中提到,北斗卫星导航系统是中国正在实施的自主发展、独立运行的全球卫星导航系统,可为用户提供高精度、全天时、全天候的定位、导航、授时和通信服务,是国家信息化基础建设的重要组成部分,是国家安全和现代国防的重大技术支撑系统,也是国家经济安全的重要保障。2015年,中国相继发射4颗新一代北斗导航卫星,积极推进北斗全球系统工程建设。预计在2020年前后将实现5颗地球静止轨道和30颗地球非静止轨道卫星全球组网,实现全球区域覆盖。 一、北斗导航产业进入高速增长期 2015年是北斗系统正式服务亚太地区的第三年,北斗在我国交通运输、气象、公安、民政、农业、国土等涉及国家安全的关键领域得到广泛应用。 目前,北斗产业初具规模,已构建起集芯片、模块、板卡、终端和运营服务为一体的北斗产业链,第一代国产北斗芯片模块等核心技术产品,性能价格比已经接近国际水平,销售量已突破了千万规模,功耗更低、体积更小、性能更优、集成度更高的新一代北斗芯片已经突破了关键技术,即将投放市场,可以满足智能手机、平板电脑、穿戴式设备等方面的应用需求,高精度的板卡、天线等产品已在国内市场上占领了相当份额,改变了中国高精度卫星导航核心产品完全依赖进口的局面。 图表 2013-2015年中国北斗产业规模与增长率

资料来源:中投顾问产业研究中心 二、北斗导航系统加快全球化布局 2015年3月,中国首颗新一代北斗导航卫星在西昌卫星发射中心发射升空,顺利进入预定轨道,标志着北斗导航系统由亚太区域运行向全球拓展。截至2015年9月,中国共发射4颗新一代北斗导航卫星,北斗全球系统工程建设积极推进。 中投顾问?让投资更安全经营更稳健 中投顾问产业研究中心 预计在2020年前后将实现5颗地球静止轨道和30颗地球非静止轨道卫星全球组网,实现全球区域覆盖。北斗系统将于2018年形成“一带一路”沿线国家全球初始服务的基本能力,到2020年形成全球的服务能力。目前,北斗系统已在东盟各国逐步打开局面,泰国、马来西亚、印度尼西亚等国都将逐步引入该系统。 其中,泰国在2015年3月与光谷北斗签署《“中国-东盟北斗科技城”战略合作框架协议》,将建设面向东盟、以泰国为主的北斗应用和服务产业支撑平台,推进北斗在东盟地区通信、交通、农业、旅游、航运、金融、电力、急救、公共安全、物流、物联网等关键领域和重点行业的应用。 三、核心部件国产化程度日益提高

中国北斗导航终端市场调研报告

中国北斗导航终端市场调研报告

前言 北斗卫星导航系统,到2015年相关产值将达到2000亿元,2020年有望达到4000亿元。随着“北斗”系统逐渐向民用方面转化,投资机会显现。中国预计于2012年建成北斗亚太区域卫星导航系统,2020年左右建成由35颗卫星组成的北斗全球卫星导航系统。今明两年是中国北斗卫星导航系统区域系统建设和应用发展非常关键的两年,这两年将陆续发射多颗北斗导航组网卫星,并开始在各个领域大量推广应用。北斗卫星导航系统已成功发射了13颗卫星,系统建设当前已进入密集发射组网阶段。北斗卫星导航系统是中国独立发展、自主运行,又要与世界其他卫星导航系统兼容互用的全球卫星导航系统,也是中国航天史上迄今为止规模最大、系统性最强、涉及最广、技术最复杂和建设周期最长的航天基础工程。这个系统能提供高精度高可靠的定位、导航、授时和短报文服务,它是中国国家安全、经济和社会发展不可缺少的重大空间信息基础设施。 本报告数据主要来源于互联网和个人经验,仅作参考,请公司同事修改补充。

