复合材料不饱和聚酯树脂
不饱和聚酯树脂固化程度的评定

不饱和聚酯树脂固化程度的评定不饱和聚酯树脂是一种常用的固化材料,广泛应用于涂料、胶黏剂、复合材料等领域。
固化程度是评定不饱和聚酯树脂性能的重要指标之一。
本文将从固化程度的定义、评定方法和影响因素等方面进行探讨。
一、固化程度的定义不饱和聚酯树脂的固化程度是指树脂体系中反应物与产物的摩尔比。
通常情况下,固化程度越高,树脂体系的性能越优越。
二、评定方法1. 热分析法:利用差热分析(DSC)或热重分析(TGA)等热分析技术,通过测量样品在升温过程中的热响应或质量变化,来评定固化程度。
固化程度越高,样品的热响应或质量变化越大。
2. 硬度测试法:通过测量固化后的样品硬度,来评定固化程度。
一般采用巴氏硬度计或洛氏硬度计等硬度测试仪器进行测量。
固化程度越高,样品的硬度越大。
3. 动态力学分析法:利用动态力学分析仪(DMA)等仪器,通过测量样品在一定振动频率下的动态力学性能变化,来评定固化程度。
固化程度越高,样品的动态力学性能变化越明显。
4. 化学分析法:通过对固化后的样品进行化学分析,测定反应物和产物的摩尔比,来评定固化程度。
常用的化学分析方法有红外光谱法、核磁共振法等。
三、影响因素1. 固化剂种类和用量:不同种类和用量的固化剂对固化程度有较大影响。
合理选择和控制固化剂种类和用量,可以提高固化程度。
2. 温度和时间:固化反应是一个时间与温度相关的过程。
通常情况下,提高温度和延长固化时间,可以增加固化程度。
3. 混合均匀性:不饱和聚酯树脂与固化剂的混合均匀性对固化程度有重要影响。
如果混合不均匀,会导致部分区域固化程度低,影响材料性能。
4. 环境条件:固化程度受环境条件(如湿度、氧气含量等)的影响较大。
在潮湿或氧气充足的环境中,固化程度可能降低。
固化程度是评定不饱和聚酯树脂性能的重要指标之一。
通过合理选择固化剂种类和用量、控制温度和时间、保证混合均匀性以及考虑环境条件等因素,可以提高固化程度,进而优化不饱和聚酯树脂的性能。
不饱和聚酯树脂

(2)带有羟端基的乙二醇酯的酯基转移反应即缩聚反应
其逆反应分别对应水解和醇解反应。高温下,小分子二元醇与高分子量的聚酯 发生的醇解反应趋向于生成低聚物和游离醇的平衡态。
醇解反应的影响因素
影响醇解反应的因素主要有催化剂、反应温度、醇超量比、反应时间 等。大量研究表明, 醋酸锌具有较好的催化性能,且极具性价比优势, 实验采用 0.5%的醋酸锌(相对PET) 作为醇解反应的催化剂。二元醇 种类不同,醇解反应快慢不同。 醇解反应一般在 170~220℃下进行,低于170℃,反应非常缓慢,但 高于220℃又会发生严重的副反应,造成树脂色泽深化,从表1可见,在 190~210℃下,醇解产物具有较好的综合性能。
不饱和聚酯树脂的合成
在通用型不饱和聚酯树脂的合成中,比如TM- 191树脂,一般采 用一步法,即所有的醇酸单体一次性投料。
也可采用两步法,比如 TM-196 树脂,先将苯酐和醇单体先投 料进行初步酯化,再加入不饱和酸进一步酯化。采用两步法合成 的树脂综合性能优于一步法。这要归因于体系中不饱和双键的平 均分布 。
然后羟基酸分子间进行缩聚反应得到聚酯和水即产物(1), (2)进行反应:
3.一种二元醇与一种二元酸和一种二元酸酐间的酯化反应, 丙二醇与苯酐和反丁烯二酸之间的反应特点是反应开始时 既有醇与酸酐的开环加成反应又有醇与酸的酯化反应,即:
然后羟基酸之间即(3)与(4)产物进行缩聚得到聚酯 和水,缩聚反应同前。
