快速傅里叶变换PPT课件

合集下载

快速傅里叶变换

快速傅里叶变换

N X 2 ( k ) X 2 (k ) 2
第4章 快速傅里叶变换(FFT)
(N k ) 2 又由于WN
k WN WN
N 2

k WN
,所以
N N N k N 2 X (k ) X 1 (k ) WN X 2 (k ) 2 2 2
k X 1 (k ) WN X 2 (k ),
X 1 (k ) x1 (r )W x(2r )W
r 0 rk 4 r 0
3
3
rk 4
k 0,1,2,3
第4章 快速傅里叶变换(FFT)
(2) n为奇数时,分别记作:
x2 (0) x (1), x2 (1) x (3), x2 ( 2) x (5), x2 (3) x (7);
k N
1 1
k WN
-1
N X ( k ) X 1 (k ) WNk X 2 (k ) (后一半) 2
5.计算工作量分析
按奇、偶分组后的计算量:
第4章 快速傅里叶变换(FFT)
由上图可知,N点DFT的复乘为N2 ;复加N(N-1); 与分解后相比可知,计算工作点差不多减少 一半。
第4章 快速傅里叶变换(FFT)
一个X(k)的值的工作量,如X(1)
0 1 X (1) x(0)WN x(1)WN x(2)WN2 x( N 1)WNN 1
nk 通常x(n)和 W 都是复数,所以计算一个 N X(k)的值需要N次复数乘法运算,和N 1 次 复数加法运算.那么,所有的X(k)就要N2次复 数乘法运算,N(N-1)次复数加法运算.当N很 大时,运算量将是惊人的,如N=1024,则要完 成1048576 次(一百多万次)运算.这样,难 以做到实时处理.

数字信号处理课件第4章快速傅里叶变换FF

数字信号处理课件第4章快速傅里叶变换FF
雷达信号压缩
通过FFT对雷达信号进行频谱分析,实现雷 达数据的压缩,减小存储空间和传输带宽。
谢谢聆听
05 FFT的局限性与挑战
浮点运算的开销问题
浮点运算开销
快速傅里叶变换(FFT)算法在实 现过程中需要进行大量的浮点运 算,这可能导致计算成本较高, 尤其是在处理大规模数据时。
硬件资源需求
由于FFT的浮点运算密集特性,对 计算设备的硬件资源(如CPU、 GPU等)要求较高,需要具备高 性能的计算能力。
FFT的软件实现
C/C实现
01
使用C或C等通用编程语言实现FFT算法,具有较好的通用性和
可移植性。
优化编译器
02
利用现代编译器的优化功能,如向量化、内联等,可以提高软
件实现的计算速度。
并行计算框架
03
利用OpenMP、CUDA等并行计算框架,可以实现多核或多
GPU上的并行计算。
FFT的优化方法
算法改进
FFT的历史与发展
历史
FFT的诞生可以追溯到1960年代,其发展经历了多个阶段,包括库利-图基算法、威尔金森算法、桑德斯算法等 。
发展
随着计算机技术的不断进步,FFT算法在实现方式、精度、并行化等方面不断得到优化和改进,以满足不同应用 场景的需求。
02 FFT的基本算法
递归算法
递归算法是一种基于数学归纳法的算法,通过将问题分解为更小的子问题来解决 问题。在FFT中,递归算法将一个长度为N的DFT问题分解为两个长度为N/2的 DFT问题,直到最后分解为基本的DFT问题。
特别是在信号处理领域,FFT的应用非常广泛。
FFT与Z变换的关系
定义
Z变换是离散时间信号 到复平面上的扩展,而 FFT是频域的一种快速 计算方法。