前言 (1) 第一章北斗导航系统应用行业发展分析 (4) 一、军用领域 (4) 二、民用功能 (5) 三、其它应用领域参考资料 (8) 第一节北斗导航系统全球地位 (10) 一、美国GPS系统(产业链成熟,应用广泛) (10) 二、欧洲GALILEO 系统(定位精度高、还未组网完成) (11) 三、俄罗斯GLONASS 系统 (12) 四、中国北斗系统 (13) 第二节北斗导航系统发展规划 (14) 一、发展路线图 (14) 第三节北斗导航系统优势 (15) 第二章中国北斗导航行业市场发展环境分析 (16) 第一节国内北斗导航经济环境分析 (16) 一、2012年中国北斗导航经济发展预测分析 (16) 第二节中国北斗导航行业政策环境分析 (18) 一、相关标准 (18) 二、相关政策 (19) 三、标准及相关分析 (19) 第三章国内导航产业现状分析 (20) 第一节GNSS产业链分析 (20) 第四章北斗卫星导航市场应用分析 (36) 第一节北斗卫星导航定位系统运行 (36) 第二节北斗卫星导航产业链 (36) 一、北斗导航产业链 (36) 二、北斗导航竞争态势 (37) 第五章应用重点市场—高精度GNSS市场 (38) 第六章应用重点市场—车载导航市场 (38) 第一节中国车载导航产业动态分析 (38) 一、首款3D导航GPS登陆重庆 (38) 二、GPS汽车导航进入宽屏时代 (38) 三、PND拓宽汽车导航仪市场 (39) 四、个人导航设备席卷汽车导航系统市场 (43) 第二节中国车载导航产业运行格局 (56) 一、中国汽车导航市场尚处于市场启动初期 (56) 二、GPS上下游合作模式改变 (60) 三、我国车载导航市场已经进入规模发展 (61) 四、电子地图成车载GPS“瓶颈” (65) 五、前装和后装市场发展不均衡 (68) 第三节中国汽车导航企业运行现状 (68) 一、千家厂商混战车载定位 (68)

北斗卫星定位车载终端技术方案

北斗卫星定位车载终端技术方案

北斗卫星定位车载终端技术方案 三、技术原理 北斗卫星导航系统是中国自行研制开发的区域性有源三维卫星定位与通信系统(CNSS),是除美国的全球定位系统(GPS)、俄罗斯的GLONASS之后第三个成熟的卫星导航系统。北斗卫星导航系统为用户提供高质量的定位、导航和授时服务,其建设与发展则遵循开放性、自主性、兼容性、渐进性。北斗卫星定位车载终端采用了多模块化、组合式优化设计,内置高性能芯片,各模块之间的接口采用标准接口,充分利用系统平台、移动通讯网络、因特网络,将汽车行驶记录仪、卫星定位、卫星导航、油耗检测功能集于一体,经过无线数据通讯接口(GSM、GPRS、CDMA)和GPS接口,能与监控中心系统进行数据通信和移动位置的定位,能够满足用户的多种需求。 除具有传统行驶记录仪的功能外增加了定位导航、监控跟踪、数据实时传送、油耗检测等功能,而且能够实现对车辆实时监管、调度,遇险报警远程网络监控,彻底改变了现有汽车行驶记录仪只能实地监管、事后监督的弊端;GPS/北斗2双模卫星定位模块,能够灵活配置信号处理通道工作于单GPS模式,或单北斗2模式,或GPS/北斗2混合模式;兼容当前现有的GPS单模定位,且能实现双模捕获、双模跟踪更加智能化、集成化。因此,基于以上原理设计的卫星车载终端监控系统,大大超出了传统行驶记录仪的功能,具有极为光明的发展前景。

四、设计方案 (一)设计原则 1、先进性和适用性相结合 系统采用成熟的高新科技,以当前较为先进的方法实现需要的功能,保证系统具有深厚的发展潜力,在相当长的时间内具有领先水平。 2、通用性和安全性相结合 在系统设计过程中,均留有相应的通信接口,系统的各个模块构成一个有机的整体。系统数据库中的各种数据在交换和共享的过程中,充分考虑到了系统的安全性。对每一个用户的权限有严格的认证(司机卡身份识别)体制,对每一个用户的权限进行分级控制和限定。 3、安全可靠性 在经济条件允许范围内,从系统结构、设计方案(考虑到非法用户及病毒入侵,数据采用纠错冗余技术)、技术保障等方面综合考虑;系统尽可能地采用成熟的技术、商品化的软硬件产品,保证系统可靠稳定运行。 4、实用性 整个系统的操作以方使、简捷、高效为目标,多操作平台整体设计,统一操作,既充分体现快速反应的特点,又能便于工作人员进行业务处理和综合管理,便于运输交通管理层及时了解各项统

北斗卫星导航系统导航型终端通用规范

北斗卫星导航系统导航型终端通用规范(预) 1 范围 本标准规定了北斗卫星导航系统导航型终端(以下简称为导航型终端)的技术要求、测试方法、检验规则、标志、包装、运输和贮存等内容。 本标准适用于地面和船舶使用导航型终端的研制和生产,也是制定产品规范和检验产品质量的依据。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 191—2008 包装储运图示标志 GB/T —2003 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划 GB 4208—2008 外壳防护等级(IP代码) GB/T —1992 包装运输包装件跌落试验方法 GB/T —1986 设备可靠性试验总要求 GB/T —1986 设备可靠性试验恒定失效率假设下的失效率与平均无故障时间的验证试验方案 GB/T —1997 消费品使用说明总则 GB/T 12267—1990 船用导航设备通用要求和试验方法 GB/T 12858—1991 地面无线电导航设备环境要求和试验方法 GB/T 13384—2008 机电产品包装通用技术条件 GB 15842—1995 移动通信设备安全要求和试验方法 GB/T —2006 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 3 术语、定义和缩略语