着色自由, 易涂饰和加胶衣层, 使产品外表颜色多种多样。 易与不同增强材料、填料组合, 得到不同特性的复合材料制品。 价格低廉并有降低成本的一系列办法, 易于投资生产。 由于含有较多的苯乙烯, 对人眼、气管和粘膜都有刺激;阻燃性差; 收缩率大。
不饱和聚酯树脂的合成原理
不饱和聚酯在复合材料中的应用有哪些

不饱和聚酯在复合材料中的应用有哪些不饱和聚酯是一种特殊的高分子材料,是由不饱和聚酯树脂和交联剂组成,常常被用于制作各种高强度塑料,如卡车屋顶、加强板、水隔坝、船体以及风力发电机叶片。
不饱和聚酯在复合材料中的应用也越来越广泛。
本文将详细探讨不饱和聚酯在复合材料中的应用及其优势。
一、不饱和聚酯在纤维增强塑料中的应用纤维增强塑料(Fiber Reinforced Plastic,FRP)是一种独特的工程材料,由纤维增强材料和基体树脂(通常是不饱和聚酯基础树脂)组成。
不饱和聚酯作为基体树脂,具有优异的抗冲击性能、防水性、抗腐蚀性等特性,是FRP材料的首选树脂。
不饱和聚酯在FRP材料复合加工中作为基体树脂,可以与玻璃纤维、碳纤维、芳纶纤维等增强材料有效结合,形成高强度、轻质、耐腐蚀的复合材料,广泛应用于汽车、船舶、飞机、建筑等领域。
同时,不饱和聚酯树脂还具备优秀的流动性,可用于模压成型、浸涂成型等制造方法,极大地拓宽了FRP材料的应用范围。
二、不饱和聚酯在复合材料制品中的应用1、胶合板材和人造板材不饱和聚酯树脂在胶合板材和人造板材的制造中,作为一种优秀的粘合剂使用。
不饱和聚酯树脂具有高分子链的弹性,可以有效地增强胶合板和人造板的强度和刚性。
此外,不饱和聚酯树脂还具备抗水、防腐、耐久等优点,对于外墙保温材料、隔热材料、其他特种建材等的制造也有很大的应用前景。
2、汽车零部件不饱和聚酯是汽车制造中不可或缺的重要材料之一。
由于其优秀的物理和化学性质,不饱和聚酯被广泛用于汽车外壳、车身板一件成型、座椅、方向盘等零部件制造中。
不饱和聚酯涂料还具有极佳的耐腐蚀性、耐磨性和防紫外线性,可以应用于整车喷漆、车身贴膜等,为汽车保护提供优异的效果和高品质的保障。
3、风能叶片不饱和聚酯在风能叶片制造中有着重要的地位,它有效增强了叶片的坚硬度、强度和稳定性,使其更适应于复杂的海洋环境。
不饱和聚酯合成物综合运用了不饱和聚酯树脂、玻璃纤维和其它辅助材料,可以制造出符合当前风力发电行业追求的“轻、薄、大、强”等性能需求的高质量叶片杆.三、结语总之,不饱和聚酯在复合材料中的应用已经卓有成效。
不饱和聚酯树脂成分

不饱和聚酯树脂成分
不饱和聚酯树脂是一种常见的高分子材料,其主要用于制作复合
材料,如玻璃钢、碳纤维等。
它的成分主要由三部分组成:酸酐、丙
烯酸酯和稀释剂。
在本文中,将分步骤阐述不饱和聚酯树脂的成分和
制备过程。
第一步:酸酐
酸酐是不饱和聚酯树脂的主要成分之一,它可以是马来酸酐、酞酸酐、邻苯二甲酸酐等。
酸酐的主要作用是作为交联剂,在加热的过程中与
丙烯酸酯反应产生交联反应,从而形成聚合物。
第二步:丙烯酸酯
丙烯酸酯是不饱和聚酯树脂中的另一个主要成分,其主要作用是提供
烯烃基团,以便其与酸酐发生交联反应。
不同的丙烯酸酯具有不同的
特性,比如异丁基丙烯酸酯具有较高的耐候性,而甲基丙烯酸甲酯具
有较快的固化速度。
第三步:稀释剂
稀释剂是将不饱和聚酯树脂稀释成液体状态的物质,它可以是惰性稀
释剂,如丙酮、二甲苯等,也可以是活性稀释剂,如丙烯腈、乙烯等。
稀释剂的主要作用是使得不饱和聚酯树脂变成涂料、胶水等应用领域
中的常规材料。
第四步:制备过程
不饱和聚酯树脂的制备过程大致可分为以下几个步骤:
