(完整版)精心整理图像的傅里叶变换

合集下载

图像傅里叶变换详解

图像傅里叶变换详解

图像傅里叶变换冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。

棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。

傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。

当我们考虑光时,讨论它的光谱或频率谱。

同样, 傅立叶变换使我们能通过频率成分来分析一个函数。

Fourier theory讲的就是:任何信号(如图像信号)都可以表示成一系列正弦信号的叠加,在图像领域就是将图像brightness variation 作为正弦变量。

比如下图的正弦模式可在单傅里叶中由三个分量编码:频率f、幅值A、相位γ这三个value可以描述正弦图像中的所有信息。

1.frequencyfrequency在空间域上可由亮度调节,例如左图的frequency比右图的frequency 低……2.幅值magnitude(amplitude)sin函数的幅值用于描述对比度,或者说是图像中最明和最暗的峰值之间的差。

(一个负幅值表示一个对比逆转,即明暗交换。

)3.相位表示相对于原始波形,这个波形的偏移量(左or右)。

=================================================================一个傅里叶变换编码是一系列正弦曲线的编码,他们的频率从0开始(即没有调整,相位为0,平均亮度处),到尼奎斯特频率(即数字图像中可被编码的最高频率,它和像素大小、resolution有关)。

傅里叶变换同时将图像中所有频率进行编码:一个只包含一个频率f1的信号在频谱上横坐标f为f1的点处绘制一个单峰值,峰值高度等于对应的振幅amplitude,或者正弦曲线信号的高度。

如下图所示。

DC term直流信号对应于频率为0的点,表示整幅图像的平均亮度,如果直流信号DC=0就表示整幅图像平均亮度的像素点个数=0,可推出灰度图中,正弦曲线在正负值之间交替变化,但是由于灰度图中没有负值,所以所有的真实图像都有一个正的DC term,如上图所示。

常用傅里叶变换表

常用傅里叶变换表

常用傅里叶变换表在数学和工程领域中,傅里叶变换是一种非常重要的工具,它可以将一个时域信号转换为频域信号,从而帮助我们更好地理解和分析信号的特征。

为了方便使用,人们总结出了一些常用的傅里叶变换对,形成了常用傅里叶变换表。

傅里叶变换的基本思想是将一个复杂的信号分解为不同频率的正弦和余弦波的叠加。

这就像是把一道混合了各种食材的大菜分解成各种单一的原料,让我们能够更清楚地了解每一种成分的特性。

首先,让我们来看看单位冲激函数δ(t) 的傅里叶变换。

单位冲激函数在 t = 0 处取值为无穷大,在其他时刻取值为 0,其积分值为 1。

它的傅里叶变换是 1,也就是说,在频域中,它是一个常数。

这一结果从某种程度上反映了单位冲激函数包含了所有频率的成分,且各个频率成分的强度相同。

再来看常数信号 c 的傅里叶变换。

假设常数信号在整个时间轴上都取值为 c,那么它的傅里叶变换是2πcδ(ω),其中δ(ω) 是频域中的单位冲激函数。

这意味着常数信号在频域中只在ω = 0 处有值,其他频率处的值均为 0。

接着是指数函数 e^(at)u(t)(其中 a > 0,u(t) 是单位阶跃函数)的傅里叶变换。

它的傅里叶变换是 1/(a +jω)。

这个变换结果表明,指数函数的频率特性随着 a 的增大而衰减得更快。

对于正弦函数sin(ω₀t),它的傅里叶变换是πjδ(ω ω₀) jδ(ω +ω₀)/2 。

而余弦函数cos(ω₀t) 的傅里叶变换是πδ(ω ω₀) +δ(ω +ω₀)/2 。

这两个结果反映了正弦和余弦函数在频域中只在±ω₀处有值,体现了它们的频率单一性。

矩形脉冲函数 rect(t/T)(在 T/2 到 T/2 之间取值为 1,其他地方取值为 0)的傅里叶变换是T sinc(ωT/2),其中 sinc(x) = sin(x) / x 。

