不饱和聚酯树脂固化程度的评定

合集下载

不饱和聚酯树脂的固化

不饱和聚酯树脂的固化

不饱和聚酯树脂的固化Company number : [0089WT-8898YT-W8CCB-BUUT-202108]不饱和聚酯树脂的固化机理引言不饱和聚酯树脂(UPR)的固化似乎是从理论和实践上已研究得十分透彻的问题,但是因为影响固化反应的因素相当复杂,而在UPR的各种应用领域中,制品所出现的质量瑕疵在很大程度上几乎都与“固化”有关。

所以,我们有对UPR的固化进行较深入探讨的必要。

(探讨不饱和聚酯树脂的固化,首先应该了解与不饱和聚酯树脂固化有关的一些概念和定义)。

2.与不饱和聚酯树脂固化有关的概念和定义固化的定义液态UPR在光、热或引发剂的作用下可以通过线型聚酯链中的不饱和双键与交联单体的双键的结合,形成三向交联的不溶不熔的体型结构。

这个过程称为UPR的固化。

固化剂不饱和聚酯树脂的固化是游离基引发的共聚合反应,如何能使反应启动是问题的关键。

单体一旦被引发,产生游离基,分子链即可以迅速增长而形成三向交联的大分子。

饱和聚酯树脂固化的启动是首先使不饱和C-C双键断裂,由于化学键发生断裂所需的能量不同,对于C-C键,其键能E=350kJ/moI,需350-550°C的温度才能将其激发裂解。

显然,在这样高的温度下使树脂固化是不实用的。

因此人们找到了能在较低的温度下即可分解产生自由基的物质,这就是有机过氧化物。

一些有机过氧化物的0—0键可在较低的温度下分解产生自由基。

其中一些能在50-150°C分解的过氧化物对树脂的固化很有利用价值。

我们可以利用有机过氧化物的这一特性,选择其中的一些作为树脂的引发剂,或称固化剂。

固化剂的定义:不饱和聚酯树脂用的固化剂,是在促进剂或其它外界条件作用下而引发树脂交联的一种过氧化物,又称为引发剂或催化剂。

这里所说的“催化剂”与传统意义上的“催化剂”是不同的。

在传统的观念上,“催化剂”这个术语是为反应物提供帮助的,它们在促进反应的同时,本身并没有消耗。

而在UPR固化反应中,过氧化物必须在它“催化”反应以前,改变它本身的结构,因此对于用于UPR固化的过氧化物来说,一个较合适的名字应该叫做“起始剂” 或“引发剂”。

不饱和聚酯树脂的固化

不饱和聚酯树脂的固化

不饱和聚酯树脂的固化 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】不饱和聚酯树脂的固化机理引言不饱和聚酯树脂(UPR)的固化似乎是从理论和实践上已研究得十分透彻的问题,但是因为影响固化反应的因素相当复杂,而在UPR的各种应用领域中,制品所出现的质量瑕疵在很大程度上几乎都与“固化”有关。

所以,我们有对UPR的固化进行较深入探讨的必要。

(探讨不饱和聚酯树脂的固化,首先应该了解与不饱和聚酯树脂固化有关的一些概念和定义)。

2.与不饱和聚酯树脂固化有关的概念和定义固化的定义液态UPR在光、热或引发剂的作用下可以通过线型聚酯链中的不饱和双键与交联单体的双键的结合,形成三向交联的不溶不熔的体型结构。

这个过程称为UPR的固化。

固化剂不饱和聚酯树脂的固化是游离基引发的共聚合反应,如何能使反应启动是问题的关键。

单体一旦被引发,产生游离基,分子链即可以迅速增长而形成三向交联的大分子。

饱和聚酯树脂固化的启动是首先使不饱和C—C双键断裂,由于化学键发生断裂所需的能量不同,对于C—C键,其键能E=350kJ/mol,需350-550℃的温度才能将其激发裂解。