术语和定义 北斗卫星导航系统用户终端通用技术要求确立的以及下列术语和定义适用于本文件。 首次定位时间time to first fix TTFF 用户终端从开机到第一次解算出位置结果所需时间。通常包括用户终端初始化时间、测量时间、星历接受时间和定位解算时间。 重捕时间re-acquisition time 卫星信号重捕时间,是指接收设备在信号满足灵敏度要求的条件下,短时间(30 s内)失锁后重新捕获卫星信号并获得满足精度要求的位置信息所需的时间。 电子地(海)图数据库map database for navigation 按特定格式存储的,并与导航信息有关的数字地(海)图信息数据库。通常与地(海)图有关的信息包括编码数据、航线计算数据、背景数据和参考数据等。 电子地(海)图匹配map matching 从定位模块获取到的位置(轨迹)与电子地(海)图数据库所提供的地(海)图的位置(路径)进行匹配来确定用户在地(海)图上位置的一种技术。 航线计算route calculating 利用电子地(海)图数据库所提供的地(海)图帮助用户行进前或行进中规划航线的过程。

我国北斗产业链发展现状与趋势

我国北斗产业链发展现状与趋势 在国家政策大力扶持和北斗系统建设逐步完善的环境下,目前北斗产业链已初步形成。我国北斗产业迎来了跨越式发展机遇,未来五年产业链结构将逐步趋于稳定成熟。 继美国主导的GPS、俄罗斯主导的格洛纳斯和欧洲主导的伽利略之后,我国自主开发、独立运行的全球卫星导航系统北斗卫星导航系统近年来以迅猛的发展速度受到全球关注。尤其是随着北斗导航系统进入全球组网阶段,预计到2018年左右就将完成覆盖全球的系统建设目标,巨大的市场前景吸引着众多企业进军北斗产业。 北斗卫星导航系统是我国正在实施的自主发展、独立运行的全球卫星导航系统,由空间段、地面段和用户段三部分组成,空间段包括5颗静止轨道卫星和30颗非静止轨道卫星,地面段包括主控站、注入站和监测站等若干个地面站,用户段包括北斗用户终端以及与其他卫星导航系统兼容的终端。系统按照“三步走”的总体规划分步实施:第一步,2000年形成北斗卫星导航试验系统区域有源服务能力;第二步,2012年形成北斗卫星导航系统区域无源服务能力;第三步,2020年北斗卫星导航系统形成全球无源服务能力。2012年12月27日,北斗系统向亚太大部分地区正式提供连续无源定位、导航、授时等服务,标志着第二步建设圆满完成。2015年3月30日,随着首颗新一代北斗导航卫星成功发射,第三步全球组网建设工作全面启动,预计2018年将率先为“一带一路”国家提供基本服务。 我国高度重视并积极推动北斗卫星导航产业发展,发布了《国家卫星导航产业中长期发展规划》,从国家层面对卫星导航产业长期发展进行了总体部署。在国家产业政策、专项示范项目等推动下,我国北斗产业迅速发展。据中国卫星导航定位协

北斗车载导航终端市场分析报告

北斗车载导航终端市场分析报告 中宇华星航空技术有限公司 2013年1月8日 目录 1北斗导航系统应用行业发展分析 (2)

1.1北斗导航系统全球地位 (2) 1.1.1美国GPS系统(产业链成熟,应用广泛) (2) 1.1.2欧洲GALILEO 系统(定位精度高、还未组网完成) (3) 1.1.3俄罗斯GLONASS 系统 (5) 1.1.4中国北斗系统 (5) 1.2北斗系统发展规划 (7) 1.3北斗系统优势 (7) 2北斗导航系统市场环境分析 (8) 2.1国内北斗导航经济环境分析 (8) 2.2国内北斗导航政策环境分析 (9) 2.2.1相关标准 (9) 2.2.2相关政策 (10) 2.2.3标准及相关分析 (10) 3国内导航产业现状分析 (11) 3.1.1北斗导航产业链 (11) 3.1.2北斗导航竞争态势 (12) 4国内车载导航市场现状分析 (13) 4.1GPS车载终端分析 (13) 4.1.1车载GPS定位监控应用 (13) 4.1.2车载GPS导航应用 (16) 4.2北斗车载终端分析 (17) 4.2.1 一体式终端 (17) 4.2.2 分体式终端 (19) 5公司车载终端发展方向 (20) 5.1 定位监控方向: (20) 5.2 纯导航方向 (20) 1北斗导航系统应用行业发展分析 1.1北斗导航系统全球地位 1.1.1美国GPS系统(产业链成熟,应用广泛) GPS是英文Global Positioning System(全球定位系统)的简