《快速傅里叶变换》课件

《快速傅里叶变换》课件
FFT算法的出现极大地推动了数字信号 处理技术的发展和应用。
FFT的历史背景
01
1960年代,Cooley和Tukey提 出了基于“分治”思想的FFT 算法,为快速傅里叶变换的实 用化奠定了基础。
02
随后,出现了多种FFT算法的 变种和优化,如Radix-2、 Radix-4等。
03
随着计算机技术的发展,FFT 算法在硬件实现上也得到了广 泛应用,如FPGA、GPU等。
《快速傅里叶变换》ppt课件
contents
目录
• FFT简介 • FFT基本原理 • FFT实现 • FFT的应用 • FFT的优化与改进 • FFT的挑战与未来发展
01 FFT简介
FFT的定义
快速傅里叶变换(FFT):一种高效计算离散傅里叶变换(DFT)及其逆变换的 算法。它将复杂度为$O(N^2)$的DFT计算降低到$O(Nlog N)$,大大提高了计 算效率。
详细描述
混合基数FFT算法结合了基数-2和基数-4算法的特点,利用两者在计算过程中的 互补性,减少了计算量,提高了计算效率。同时,该算法在处理大规模数据时 ,能够保持较高的精度。
分段FFT算法
总结词
分段FFT算法将输入数据分成若干段,对每一段进行快速傅里叶变换,以降低计算复杂度和提高计算效率。
详细描述
02 FFT基本原理
离散傅里叶变换(DFT)
定义
应用
DFT是时间域信号到频域的变换,通 过计算信号中各个频率成分的幅度和 相位,可以分析信号的频谱特性。
DFT在信号处理、图像处理、频谱分 析等领域有广泛应用。
计算量
DFT的计算量随着信号长度N的增加 而呈平方关系增长,因此对于长信号 ,计算量巨大。

《傅里叶变换经典》PPT课件

《傅里叶变换经典》PPT课件
F 1[AF BG ] AF 1[F ] BF 1[G ]
43
2. 位移性质:
若F [f t ] F ,t0 ,0 为实常数,则
F [f t t0 ] ejt0F , F 1[F 0 ] e j0t f t
或F [e j0t f t ] F 0
证明:F
[f
F f t eitdt(实自变量的复值函数)
称为f t 的Fourier变换,记为F [f t ]。
1 F eitd 称为F 的Fourier逆变换,
2 记为F 1[F ] .
26
若F f t F ,则F 1 F f t ; 若F 1 F f t ,则F f t F f t F :一一对应,称为一组Fourier变换对。 f t 称为原像函数,F 称为像函数。
t
具有性质fT(t+T)=fT(t), 其中T称作周期, 而1/T代表
单位时间振动的次数, 单位时间通常取秒, 即每秒重复 多少次, 单位是赫兹(Herz, 或Hz).
2
最常用的一种周期函数是三角函数。人们发现, 所有 的工程中使用的周期函数都可以用一系列的三角函数的 线性组合来逼近.—— Fourier级数
1
2
1
2
1,
t
0
42
§3 Fourier变换与逆变换的性质
这一讲介绍傅氏变换的几个重要性质, 为了叙述方 便起见, 假定在这些性质中, 凡是需要求傅氏变换的函 数都满足傅氏积分定理中的条件, 在证明这些性质时, 不再重述这些条件.
1.线性性质:
F [af t bg t ] aF [f t ] bF [g t ]
19
1.2 Fourier积分公式与Fourier积分存在定理

FFT快速傅里叶变换(蝶形算法)详解 ppt课件

FFT快速傅里叶变换(蝶形算法)详解  ppt课件

N / 21
N 1

x(n)WNnk
x(n)WNnk
n0
nN /2

N / 21
x(n)WNnk
n0

N / 21
x(n
n0
N 2
(n
)WN
因为 N=2M ,对于任意 n(0≤n ≤N-1),可以用M个 二进制码表示为:
n(DEC) (nM 1nM 2 n2 n1n0 ) (BIN)
nM 1, nM 2 ,, n2 , n1, n0

0 1
n 反复按奇、偶分解时,即按二进制码的“0” “1” 分解。
ppt课件
26
倒位序的树状图(N=8)
DFT运算量的比较 按时间抽取的FFT算法的特点 按时间抽取FFT算法的其它形式流程图
ppt课件