1. 将酸酐与丙烯酸酯按照一定比例混合。
2. 加入适量的稀释剂,搅拌均匀。
3. 加入光引发剂,以便在紫外线照射下固化。
4. 进行高温反应,使酸酐和丙烯酸酯发生交联反应,从而形成聚合物。
5. 经过过滤、临界点干燥等处理,得到最终的不饱和聚酯树脂产品。
总之,不饱和聚酯树脂作为一种重要的高分子材料,在各个领域
中有着广泛的应用,其成分和制备过程都具有一定的复杂性和技术性,需要专业知识和技术支持。
聚酯树脂型号

聚酯树脂型号全文共四篇示例,供读者参考第一篇示例:聚酯树脂是一种常见的合成树脂材料,广泛应用于建筑材料、涂料、纺织品、电子产品等领域。
根据不同的物理性质、化学性质和应用领域,聚酯树脂可以分为多种不同的型号。
在本文中,我们将介绍一些常用的聚酯树脂型号及其特点。
1. 不饱和聚酯树脂(UPR)不饱和聚酯树脂是一种常见的聚酯树脂型号,广泛应用于建筑、船舶、汽车等领域。
不饱和聚酯树脂具有良好的化学稳定性和机械性能,耐腐蚀、耐磨损、可涂刷等特点。
不饱和聚酯树脂可与玻璃纤维、石英砂等材料结合,形成复合材料,用于制造玻璃钢制品、船舶、汽车零部件等。
2. 粘合剂型聚酯树脂粘合剂型聚酯树脂适用于粘合各种材料,如金属、木材、塑料等。
粘合剂型聚酯树脂具有良好的黏接性能、耐热性和耐化学性,可用于制造复合材料、粘接结构件等。
3. 耐高温聚酯树脂耐高温聚酯树脂是一种特殊的聚酯树脂型号,具有良好的耐高温性能、耐热性和电绝缘性能。
耐高温聚酯树脂可用于制造耐高温环境下的零部件、电子产品、电气绝缘材料等。
阻燃聚酯树脂是一种具有防火性能的聚酯树脂型号,可有效阻止火焰蔓延。
阻燃聚酯树脂广泛应用于建筑、电子产品、航空航天等领域,用于制造防火材料、电气绝缘材料等。
无溶剂型聚酯树脂是一种绿色环保的聚酯树脂型号,不含有害溶剂,具有低VOC排放、无毒无害、易于处理等特点。
无溶剂型聚酯树脂可用于制造环保涂料、粘合剂、胶粘剂等。
聚酯树脂是一种十分重要的合成树脂材料,不同型号的聚酯树脂适用于不同的应用领域,具有各自独特的特点和优势。
随着科技的不断进步和需求的不断增长,聚酯树脂将在未来得到更广泛的应用和发展。
第二篇示例:聚酯树脂是一种常见的工业原料,广泛用于塑料制品、涂料、纤维等领域。
不同型号的聚酯树脂具有不同的特性和用途,选择合适的型号对产品的性能和质量至关重要。
本文将介绍几种常见的聚酯树脂型号,帮助读者更好地了解聚酯树脂的特点和应用场景。
1. PET聚酯树脂PET(聚对苯二甲酸乙二醇酯)是一种热塑性树脂,常用于饮料瓶、纤维、薄膜等领域。
不饱和聚酯树脂的固化过程

不饱和聚酯树脂的固化过程不饱和聚酯树脂是一种常见的固化材料,用于制备各种具有高性能的工程塑料、涂料和复合材料。
固化是不饱和聚酯树脂生产中的一个关键步骤,通过固化过程,可以将液态的不饱和聚酯树脂转化为固态产物。
以下是不饱和聚酯树脂固化过程的详细描述。
不饱和聚酯树脂的固化是通过交联反应实现的。
在液态状态下,不饱和聚酯树脂是由一些高分子量的线性聚合物组成的,这些聚合物中含有双键或环氧基团。
在固化过程中,这些双键或环氧基团与固化剂反应,形成三维网络结构,从而使聚酯树脂固化。
在不饱和聚酯树脂的固化过程中,通常需要使用一个固化剂,也称为交联剂或引发剂。
固化剂可以是一种化学物质,如有机过氧化物、硬脂酰过氧化物等,也可以是一种物理方式,如热固化或紫外线固化。
具体的固化剂选择取决于不饱和聚酯树脂的性质和所需的固化条件。
在固化过程中,固化剂的引发剂或交联剂首先与聚酯树脂中的双键或环氧基团发生反应。
这个反应通常是一个自由基反应,产生自由基中间体。