称,是世界上现唯一一个可以为全球用户提供有效、持续定位导航的全球卫星导航系统。GPS起始于1958年美国军方的一个工程,1964年投入使用。20世纪70年代,美国陆海空三军联合研制了新一代卫星定位系统GPS 。主要目的是为陆海空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,经过20余年的研究实验,耗资300亿美元,到1994年,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。 由于GPS技术所具有的全天候、高精度和自动测量的特点,作为先进的测量手段和新的生产力,已经融入了国民经济建设、国防建设和社会发展的各个应用领域。 随着冷战结束和全球经济的蓬勃发展,美国政府宣布,在保证美国国家安全不受威胁的前提下,取消SA政策,GPS民用信号精度在全球范围内得到改善,利用C/A码进行单点定位的精度由100M提高到10M,这将进一步推动GPS技术的应用,提高生产力、作业效率、科学水平以及人们的生活质量,刺激GPS市场的增长。 1.1.2欧洲GALILEO 系统(定位精度高、还未组网完 成) Galileo卫星导航计划是由欧共体发起,并与欧洲空间局一起合作开发的卫星导航系统计划。该计划将有助于新兴全球导航定位服务在交通、电信、农业或渔业等领域的发展。 2003年5月26日,Galileo卫星导航计划。Galileo卫星导航

北斗产业发展迅速 产业化推进存在的问题及对策

北斗产业发展迅速产业化推进存在的问题及对策 导读:北斗卫星导航系统是中国自行研制的全球卫星定位与通信系统,是继美国全球卫星定位系统(GPS)和俄罗斯全球卫星导航系统(GLONASS)之后的第三个成熟的卫星导航系统。目前我国卫星导航与位置服务产业已经进入高速发展阶段,其中基于北斗导航系统的开发应用已广泛服务于国土、测绘、城建、水利、交通和应急救灾等领域。 北斗导航产业发展迅速产值突破百亿元 近年来,中国北斗导航产业发展迅速。从正式提供服务以来,北斗系统在交通运输、渔业生产、国土测绘、形变监测及防灾减灾等领域的应用都取得了重大进展,各类终端的用户规模逐步扩大,取得了良好的经济效益和社会效益,成效显著;在大众应用领域,随着北斗芯片技术的成熟,市场将逐渐打开。 图表:北斗产业链上下游示意图 北斗系统不仅成功地渗透到这些应用领域当中,而且在一定程度上改变了应用现状,促进了应用模式创新,甚至实现了某些核心产品国产化。例如,北斗提升了单GPS系统的导航精度及可靠性,促进车道导航、路口导航等应用方向的发展;在形变监测等应用领域中,北斗系统则实现了相关产品的国产化,打破了国外产品的垄断局面。三胜产业研究中心预计,2020年北斗系统应用将占据国内市场80%、国际市场20%的份额。 中国产业信息研究网发布的《2014-2018年中国北斗导航产业应用市场分析与发展策略

建议报告》数据显示,2013年我国卫星导航与位置服务产业总产值超过1040亿元,年增长率接近30%,其中北斗产值超过100亿元。北斗导航系统已得到国内外大众市场的广泛认可。预计,到2015年我国卫星导航与位置服务产业产值将超过1500亿元,导航定位终端社会总持有量有望达到3亿台左右,2020年产值将达到4000亿元,导航定位终端社会总持有量超过10亿台。 图表:2013-2020年中国卫星导航与位置服务产业产值规模预测 数据来源:中国卫星导航定位协会、三胜产业研究中心应用前景广阔推进亟待创新 当前,卫星导航应用产业已成为继移动通信和互联网之后的全球第三大新经济新增长点,伴随三网融合的进一步推进,导航产业、移动通信产业、互联网业步入了融合发展时代。在当今信息社会,有80%以上的信息与位置和时间有关,由于卫星导航定位技术具有全时空、全天候、连续实时地提供导航、定位和定时的特点,一经问世就在市场需求的牵引下迅速渗透到国民经济的诸多领域和人们生活的方方面面。 一边是巨大的市场,一边是北斗卓越的性能和系统建设的稳步推进,我国卫星导航产业的美好前景不断显现。然而,在国际卫星导航领域的激烈竞争中,由于北斗进入较晚并不为大众熟知,其产业化可谓刚刚起步。当前,全球卫星导航应用产业已经进入高速发展的关键转折期,正在经历着三大转变:从单一的GPS系统时代,转变为多星座并存兼容的GNSS(全球导航卫星系统)时代;从以车辆应用为主体的市场格局,转变为与通信相融合的个人消费为主流市场的新格局;从经销应用产品为主,转变为位置服务为主的服务产业化新时期。