显然,在这样高的温度下使树脂固化是不实用的。

因此人们找到了能在较低的温度下即可分解产生自由基的物质,这就是有机过氧化物。

一些有机过氧化物的O—O键可在较低的温度下分解产生自由基。

其中一些能在50-150℃分解的过氧化物对树脂的固化很有利用价值。

我们可以利用有机过氧化物的这一特性,选择其中的一些作为树脂的引发剂,或称固化剂。

固化剂的定义:不饱和聚酯树脂用的固化剂,是在促进剂或其它外界条件作用下而引发树脂交联的一种过氧化物,又称为引发剂或催化剂。

这里所说的“催化剂”与传统意义上的“催化剂”是不同的。

在传统的观念上,“催化剂”这个术语是为反应物提供帮助的,它们在促进反应的同时,本身并没有消耗。

而在UPR固化反应中,过氧化物必须在它“催化”反应以前,改变它本身的结构,因此对于用于UPR固化的过氧化物来说,一个较合适的名字应该叫做“起始剂”或“引发剂”。

不饱和聚酯树脂的固化机理

不饱和聚酯树脂的固化机理

不饱和聚酯树脂(UPR)的固化似乎是从理论和实践上已研究得十分透彻的问题,但是因为影响固化反应的因素相当复杂,而在UPR的各种应用领域中,制品所出现的质量瑕疵在很大程度上几乎都与“固化”有关。

所以,我们有对UPR 的固化进行较深入探讨的必要。

(探讨不饱和聚酯树脂的固化,首先应该了解与不饱和聚酯树脂固化有关的一些概念和定义)。

2.与不饱和聚酯树脂固化有关的概念和定义2.1固化的定义液态UPR在光、热或引发剂的作用下可以通过线型聚酯链中的不饱和双键与交联单体的双键的结合,形成三向交联的不溶不熔的体型结构。

这个过程称为UPR的固化。

2.2固化剂不饱和聚酯树脂的固化是游离基引发的共聚合反应,如何能使反应启动是问题的关键。

单体一旦被引发,产生游离基,分子链即可以迅速增长而形成三向交联的大分子。

饱和聚酯树脂固化的启动是首先使不饱和C—C双键断裂,由于化学键发生断裂所需的能量不同,对于C—C键,其键能E=350kJ/mol,需350-550℃的温度才能将其激发裂解。

显然,在这样高的温度下使树脂固化是不实用的。

因此人们找到了能在较低的温度下即可分解产生自由基的物质,这就是有机过氧化物。

一些有机过氧化物的O—O键可在较低的温度下分解产生自由基。

其中一些能在50-150℃分解的过氧化物对树脂的固化很有利用价值。

我们可以利用有机过氧化物的这一特性,选择其中的一些作为树脂的引发剂,或称固化剂。

固化剂的定义:不饱和聚酯树脂用的固化剂,是在促进剂或其它外界条件作用下而引发树脂交联的一种过氧化物,又称为引发剂或催化剂。

这里所说的“催化剂”与传统意义上的“催化剂”是不同的。

在传统的观念上,“催化剂”这个术语是为反应物提供帮助的,它们在促进反应的同时,本身并没有消耗。

而在UPR固化反应中,过氧化物必须在它“催化”反应以前,改变它本身的结构,因此对于用于UPR固化的过氧化物来说,一个较合适的名字应该叫做“起始剂”或“引发剂”。

说到过氧化物我们要有必要了解的两个概念是活性氧含量和临界温度。

不饱和聚酯树脂BPO/DMA/MHPT固化体系的研究

不饱和聚酯树脂BPO/DMA/MHPT固化体系的研究

不饱和聚酯树脂BPO/DMA/MHPT固化体系的研究采用引发剂过氧化苯甲酰(BPO)和复合促进剂N,N-二甲基苯胺(DMA)/N-甲基-N-2-羟乙基对甲苯胺(MHPT)组成的固化体系,室温条件下对不饱和聚酯树脂(UPR)进行固化,研究了BPO用量为5.0%、促进剂总量为4.0%时改变DMA与MHPT配比对UPR凝胶时间、固化速度及原子灰的凝胶时间、表干时间、附着力的影响,得出了MHPT和DMA的适宜质量比为1.5:2.5,可使UPR在固化过程中有较长的施工期、后期快速固化,且原子灰有适宜的表干时间和良好的附着力。

标签:不饱和聚酯树脂;过氧化苯甲酰;N,N-二甲基苯胺;N-甲基-N-2-羟乙基对甲苯胺;凝胶时间;附着力不饱和聚酯树脂(UPR)是热固性树脂中用量最大的一类[1],由于生产工艺简便、原料易得、可以常温常压固化而具有良好的工艺性能,由其制成的原子灰广泛应用于汽车与机车的制造、修理业,各种金属、非金属材料的嵌缝、砂眼的填补及建筑装修行业等方面[2,3]。