5.3.1 算法原理
设N=2L,将x(n)按 n 的奇偶分为两组:
x(2r) x1(r) x(2r 1) x2 (r)
r =0,1,…,N 1
2

N 1
X (k) DFT[x(n)] x(n)WNnk
r 0
r 0
N
N
1
1
2
2

x1
(r
)W
rk N
WNk
x2
(r
)W
rk N
r 0
2
r 0
2
X 1 (k ) WNk X 2 (k )
式中,X1(k)和X2(k)分别是x1(n)和x2(n)的N/2的DFT。 另外,式中k的取值范围是:0,1, …,N/2-1 。
ppt课件
64 4049 192

《快速傅里叶变换FF》课件

《快速傅里叶变换FF》课件
《快速傅里叶变换ff 》ppt课件
contents
目录
• FFT简介 • FFT的基本原理 • FFT的应用 • FFT的实现 • FFT的性能优化 • FFT的局限性
CHAPTER 01
FFT简介
FFT的定义
快速傅里叶变换(FFT):一种高效计算离散傅里叶变换(DFT)及其逆变换的 算法。它将复杂度为$O(N^2)$的DFT计算降低到$O(Nlog N)$,极大地提高了 计算效率。
通过选择适合特定数据集的基数,混 合基数FFT可以在不同的应用场景下 获得最佳性能。
混合基数FFT结合了基于2的幂次和基 于其他基数的算法,以获得更好的计 算效率和精度。
CHAPTER 06
FFT的局限性
浮点运算的开销
快速傅里叶变换(FFT)是一种高效的算法,用于计算离散傅里叶变换(DFT)和其逆变换。然而, 由于FFT涉及到大量的复数运算,因此其计算开销相对较大,尤其是对于大规模数据。
分段FFT
分段FFT是一种将大规模FFT分 解为多个小规模FFT的方法, 可以显著提高计算速度。
通过将输入数据分成多个段, 每个段可以独立进行FFT计算 ,从而并行处理多个段。
分段FFT适用于大规模数据集 ,可以有效地利用多核处理器 和分布式计算资源,提高计算 效率。
混合基数FFT
混合基数FFT是一种将不同基数算法 结合在一起的FFT方法,可以获得更 好的性能。
快速傅里叶变换(FFT)算法
定义
快速傅里叶变换(FFT)是一种高效的计算离散傅里叶变换( DFT)和其逆变换的算法。它通过一系列数学运算将DFT的 计算量从N^2降低到了Nlog2N,大大提高了计算效率。
算法原理
FFT算法基于DFT的周期性和对称性,将一个N点的DFT分解 为多个较短序列的DFT,然后利用递归和分治的思想进行计 算,最终得到原始序列的频域表示。

数字信号处理_程佩青_PPT第四章

数字信号处理_程佩青_PPT第四章
第四章 快速傅里叶变换 (FFT)
主要内容
DIT-FFT算法 DIF-FFT算法 IFFT算法 Chirp-z算法 线性卷积的FFT算法
§4.0 引言
FFT: Fast Fourier Transform
1965年,Cooley&Turky 发表文章《机器计算傅 里叶级数的一种算法》,提出FFT算法,解决 DFT运算量太大,在实际使用中受限制的问题。 FFT的应用。频谱分析、滤波器实现、实时信 号处理等。 DSP芯片实现。TI公司的TMS 320c30,10MHz 时钟,基2-FFT1024点FFT时间15ms。
又WN
k
N 2
W
N /2 N
W W
k N
k N
k X (k ) X1 (k ) WN X 2 (k ),k 0,1,2,...N / 2 1 (2) X ( N k ) X ( N k ) W ( N / 2 k ) X ( N k ) 1 N 2 2 2 2 k X1 (k ) WN X 2 (k ),k 0,1,2,...N / 2 1


n为偶
n为奇
N / 2 1

rk k rk x ( r ) W W x ( r ) W 1 N /2 N 2 N /2 r 0 r 0 X1 ( k )
N / 2 1
2 rk rk (这一步利用: WN WN /2
) r , k 0,1,...N / 2 1
N为2的整数幂的FFT算法称基-2FFT算法。
将序列x(n)按n的奇偶分成两组:
x1 (r ) x(2r ) ,r 0, 1, 2, ...N/ 2 1 x2 (r ) x(2r 1)