北斗卫星导航系统导航型终端通用规范

北斗卫星导航系统导航型终端通用规范 范围本标准规定了北斗卫星导航系统导航型终端(以下简称为导航型终端)的技术要求、测试方法、检验规则、标志、包装、运输和贮存等内容。本标准适用于地面和船舶使用导航型终端的研制和生产,也是制定产品规范和检验产品质量的依据。2 规范性引用文件下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。· GB/T1912003计数抽样检验程序 第1部分:按接收质量限(AQL)检索的逐批检验抽样计划· GB42081992包装运输包装件跌落试验方法· GB/T50 80、11986 设备可靠性试验恒定失效率假设下的失效率与平均无故障时间的验证试验方案· GB/T52 96、11990 船用导航设备通用要求和试验方 法· GB/T12858xx机电产品包装通用技术条 件· GB15842xx电磁兼容试验和测量技术射频电磁场辐射抗扰度试验3 术语、定义和缩略语 3、1 术语和定义北斗卫星导航系统用户终端通用技术要求确立的以及下列术语和定义适用于本文件。

3、1、1 首次定位时间 time to first fixTTFF 用户终端从开机到第一次解算出位置结果所需时间。通常包括用户终端初始化时间、测量时间、星历接受时间和定位解算时间。 3、1、2 重捕时间 re-acquisition time卫星信号重捕时间,是指接收设备在信号满足灵敏度要求的条件下,短时间(30 s内)失锁后重新捕获卫星信号并获得满足精度要求的位置信息所需的时间。 3、1、3 电子地(海)图数据库 map database for navigation按特定格式存储的,并与导航信息有关的数字地(海)图信息数据库。通常与地(海)图有关的信息包括编码数据、航线计算数据、背景数据和参考数据等。 3、1、4 电子地(海)图匹配 map matching从定位模块获取到的位置(轨迹)与电子地(海)图数据库所提供的地(海)图的位置(路径)进行匹配来确定用户在地(海)图上位置的一种技术。 3、1、5 航线计算 route calculating利用电子地(海)图数据库所提供的地(海)图帮助用户行进前或行进中规划航线的过程。 3、1、6 航线引导 route guidance用户沿着规划出的航线行进的过程。 3、1、7 机动引导 maneuver guidance在航线中遇到交叉口时,不是直行通过时提供的引导。

应急通信中卫星通信的作用(3篇)

应急通信中卫星通信的作用(3篇)第一篇:应急通信中卫星通信的应用 摘要: 本文介绍了卫星通信车的基本原理及功能,讨论了卫星通信车在突发事件应急报道中的应用,最后阐述了卫星通信车未来的发展方向及趋势。 关键词: 卫星通信;应急报道;卫星通信车 1引言

当自然灾害、工业事故、公共卫生和社会安全等突发事件发生时,日常网络环境往往受到损坏或限制,不具备新闻报道所需的基本通信 条件。此时,卫星通信车的独特优势逐渐显现,有效提升应急报道响 应能力,在新闻事件现场快速搭建指挥报道平台,实现音视频直播、 互联网接入、现场指挥调度、应急保障等功能,是目前各大新闻媒体 机构为应对突发事件应急报道配备的重要通信技术手段之一。 2卫星通信车的基本原理 卫星通信车是指安装了卫星通信天线及相对应设备,能够传输音频、视频及数据等多媒体业务的车载式卫星远端站。本文重点研究小 型卫星通信车,该种车辆一般选用性能优越、具有较强通过性和良好 适应性的越野车,并集成天线、卫星射频终端、音视频、指挥调度、 双向数据传输、供配电等子系统,基本原理框图如图1所示。根据通 信车配备的天线系统不同,常见小型卫星通信车分为“静中通”和 “动中通”。其中,“静中通”要求在静止状态下进行卫星通信,根 据需要在指定地点建立与卫星主站或其他卫星站点之间的通信连接, 为用户提供稳定可靠的通信服务。“动中通”能够在运动状态下对准 静止轨道卫星,能够实现行进式应急报道,突破了车辆等移动载体在 运动中进行多媒体通信的难关。“动中通”与“静中通”相比较,更 加机动灵活,移动中自动跟踪卫星,可实现点对点、点对多点的移动 通信;并具有自动捕获能力,驶出盲区后迅速恢复通信,无需进行人 工天线对星操作等优势,但“动中通”天线等效口径偏小,在使用过 程中传输功率受限,在某些环境下传输性能可能会受到一定水准的影响。因此,在时效性和移动性要求较高的环境下可选择使用“动中通”卫星车实现移动通信;对传输质量要求较高及报道环境相对固定的环