原子灰在应用时,既要求有合适的施工时间、凝胶后能快速固化,又要求有较适宜的表干时间和附着力。

目前常用的室温固化体系BPO/DMA往往达不到理想的效果。

有报道[4]称,用MHPT作为促进剂比用DMA的效果好,相同用量下,UPR凝胶时间、固化时间明显缩短,且固化程度高。

实验中以BPO为固化剂,DMA和MHPT为混合促进剂,探讨室温下有适宜的凝胶时间,同时后期能快速固化且应用性能良好的施工工艺。

1 实验部分1.1 主要原料及仪器过氧化苯甲酰(BPO),活性氧含量3.3%,山东邹平恒泰化工有限公司;N,N-二甲基苯胺(DMA),10.0%苯乙烯溶液,北京天宇祥瑞科技有限公司;N-甲基-N-2-羟乙基对甲苯胺(MHPT)10%苯乙烯溶液,北京天宇祥瑞科技有限公司;不饱和聚酯树脂(UPR),固含量为67.5%,格式黏度为1.6 s,晋州福利汽车材料厂。

不饱和聚酯树脂的固化

不饱和聚酯树脂的固化

不饱和聚酯树脂的固化阅读(55) 评论(2) 发表时间:2008年10月17日 10:46本文地址:/blog/920047809-1224211572不饱和聚酯树脂化1.外观:无色透明粘稠液体2.固体含量:62±3%3.粘度:40—60秒(涂4号杯,25℃)4.酸值:≤35mgKOH/克使用方法(参考配方):树脂引发剂(过氧化甲乙酮液) 0.8—2份(若过氧化环己酮糊1.5-4份) 促进剂(辛酸钴液) 0.5-3份(本型号产品已加入适量,可不必再加) 客户应根据使用时的天气温度情况和制作工艺要求,分别称取树脂(促进剂已加入,需要时可自行考虑补加量)、引发剂调和成均匀的树脂胶。

具有粘性的可流动的不饱和聚酯树脂,在引发剂存在下发生自由基共聚合反应,而生成性能稳定的体型结构的过程称为不饱和聚酯的固化。

发生在线型聚酯树脂分子和交联剂分子之间的自由基共聚合反应,其反应机理同前述自由基共聚反应的机理基本相同,所不同的它是在具有多个双键的聚酯大分子(即具有多个官能团)和交联剂苯乙烯的双键之间发生的共聚,其最终结果,必然形成体型结构。

固化的阶段性不饱和聚酯树脂的整个固化过程包括三个阶段:凝胶--从粘流态树脂到失去流动性生成半固体状有弹性的凝胶;定型--从凝胶到具有一定硬度和固定形状,可以从模具上将固化物取下而不发生变形;熟化--具有稳定的化学、物理性能,达到较高的固化度。

一切具有活性的线型低聚物的固化过程,都可分为三个阶段,但由于反应的机理和条件不同,其三个阶段所表现的特点也不同。

不饱和聚酯树脂的固化是自由基共聚反应,因此具有链锁反应的性质,表现在三个阶段上,其时间间隔具有较短的特点,一般凝胶到定型有时数个小时就可完成,再加上不饱和聚酯在固化时系统内无多余的小分子逸出,结构较为紧密,因此不饱和聚酯树脂和其他热固性树脂相比具有最佳的室温接触成型的工艺性能。

引发剂用于不饱和聚酯树脂固化的引发剂与自由基聚合用引发剂一样,一般为有机过氧化合物。

不饱和聚酯树脂的固化机理

不饱和聚酯树脂的固化机理

不饱和聚酯树脂(UPR)的固化似乎是从理论和实践上已研究得十分透彻的问题,但是因为影响固化反应的因素相当复杂,而在UPR的各种应用领域中,制品所出现的质量瑕疵在很大程度上几乎都与“固化”有关。

所以,我们有对UPR 的固化进行较深入探讨的必要。

(探讨不饱和聚酯树脂的固化,首先应该了解与不饱和聚酯树脂固化有关的一些概念和定义)。

2.与不饱和聚酯树脂固化有关的概念和定义 2.1 固化的定义液态UPR在光、热或引发剂的作用下可以通过线型聚酯链中的不饱和双键与交联单体的双键的结合,形成三向交联的不溶不熔的体型结构。