这些自由基可以通过链传递反应,将聚酯树脂的链延长,或与其他聚合物链进行交联。
在固化过程中,固化剂的引发剂通常需要在一定的温度和时间条件下进行。
这些条件可以通过热固化或紫外线固化来实现。
热固化通常需要将不饱和聚酯树脂和固化剂放置在一定温度下,使其发生反应,形成固态产物。
紫外线固化通常需要将不饱和聚酯树脂和固化剂放置在一定的光照条件下,通过紫外线光照来引发固化反应。
固化过程的时间会受到固化剂表观活性、温度、固化剂添加量和固化剂与不饱和聚酯树脂的相容性等因素的影响。
一般来说,温度越高、固化剂添加量越多、不饱和聚酯树脂与固化剂的相容性越好,固化速度越快。
固化过程会由于多方面的因素而受到影响,例如固化剂种类、温度、时间等等。
因此,在不饱和聚酯树脂固化过程中,需要进行一系列的试验和工艺调整,以实现最佳的固化效果。
总之,不饱和聚酯树脂的固化过程是通过交联反应实现的。
在固化过程中,固化剂与不饱和聚酯树脂中的双键或环氧基团反应,形成三维网络结构。
关于不饱和聚酯树脂

关于不饱和聚酯树脂不饱和聚酯树脂,是一种由不饱和酯类单体与多美林单体共聚而成的高分子聚合物。
它具有重要的应用领域,如制备复合材料、涂料、粘合剂和浇注材料等。
本文将从它的制备方法、性质和应用等方面进行详细介绍。
不饱和聚酯树脂的制备方法主要有缩聚法和交联法两种。
缩聚法是指将饱和和不饱和的酯类单体与多醇缩聚,通过酯键的缩聚反应将单体分子链连接成高分子聚合物。
常用的酯类单体有酞酸酯、己二酸酯、丙烯酸酯等。
交联法是指将不饱和酯类单体与含有活性引发剂的配位或自由基引发剂共聚,引发剂将引发交联反应,从而形成交联聚合物。
交联聚合的不饱和聚酯树脂具有高耐热性和强度。
不饱和聚酯树脂的分子结构主要由酯键和不饱和键组成。
酯键是连接酯类单体的化学键,由羧酸和醇反应形成。
不饱和键是在聚合反应中引入的,它能够提供高度活泼的反应活性,从而有助于交联反应的进行。
树脂中的不饱和键包括单酯双烯、酞酸烯和己二酸烯等。
不饱和聚酯树脂具有许多重要的性质。
首先,它具有优异的化学稳定性,在一定的温度和湿度条件下稳定性较高。
其次,它具有良好的物理力学性能,如强度高、耐磨性好等。
此外,其绝缘性能好,具有良好的耐腐蚀性和耐热性能。
同时,不饱和聚酯树脂还具有可调性强、可染性好等优点。
不饱和聚酯树脂在许多应用领域有广泛的应用。
首先,它可以用于制备复合材料,如玻纤增强不饱和聚酯树脂复合材料,具有机械性能好、重量轻、设计自由度高等特点。
其次,不饱和聚酯树脂还可以制备涂料,具有良好的附着力、抗化学腐蚀性和优异的耐候性。
此外,不饱和聚酯树脂还可以用作粘合剂和浇注材料,具有较低的粘度和高度的渗透性,可与不同材料具有良好的粘结性能。
总之,不饱和聚酯树脂是一种具有重要应用前景的高分子材料。
它具有优异的性质和多种应用领域,未来可望在材料科学领域发挥更大的作用。
不饱和聚酯树脂的合成工艺

对原料进行过滤、干燥、脱气等处理, 以确保原料的纯净度和避免在后续反 应中产生气泡。
聚合反应
聚合温度
控制聚合温度在一定范围内,使原料充分反应。
聚合压力
保持一定的聚合压力,有助于提高产品的分子量和粘度。
聚合时间
根据反应进程和产品要求,确定合适的聚合时间。
固化与后处理
固化
通过加入固化剂或加热等方式,使不饱和聚酯树脂从液态转 变为固态。
结构调控与改性
通过分子结构设计、共聚改性等方法,改善不饱和聚 酯树脂的加工性能、力学性能和耐热性能。
高性能化的研究
探索不饱和聚酯树脂的高性能化途径,如增强增韧、 阻燃、耐腐蚀等方面的研究。