北斗卫星通信概述及应用领域

目录 一、北斗卫星通信概述 (2) 二、北斗卫星通信应用领域 (2) 2.1北斗卫星通信在水利行业中的应用 (2) 2.2北斗卫星通信在水情监测数据传输中的应用 (3) 三、北斗卫星通信方式 (4) 3.1点对点双向通信 (4) 3.2多点对一点通信 (4) 四、北斗卫星通信的优缺点 (5) 4.1北斗卫星通信的优点 (5) 4.2北斗卫星通信的缺点 (5)

北斗卫星通信概述应用及优缺点 一、北斗卫星通信概述 北斗卫星导航系统﹝BeiDou(COMPASS)Navigation Satellite System﹞是中国正在实施的自主发展、独立运行的全球卫星导航系统。系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,空间段包括5颗静止轨道卫星和30颗非静止轨道卫星,地面段包括主控站、注入站和监测站等若干个地面站,用户段包括北斗用户终端以及与其他卫星导航系统兼容的终端。 北斗卫星导航系统﹝BeiDou(COMPASS)Navigation Satellite System﹞是中国正在实施的自主发展、独立运行的全球卫星导航系统。系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,空间段包括5颗静止轨道卫星和30颗非静止轨道卫星,地面段包括主控站、注入站和监测站等若干个地面站,用户段包括北斗用户终端以及与其他卫星导航系统兼容的终端。 二、北斗卫星通信应用领域 2.1北斗卫星通信在水利行业中的应用 在水利工程勘测和设计中,经常会遇到山岭、江河、峡谷等自然环境的阻隔,传统测量仪器很难找到合适的测量点,工作量也比较大,影响测量的精确度和工程进度。 北斗是完全由我国自行研制的定位系统,目前已经广泛运用到各项我国基础工程各项测量和定位中,基于北斗定位的RTK(实时动态差分)测量相比较传统观的水利工程测量而言,

北斗卫星定位车载终端技术方案精编版

北斗卫星定位车载终端技术方案 三、技术原理 北斗卫星导航系统是中国自行研制开发的区域性有源三维卫星定位与通信系统(CNSS),是除美国的全球定位系统(GPS)、俄罗斯的GLONASS之后第三个成熟的卫星导航系统。北斗卫星导航系统为用户提供高质量的定位、导航和授时服务,其建设与发展则遵循开放性、自主性、兼容性、渐进性。北斗卫星定位车载终端采用了多模块化、组合式优化设计,内置高性能芯片,各模块之间的接口采用标准接口,充分利用系统平台、移动通讯网络、因特网络,将汽车行驶记录仪、卫星定位、卫星导航、油耗检测功能集于一体,通过无线数据通讯接口(GSM、GPRS、CDMA)和GPS接口,能与监控中心系统进行数据通信和移动位置的定位,能够满足用户的多种需求。 除具有传统行驶记录仪的功能外增加了定位导航、监控跟踪、数据实时传送、油耗检测等功能,并且能够实现对车辆实时监管、调度,遇险报警远程网络监控,彻底改变了现有汽车行驶记录仪只能实地监管、事后监督的弊端;GPS/北斗2双模卫星定位模块,可以灵活配置信号处理通道工作于单GPS模式,或单北斗2模式,或GPS/北斗2混合模式;兼容目前现有的GPS单模定位,且能实现双模捕获、双模跟踪更加智能化、集成化。因此,基于以上原理设计的卫星车载终端监控系统,大大超出了传统行驶记录仪的功能,具有极为光明的发展前景。 四、设计方案 (一)设计原则 1、先进性和适用性相结合 系统采用成熟的高新科技,以目前较为先进的方法实现需要的功能,保证系统具有深厚的发展潜力,在相当长的时间内具有领先水平。 2、通用性和安全性相结合 在系统设计过程中,均留有相应的通信接口,系统的各个模块构成一个有机的整体。系统数据库中的各种数据在交换和共享的过程中,充分考虑到了系统的安全性。对每一个用户的权限有严格的认证(司机卡身份识别)体制,对每一个用户的权限进行分级控制和限定。