傅里叶变换课件

傅里叶变换课件

快速傅里叶变换的算法原理
快速傅里叶变换(FFT)是一种高效的计算DFT的算法,其基本思想是将DFT运算分解为一系列简单 的复数乘法和加法运算。
FFT算法可以分为基于分治策略的递归算法和基于蝶形运算的迭代算法。其中,递归算法将DFT运算 分解为两个子序列的DFT运算,迭代算法则通过一系列蝶形运算逐步逼近DFT的结果。
,实现图像的压缩。
解压缩
通过插值或重构算法,可以恢复 压缩后的图像,使其具有原始的
质量和细节。
压缩与解压缩算法
常见的压缩与解压缩算法包括 JPEG、PNG等。这些算法在压 缩和解压缩过程中都利用了傅里
叶变换。
06
傅里叶变换在通信系统中的应用
调制与解调技术
调制技术
利用傅里叶变换对信号进行调制,将 低频信号转换为高频信号,以便在信 道中传输。
在频域中,可以使用各种滤波器 对图像进行滤波操作,以减少噪 声、平滑图像或突出特定频率的
细节。
边缘增强
通过在频域中增强高频成分,可以 突出图像的边缘信息,使图像更加 清晰。
对比度增强
通过调整频域中的频率系数,可以 改变图像的对比度,使图像更加鲜 明。
图像的压缩与解压缩
压缩
通过减少图像的频域表示中的频 率系数,可以减少图像的数据量
快速傅里叶变换的应用
• FFT在信号处理、图像处理、语音处理等领域有着广泛的应用。例如,在信号处理中,可以通过FFT将时域信号转换为频域 信号,从而对信号进行频谱分析、滤波等操作。在图像处理中,可以通过FFT将图像从空间域转换到频域,从而对图像进行 去噪、压缩等操作。在语音处理中,可以通过FFT对语音信号进行频谱分析,从而提取语音特征、进行语音合成等操作。
分析、系统优化等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

W
0 N
运算即可求出
所有8点X(k)的
W
1 N
值。
W
2 N
W
3 N
分解一次后所需的运算量=2个N/2的DFT+N/2蝶形
-
14
运算量比较
N点DFT的运算量
每次蝶形含一次复数
复数乘法次数: N2
乘和两次复数加
复数加法次数: N(N-1)
分解一次后所需的运算量=2个N/2的DFT+ N/2蝶形:
复数乘法次数: 2*(N/2)2+N/2=N2/2+N/2
-
3
4.2 直接计算DFT的问题及改进的途径
DFT的运算量 设复序列x(n) 长度为N点,其DFT为
N1
X(k) x(n)WNnk n0
k=0,,…,N-1
(1)计算一个X(k) 值的运算量
复数乘法次数: N
复数加法次数: N-1
(2)计算全部N个X(k) 值的运算量
复数乘法次数: N2
复数加法次数: N(N-1)
-
5
4.2.2 减少运算工作量的途径
主要原理是利用系数
W
nk N
的以下特性对DFT进行分解:
(1)周期性 W N (nN)kW N n(kN)W N nk
(2)对称性
(WNnk )
W nk N
W k(N n) N
(3)可约性
Wmnk mN
WNnk
WNnk WNnk/m/m
另外,
WNN/2 1
W(kN/2) N
复数加法次数: 2*(N/2)(N/2-1)+2*N/2=N2/2
通过一次分解后,运算工作量减少了差不多一半。
-
15
进一步按奇偶分解
由于N=2M,因而N/2仍是偶数 ,可以进一步把每个N/2点 子序列再按其奇偶部分分解为两个N/4点的子序列。
以N/2点序列x1(r)为例 则有
x1x(12(l2 l)1 )x3x(4l()l)
N1
N1
2
2
x(2r)W N 2rk x(2r1)W N (2r1)k
r0
r0
N1
N1
2
2
x1(r)WN rkWNk x2(r)WN rk X1(k)W N kX2(k)
r0
2
r0
2
式中,X1(k)和X2(k)分别是x1(n)和x2(n)的N/2的DFT。
另外,式中k的取值范围是:0,1, …,N/2-1 。
学习目的
理论上理解FFT算法 自己能编写FFT算法
-
1
本章目录
直接计算DFT的问题及改进的途径 按时间抽取的基2-FFT算法 按频率抽取的基2-FFT算法 快速傅里叶逆变换(IFFT)算法 Matlab实现
-
2
4.1 引言
DFT在实际应用中很重要: 可以计算信号的频谱、功率 谱和线性卷积等。
10
由前半部分X(k)
X(k)X 1(k)W N kX 2(k)
k=0,1, …,N/2-1
因此可得后半部分X(k)
X (k N 2) X 1 (k N 2) W N k N 2 X 2 (k N 2)
X1(k)W N kX2(k)
W(N2k) N
WNk
k=0,1, …,N/2-1
-
11
结论:
N 21
x(2r)x1(r)
r =0,1,…,N 1
2
x(2r1)x2(r)