这个过程称为UPR的固化。

2.2固化剂不饱和聚酯树脂的固化是游离基引发的共聚合反应,如何能使反应启动是问题的关键。

单体一旦被引发,产生游离基,分子链即可以迅速增长而形成三向交联的大分子。

饱和聚酯树脂固化的启动是首先使不饱和C—C双键断裂,由于化学键发生断裂所需的能量不同,对于C—C键,其键能E=350kJ/mol,需350-550℃的温度才能将其激发裂解。

显然,在这样高的温度下使树脂固化是不实用的。

因此人们找到了能在较低的温度下即可分解产生自由基的物质,这就是有机过氧化物。

一些有机过氧化物的O—O键可在较低的温度下分解产生自由基。

其中一些能在50-150℃分解的过氧化物对树脂的固化很有利用价值。

我们可以利用有机过氧化物的这一特性,选择其中的一些作为树脂的引发剂,或称固化剂。

固化剂的定义:不饱和聚酯树脂用的固化剂,是在促进剂或其它外界条件作用下而引发树脂交联的一种过氧化物,又称为引发剂或催化剂。

这里所说的“催化剂”与传统意义上的“催化剂”是不同的。

在传统的观念上,“催化剂”这个术语是为反应物提供帮助的,它们在促进反应的同时,本身并没有消耗。

而在UPR固化反应中,过氧化物必须在它“催化”反应以前,改变它本身的结构,因此对于用于UPR固化的过氧化物来说,一个较合适的名字应该叫做“起始剂”或“引发剂”。

不饱和聚酯树脂试验方法

不饱和聚酯树脂试验方法

不饱和聚酯树脂试验方法
不饱和聚酯树脂是一种具有良好的抗菌性及耐腐蚀性的树脂材料,常用于制造化学容器、热水管、电缆树脂绝缘套装等产品。

为了进行
使用之前的性能分析,以评估树脂的外观质量,添加剂的稳定性以及
机械性能的衰减趋势,可以使用不饱和聚酯树脂试验。

不饱和聚酯树脂试验方法主要包括:流动度指标测试、硬化时间
测试、承载能力测试、化学抗性测试以及尺寸稳定性测试。

(1)流动度指标测试:流动度指标以指数为度量标准评估树脂的
性能,用滤管和滴定管测量涂料的细性程度。

(2)硬化时间测试:将不饱和聚酯树脂与活性剂混合,置入硬化
仪测试,用于衡量树脂固化所需要的硬化时间。

(3)承载能力测试:测试树脂的基本性能,主要有抗张强度、断
后伸长率、弹性模量、热变形温度等。

(4)化学抗性测试:将树脂暴露在常见的有害介质中,用于测试
树脂的抗腐蚀性和耐久性。

(5)尺寸稳定性测试:主要是热变形温度测试,测试树脂的尺寸
稳定性数据,以判断树脂的耐受温度。

不饱和聚酯树脂固化性能试验研究

不饱和聚酯树脂固化性能试验研究

不饱和聚酯树脂固化性能试验研究不饱和聚酯树脂的固化性能关系到施工生产的效率和质量,对其固化性能试验展开研究十分必要。

本文对196D不饱和聚酯树脂的固化性能试验展开了研究,分析了不同固化体系对196D不饱和聚酯树脂固化性能的影响,供相关施工参考。

标签:不饱和聚酯树脂;固化性能;试验不飽和聚酯树脂是一种重要的化工原料,在物理表面加厚、固化中被广泛应用,其工艺性能灵活,固化后的树脂综合性能良好,还具有成本低、粘度低等优点。

但是,在不饱和聚酯树脂应用于施工生产的过程中,常常存在着固化慢的问题,严重影响到了施工的顺利进行。

因此,对不饱和聚酯树脂固化性能试验展开研究具有十分重要的意义。

1.实验部分1.1仪器药品XWFC-150型热敏电阻温度平衡记录仪;巴氏硬度计;THZ-82型恒温水浴锅;树脂浇铸体制样机;托盘天平、ML204电子天平。

196D不饱和聚酯树脂(UPR)(DCPD型不饱和聚酯树脂),工业品;固化剂过氧化甲乙酮(MEKP)、过氧化苯甲酰(BPO)和促进剂环烷酸钴、异辛酸钴、N,N-二甲基苯胺(DMA)。