北斗卫星的行业现状和未来发展前景

北斗卫星的行业现状和未来发展前景 一、行业现状 1.简述 北斗卫星导航试验系统自2003 年正式提供服务以来,系统建设和无源导航定位服务能力已取得了长足发展,北斗卫星及其与其他卫星导航系统的多模芯片、天线、板卡等关键技术也已取得突破,掌握了自主知识产权,实现了产品化,在交通运输、海洋渔业、水文监测、气象测报、森林防火、通信时统、电力调度、救灾减灾和国家安全等领域得到广泛应用,产生了显著的社会效益和经济效益。而且目前北斗国际化发展势头良好,已经在巴基斯坦、泰国、印尼等国推广应用。未来北斗卫星导航系统全面建成后还将为民航、航运、铁路、金融、邮政、国土资源、农业、旅游等行业提供更高性能的定位、导航、授时和短报文通信服务。 ——在交通运输方面,北斗系统广泛应用于重点运输过程监控管理、公路基础设施安全监控、港口高精度实时定位调度监控等领域。 ——在海洋渔业方面,基于北斗系统,为渔业管理部门提供船位监控、紧急救援、信息发布、渔船出入港管理等服务。 ——在水文监测方面,成功应用于多山地域水文测报信息的实时传输,提高灾情预报的准确性,为制订防洪抗旱调度方案提供重要支持。 ——在气象测报方面,成功研制一系列气象测报型北斗终端设备,启动“大气海洋和空间监测预警示范应用”,形成实用可行的系统应用解决方案,实现气象站之间的数字报文自动传输。 ——在森林防火方面,成功应用于森林防火,定位与短报文通信功能在实际应用中发挥了较大作用。——在通信时统方面,成功开展北斗双向授时应用示范,突破光纤拉远等关键技术,研制出一体化卫星授时系统。 ——在电力调度方面,成功开展基于北斗的电力时间同步应用示范,为电力事故分析、电力预警系

北斗在电力行业的应用.docx

北斗系统及其在电力行业应用 1、北斗系统简介 中国北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)是中国自行研制的全球卫星导航系统。是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。 北斗卫星导航系统提供以下系统功能: 1)短报文通信:北斗系统用户终端具有双向报文通信功能,用户可以一次传送40-60个汉字的短报文信息。 2)精密授时:北斗系统具有精密授时功能,可向用户提供20ns-100ns时间同步精度。 3)定位功能:水平精度100米(1σ),设立标校站之后为20米(类似差分状态)。工作频率:2491.75MHz。 作为自主的开发的卫星导航系统,北斗系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,产生显著的经济效益和社会效益。 2、在电力行业应用北斗系统的必要性 随着中国经济社会发展,电网规模不断扩大,运行水平大幅提高。在中国,存在长距离大规模电力传输的现实,从电厂发出的每度电,都以高达每秒30万公里的速度经过变电站并网输送,经过数个、数十个变电站的长距离配送,最终抵达用户。这个过程需要同时有几百台设备保护电力安全运行,涉及各种以计算

机技术和通信技术为基础的自动化装置,如电厂机组自动控制系统,调度自动化系统,变电站计算机监控系统等,如此大量设备是否能够按照预先计划的流程,准确安全地传输到位,决然离不开全网设备时间基准问题。 然而中国电力企业从电力传输网到电力计算机网络的时间系统,主要是以GPS作为主时钟源,进行同步授时,由于其授时的工作原理和系统时钟源被美国掌控,GPS授时存在重大隐患。具体而言,目前中国电力行业接收GPS授时信号是免费的,GPS授时终端价格低廉,这是美国GPS系统在民用领域的应用。正因为是“免费的午餐”,所以美国不承诺对任何应用所产生的问题负责。众所周知,GPS系统是美国政府引以为豪的战略工程,所有信号的发生、传输权由美国掌控,一旦出现民用信号关闭、误码率加大或者系统出现故障,以GPS技术为基础的系统将被置于危险的境地,中国电网概莫能外。 客观来说,当前智能电网、特高压超高压电网的建设对电网时间同步的精准度正从过去的微秒级过渡到纳秒级,因此,必须为电力系统配置高精度、高可靠的授时系统,在传输系统和接收系统间出现时间误差,高压电流势必会在瞬间烧毁被接收的变电站或是传输线路,从而造成难以估量的灾难。 采用“北斗双向授时功能”专有技术能实现严格意义上全电力系统时间的统一;通过利用北斗卫星导航系统的短报文功能,能够实现所有厂站端时间同步系统远程监测和运行控制;由此,中国电力输送领域重点攻坚的时间同步课题将得到彻底解决。 3、北斗系统在电力行业中的应用