环保与可持续发展
01
绿色合成工艺
研究开发环境友好的合成工艺,降低生产过程中的能耗和废弃物产生。
02
废弃不饱和聚酯树脂的回收利用
04
02
不饱和聚酯树脂的合成原理
缩聚反应原理
01
缩聚反应是一种或多种含有多 官能团的单体之间发生反应, 生成高分子化合物的聚合反应 。
02
在不饱和聚酯树脂的合成中, 通常使用二元醇和二元酸作为 单体,通过缩聚反应生成聚酯 。
03
缩聚反应过程中,单体分子中 的官能团之间相互反应,不断 脱去小分子副产物(如水或醇 ),形成高分子链。
总结词
01
产品性能不稳定会影响树脂的应用范围和可靠性。
详细描述
02
原因可能是由于合成过程中的杂质或副产物过多,或者后处理
过程中的热历史、加工条件等控制不当。
解决方案
03
加强原料的纯度控制和后处理工艺,优化热历史和加工条件,
以及采用稳定剂或抗氧剂等添加剂来提高产品的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合材料不饱和聚酯树脂
12
1.直接酯化
❖ (1)二元酸与二元醇作用
n H O R 'O H n H O O C R C O O H H O O C R C O R 'O n H 2 n 1 H 2 O ❖ (2)二元醇与酸酐作用
片状模塑料(SMC)与团状模塑料(BMC)技术日益成 熟,可以机械化大量生产汽车外壳部件以及其他工 业及日常用品部件。
❖ 4.树脂的配方设计
选用不同的二元酸、二元醇并调节其用量,以确 定不同的分子链结构;
选用不同的引发剂(催化剂),或联用两种引发剂 以满足固化性能要求;
复合材料不饱和聚酯树脂
10
❖ 5.新品种树脂
第4章 不饱和聚酯树脂
复合材料不饱和聚酯树脂
4.1 概述
❖ 4.1.1概念及其特性
不饱和聚酯树脂(UPR):分子链上具有不饱和键(如双键)的 聚酯高分子。不饱和二元酸(或酸酐)、饱和二元酸(或酸酐) 与二元醇(或多元醇)在一定条件下进行缩聚反应合成不饱 和聚酯,不饱和聚酯溶解于一定量的交联单体(如苯乙烯、 邻苯二甲酸二烯丙酯)中形成的液体树脂即为不饱和聚酯 树脂。加入引发体系可反应形成立体网状结构的不溶不熔 高分子材料,是一种典型的热固性树脂。
(2)阻燃性树脂:常用的添加型阻燃剂有A1(OH)3、 Sb2O3、磷酸酯和Mg(OH)2等。目前欧洲也采用加入酚 醛树脂的方法,而美国还采用加入二甲基磷酸酯和磷酸 三乙基酯,都收到了较好效果。
复合材料不饱和聚酯树脂
ห้องสมุดไป่ตู้
7
(3)耐腐蚀树脂 常用耐腐蚀性树脂有双酚A型不饱和聚酯、 间苯二甲酸型树脂和松香改性不饱和聚酯等。
复合材料不饱和聚酯树脂
6
(1)低收缩性树脂:采用热塑性树脂来降低和缓和UPR的 固化收缩,已在SME和BME制造中得到广泛应用。常 用的低收缩剂有聚苯乙烯、聚甲基丙烯酸甲酯和苯二甲 酸二烯丙酯聚合物等。目前国外除采用聚苯乙烯及其共 聚物外,还开发有聚己酸内酯(LPS 60)、改性聚氨酯和 乙酸纤维素丁酯等。
(9)计算机在化学合成中应用为开发不饱和聚酯树脂连续化 生产提供了便利。
复合材料不饱和聚酯树脂
5
❖ 2.树脂品种的进展
传统的通用树脂、胶衣树脂、耐化学树脂、阻燃树 脂、板材树脂、浇注树脂、模压树脂等仍为树脂的 主要品种. 通过配方改进和树脂改性不断出现了新 型的UP树脂。国际上不饱和聚酯的技术发展方向主 要集中在降低树脂收缩率、提高制品表面质量、提 高与添加剂的相容性、增加对增强材料的浸润作用 以及提高加工性能和力学性能。