1.2 196D不饱和聚酯树脂(UPR)凝胶时间确定取100g不饱和聚酯树脂放入200mL烧杯中,加入3g过氧化物固化剂,调整促进剂用量,保证25℃时,树脂凝胶时间在(30±5)min之间。

按照GB/T7195-87测定树脂凝胶时间。

1.3树脂浇铸体的制备按照GB/T3854-2005制备。

1.4实验方法1)巴氏硬度测试按照GB/T3854-2005测试树脂浇铸体的巴氏硬度。

2)固化时间、放热峰温度测试,按照文献[3]的方法进行。

3)气干性测试用手感觉是否粘手。

2.结果与讨论2.1 DMA用量对196D不饱和聚酯树脂固化性能影响表1为DMA用量对196D不饱和聚酯树脂(UPR)固化时间、放热峰温度、气干性、浇注体硬度的影响。

由表1数据可知,随着DMA用量增加,树脂固化时间逐渐减少,放热峰温度逐渐升高,树脂浇铸体的巴氏硬度逐渐升高,当DMA用量达到1.1%时,放热峰温度和巴氏硬度反而下降,固化时间反而增长,究其原因:1)DMA对该固化体系过氧化甲乙酮/异辛酸钴中的促进剂异辛酸钴具有活化作用,进而提高了过氧化甲乙酮分解产生自由基的速率和数量,因而树脂的放热峰温度和浇注体硬度增加,固化时间缩短;2)要保证25℃时,树脂凝胶时间在(30±5)min之间,在固定过氧化甲乙酮加入量的前提下,增加DMA用量,势必减少促进剂异辛酸钴用量,促进剂异辛酸钴加入量的减少,降低了过氧化甲乙酮分解产生自由基的速度及数量,因而,树脂的放热峰温度和浇注体硬度降低,固化时间延长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不饱和聚酯树脂固化程度的评定
不饱和聚酯树脂是一种常用的固化材料,广泛应用于涂料、胶黏剂、复合材料等领域。

固化程度是评定不饱和聚酯树脂性能的重要指标之一。

本文将从固化程度的定义、评定方法和影响因素等方面进行探讨。

一、固化程度的定义
不饱和聚酯树脂的固化程度是指树脂体系中反应物与产物的摩尔比。

通常情况下,固化程度越高,树脂体系的性能越优越。

二、评定方法
1. 热分析法:利用差热分析(DSC)或热重分析(TGA)等热分析技术,通过测量样品在升温过程中的热响应或质量变化,来评定固化程度。

固化程度越高,样品的热响应或质量变化越大。

2. 硬度测试法:通过测量固化后的样品硬度,来评定固化程度。

一般采用巴氏硬度计或洛氏硬度计等硬度测试仪器进行测量。

固化程度越高,样品的硬度越大。

3. 动态力学分析法:利用动态力学分析仪(DMA)等仪器,通过测量样品在一定振动频率下的动态力学性能变化,来评定固化程度。

固化程度越高,样品的动态力学性能变化越明显。

4. 化学分析法:通过对固化后的样品进行化学分析,测定反应物和产物的摩尔比,来评定固化程度。

常用的化学分析方法有红外光谱
法、核磁共振法等。

三、影响因素
1. 固化剂种类和用量:不同种类和用量的固化剂对固化程度有较大影响。

合理选择和控制固化剂种类和用量,可以提高固化程度。

2. 温度和时间:固化反应是一个时间与温度相关的过程。

通常情况下,提高温度和延长固化时间,可以增加固化程度。

3. 混合均匀性:不饱和聚酯树脂与固化剂的混合均匀性对固化程度有重要影响。

如果混合不均匀,会导致部分区域固化程度低,影响材料性能。

4. 环境条件:固化程度受环境条件(如湿度、氧气含量等)的影响较大。

在潮湿或氧气充足的环境中,固化程度可能降低。

固化程度是评定不饱和聚酯树脂性能的重要指标之一。

通过合理选择固化剂种类和用量、控制温度和时间、保证混合均匀性以及考虑环境条件等因素,可以提高固化程度,进而优化不饱和聚酯树脂的性能。

在实际应用中,需要根据具体要求和条件,选择适合的评定方法,并进行合理的固化过程控制,以获得满足需求的固化程度。

相关文档
最新文档