北斗卫星一代短报文通信技术原理和关键技术

北斗卫星一代短报文通信技术原理和关键技术【文章摘要】 介绍北斗卫星一代短报文通信技术原理和关键技术以及应用 【关键词】 北斗卫星一代;短报文;通信技术;应用 0 前言 北斗卫星的短报文通信功能是美国GPS 和俄罗斯GLONASS 都不具备的特殊功能,是全球首个在定位、授时之外具备报文通信为一体的卫星导航系统。 北斗卫星短报文通信具有用户机与用户机、用户机与地面控制中心间双向数字报文通信功能,一般的用户机可一次可传输36 个汉字,申请核准的可以达到传送120 个汉字或240 个代码。短报文不仅可点对点双向通信,而且其提供的指挥端机可进行一点对多点的广播传输,为各种平台应用提供了极大便利。 指挥端机收到用户机发来的短报文,通过串口与服务器连接并且以JAVA 或其它语言编写的通信服务解析数据,通过短信网关转发至普通手机,以及通过通信服务可实现普通手机往用户机发送短报文功能。 1 短报文通信特点 北斗报文通信相比较其它的卫星通信方式具有以下特点: (1)北斗通信申请的信道的分析 通信申请的用户机端通过“北斗”卫星与其他的用户机建立通信申请的链接,类似互联网通信的链路层,只不过北斗通信是通过卫星无线互连。“卫星TCP/IP 传输技术”中定义的链路层不仅仅指整个系统的通信链接,而是在其的基础上高了一个层次。“北斗”卫星通信的实际链路中并没有实现链路控制功能,类似与互联网的物理层。可以类比,数据丢失率类似链路的差错率,通信频度类似于传播延迟,信息往返同样也存在信道的不对称性。 (2)通信频度和通信量的限制 根据北斗卡的不同级别,北斗卡可以支持的报文通信可分为两个级别,普通用户通信频率为120 汉字/ 次;三级北斗卡发送短报文时间频率为1 分钟一次。 (3)数据格式的种类 根据需要,可以选择北斗通信申请的短报文两种数据类型,一种是通常汉字通信采用的ASCII 码的方式,另一种为BCD 码方式。

北斗卫星导航系统用户终端通用技术要求

北斗卫星导航系统定时型终端通用规范(预) 2014.08.14 1 范围 本标准规定了北斗卫星导航系统定时型终端(以下简称定时型终端)的技术要求、测试方法、检验规则及包装、运输和储存等要求。 本标准适用于定时型终端备的研制、生产和使用,也是制定北斗定时产品标准、检验产品质量和产品应用选型的依据。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 ?GB/T 191 包装储运图标志 ?GB/T 2421.1—2008 电工电子产品环境试验概述和指南 ?GB/T 2828.1—2003 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划 ?GB 4208—2008 外壳防护等级(IP代码) ?GB/T 4857.5 包装运输包装件跌落试验方法 ?GB/T 5080.1—1986 设备可靠性试验总要求 ?GB/T 5080.7—1986 设备可靠性试验恒定失效率假设下的失效率与平均无故障时间的验证试验方案 ?GB/T 5296.1—1997 消费品使用说明总则 ?GB/T 12267—1990 船用导航设备通用要求和试验方法 ?GB/T 12858-1991 地面无线电导航设备环境要求和试验方法 ?GB/T 13384 机电产品包装通用技术条件 ?GB/T 17626.3—2006 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验?GB/T 20512 GPS接收机导航定位数据输出格式

3 术语、定义和缩略语 3.1术语和定义 北斗卫星导航系统用户终端通用技术要求确立的以及下列术语和定义适用于本文件。 3.1.1北斗定时型终端 BeiDou timing terminal 基于北斗系统授时功能,可以接收北斗卫星信号完成解算、测量、时间修正并复现、输出BDT标准时间信息、时标信息功能的接收设备。 3.2缩略语 下列缩略语适用于本文件。 ?CGCS 2000:中国大地坐标系2000(China Geodetic Coordinate System 2000)?EIRP:有效全向辐射功率(Effective Isotropic Radiated Power) ?PDOP:位置精度衰减因子(Positional Dilution of Precision); ?PPS:秒脉冲(Pulse Per Second) ?TOD:时刻(Time of Day) 4 技术要求 4.1 一般要求 4.1.1 终端组成 定时型终端根据其业务特征通常分为北斗RDSS和(或)RNSS单向定时型、北斗RDSS 双向定时型,以满足不同用户的应用需求。主要由下列部件和组件组成: 1.接收天线(北斗RDSS双向定时型则需用发射/接收共用天线)、馈线; 2.接收主机,由北斗定时模块(包括射频信道、基带处理器)、中央处理器、电源模 块、信号/数据输入/输出接口以及前后面板/机壳等部件组成;

相关文档
最新文档