N1
X(k)D FT[x(n)] x(n)W N nk
n0
N1
N1
x(n)WNnk x(n)WNnk
n0 n为偶数
n0 n为奇数
-
8
N1
N1
X(k) x(n)W N nk x(n)W N nk
n0 n为 偶 数
n0 n为 奇 数
-
9
因此,X(k)X 1(k)W N kX 2(k)只能计算出X(k)的前一半值。
后一半X(k) 值, N/2 , N/2 +1, …,N-1 ?
N
X1( 2
k)
N 21
x1(r)WNr(2N 2k)
r0
同理可得
N 21
x1(r)WNrk2 X 1 (k )
r 0
X2(N2 k)X2(k)
-
直接按DFT变换进行计算,当序列长度N很大时,计算
量非常大,所需时间会很长,实时处理难以实现。 1965年,图基和库利发表了《机器计算快速傅立叶级
数的一种算法》论文后,很快形成了快速计算DFT的计 算机算法FFT。(Fast Fourier Transform) FFT并不是一种与DFT不同的变换,而是DFT的一种快速 计算的算法。
-
12
新概念:蝶形运算
X(k)X 1(k)W N kX 2(k)
X(kN 2)X1(k)W N kX2(k)
蝶形运算 信号流图符号
X1(k) X2(k)
蝶形运算式
蝶形运算的运算量:每次蝶形含一次复数乘和两
次复数加
-
13
以8点为例第一次按奇偶分解
以N=8为例,
分解为2个4点
的DFT,然后
做8/2=4次蝶形
X1(k) x1(r)WNrk2 r0
因此,只要 求出2个N/2 点的DFT,即
N 21
X2(k) x2(r)WNrk2 r0
X1(k)和X2(k),
再经过这种
运算就可求
X (k)X 1(k) W N kX 2(k)
出全部X(k)
的值
X(kN 2)X1(k)W N kX2(k)
k=0,1, …,N/2-1
WNk
-
6
4.3 按时间抽取的基2-FFT算法
算法原理
DIT-FFT(Decimation-In-Time)
按时间抽取基-2FFT算法与直接计算 DFT运算量的比较
按时间抽取的FFT算法的特点
按时间抽取FFT算法的其它形式流程图
-
7
4.3.1 算法原理
设N=2M,将x(n)按 n 的奇偶分为两组:
-
4
DFT运算量的结论
N点DFT的复数乘法次数举例
N
N2
N
N2
2
4
64
4049
4
16
128
1536
16
256
512
262 144
32
1024
1024
1 048 576
结论:当N很大时,其运算量很大,对实时性很强的信号 处理来说,要求计算速度快,因此需要改进DFT的计算 方法,以大大减少运算次数。
l0,1, ,N1 4
N 21
X1(k)
r0
x1(r)WNrk2N4 1 x1(2l)W N 2l2kN4 1 x1(2l1)W N (22 l 1)k
l0
l0
N41
N41
x3(l)W N lk4W N k2 x4(l)W N lk4
l0
l0
X3(k)W N k/2X4(k) k=0,1,…, N 1
4
-
16

X1N 4kX3(k)W N k/2X4(k)
k=0,1,…,
N 4
1
由此可见,一个N/2点DFT可分解成两个N/4点DFT。 同理,也可对x2(n)进行同样的分解,求出X2(k)。
-
17
以8点为例第二次按奇偶分解
相关文档
最新文档