阻燃树脂、SMC和BMC用树脂的进展对树脂应 用的扩大起了很大作用。
❖ 6.树脂的加工成型
随着应用领域的扩大,从手糊、喷涂成型发展到 袋压、注塑、模压、缠绕、离心、连续制板、拉挤 等成型方法、成型工艺设备有15种以上,其机械化、 自动化水平逐步提高,产品质量稳定,成本降低, 实现了高效率生产。
复合材料不饱和聚酯树脂
(7)节约资源的产品开发:例如:利用环戊二烯制低成本树 脂,利用回收涤纶废料合成树脂等。
(8)可降解不饱和树脂:主要是在分子链中引入聚乙二醇、 乳酸、聚己内酯、N-乙烯基吡咯烷酮等可生物降解结构,制 备可降解不饱和聚酯。
复合材料不饱和聚酯树脂
9
❖ 3.新设备、新工艺
手糊、喷涂成型发展到袋压、注塑、模压、缠绕、 离心、连续制板、拉、挤等多种成型方法,成型工 艺设备有15种以上。
(4)强韧性树脂 主要采用加入饱和树脂、橡胶、接枝等方 法来提高不饱和聚酯树脂的韧性。如采用末端含羟基的不饱 和聚酯与二异氰酸酯反应制成的树脂,其韧性可提高2~3倍。
(5)低挥发性树脂:一是采用表膜形成剂的方法降低苯乙烯 挥发量;二是采用高沸点交联剂来代替苯乙烯。
复合材料不饱和聚酯树脂
8
(6)树脂的共混改性:双组分液态树脂,A组分是甲苯二异 氰酸酯,B组分是低分子量间苯二甲酸型UPR。该混杂树脂 黏度低,便于泵送和高填充,固化极快,有高延伸率、高强 度、高模量和优良的耐蚀性,苯乙烯逸出量低。该树脂易于 加工,凡用于增强塑料的通用加工技术均可采用,适于制作 大部件。
复合材料不饱和聚酯树脂
3
❖ 4.1.3 树脂的技术发展
1.理论进展(九个方面):
(1)对反应过程机理的进一步认识,确定分阶段反应过程, 在此基础上产生了间苯二甲酸型、双酚A型、新戊二醇型等 不同类型的产品,树脂的性能得到改善。
(2)预测及控制聚酯缩聚产物分子量。用环戊二烯及其衍生 物与UPR相结合,从而达到降低使用苯乙烯的目的。
(3)树脂的改性及掺混,通过嵌段、接枝、共聚及互穿网络 等方法进行树脂的改性以及通过添加某些组分共混来提高树 脂对片状模塑料(SME)增稠的机理及低轮廓添加剂作用机 理的研究成果,使聚酯模塑料能够大规模、高效率生产。
复合材料不饱和聚酯树脂
4
(4)CM的结构设计与计算理论进步,为产品设计和实际应用 提供了理论指导。
11
4.2不饱和聚酯树脂的合成
❖ 4.2.1 合成原理
不饱和聚酯是具有聚酯键和双键的线型高分子化合物。 不饱和的二元酸通常是顺丁烯二酸(或酸酐)以及它的异构 体反丁烯二酸;亦可采用不饱和一元酸或一元醇,如丙烯酸、 甲基丙烯酸或丙烯醇等。构成两大类不饱和聚酯:即顺丁烯 二酸类不饱和聚酯和丙烯酸类不饱和聚酯。
复合材料不饱和聚酯树脂
2
❖ UPR的优点:
1 具有良好的加工特性,可在室温、常压下固化成型, 不释放出任何小分子副产物;
2 树脂的黏度适中,可采用多种加工成型方法,如手糊成型 、喷射成型、拉挤成型、注塑成型、缠绕成型等。
固化后的热固性树脂综合性能并不高,因此通常用纤维或 填料增强制备成复合材料,提高性能,以满足使用要求。例 如玻璃纤维增强热固性树脂具有质量轻、强度高、电绝缘、 耐腐蚀、透微波等许多优良的性能。
(5)CM界面研究使CM性能显著提高,开发了系列偶联剂产 品。
(6)引发剂的多样化研究为新工艺开发提供可能,如低温低 压模塑料、水乳化体系UP树脂的固化及应用。
(7)阻聚体系复合多样化,为UP中间产品贮存期延长及产品 质量稳定提供了帮助。
(8)各种特性添加剂如抗氧剂、阻燃剂、光稳定剂、表面隔 离剂、润湿剂、触变剂、偶联剂等使树脂的品种更为丰富。