这个变换结果展示了矩形脉冲的频谱是一个 sinc 函数的形状,其主瓣宽度与脉冲宽度 T 成反比。

图像变换傅立叶频谱图

图像变换傅立叶频谱图

相位角
(u, v) arctan I (u, v) R(u, v)
二维离散傅里叶变换
1) 定义
u, v 0,1,N 1 F(u, v)
1
M 1 N 1
f ( x, y)e j 2 (ux / M vy/ N )
MN x0 y0
2) 逆傅立叶变换
M 1 N 1

f (x) F (u)e j2uxdu
3) 傅立叶变换特征参数

f (x, y) F (u, v)e j2 (uxvy)dudv
F(u,v) R(u,v) jI(u,v)
频谱/模
F(u, v) R2 (u, v) I 2 (u, v)
能量谱/功率谱 P(u,v) F(u,v) 2 R2(u,v) I 2(u,v)
图像变换
图像变换主要有: 傅立叶变换、主成份变换、缨帽变换、代数运算、彩色 变换
其中傅立叶(Fourier)变换的应用非常是 广泛的,非常有名的变换之一。
2、傅立叶变换
傅立叶(Fourier),法国数学及物理学家,傅立叶级数(三角级 数)创始人。
1801年任伊泽尔省地方长官,1817年当选科学院院士,1822年任 该院终身秘书,后又任法兰西学院终身秘书和理工科大学校务委员会 主席。
?一维二维连续傅里叶变换一维二维连续傅里叶变换fxy变换到fuv1定义定义??????dxexfufuxj?2dydxeyxfvufvyuxj???????2?2逆傅立叶变换逆傅立叶变换?????dueufxfuxj?2dvduevufyxfvyuxj??????2?3傅立叶变换特征参数傅立叶变换特征参数vujivurvuf??频谱频谱模模22vuivurvuf??能量谱能量谱功率谱功率谱222vuivurvufvup???相位角相位角arctanvurvuivu???二维离散傅里叶变换二维离散傅里叶变换1定义定义???0x??????11021mnynvymuxjeyxfmnvuf?2逆傅立叶变换逆傅立叶变换???0x??????1102mnynvymuxjevufyxf?110??nvu?110??nyx?fuv为fxy的频谱题西林壁题西林壁苏轼横看成岭侧成峰远近高低各不同同远近高低各不不识庐山真面目只缘身在此山中?3频率域图像频谱频率域图像频谱或称为傅立叶谱原图频域图傅立叶变换原图傅立叶变换后的频域图对图像信号而言空间频率是指单位长度内亮度对图像信号而言空间频率是指单位长度内亮度也就是是灰度也就是是灰度作周期性变化的次数

(完整版)傅里叶变换分析

(完整版)傅里叶变换分析

第一章 信号与系统的基本概念1.信号、信息与消息的差别?信号:随时间变化的物理量;消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等信息:所接收到的未知内容的消息,即传输的信号是带有信息的。

2.什么是奇异信号?函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。

例如:单边指数信号 (在t =0点时,不连续),单边正弦信号 (在t =0时的一阶导函数不连续)。

较为重要的两种奇异信号是单位冲激信号δ(t )和单位阶跃信号u(t )。

3.单位冲激信号的物理意义及其取样性质?冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。

它表达的是一类幅度很强,但作用时间很短的物理现象。

其重要特性是筛选性,即:()()()(0)(0)t x t dt t x dt x δδ∞∞-∞-∞==⎰⎰ 4.什么是单位阶跃信号?单位阶跃信号也是一类奇异信号,定义为:10()00t u t t >⎧=⎨<⎩它可以表示单边信号,持续时间有限信号,在信号处理中起着重要的作用。

5.线性时不变系统的意义同时满足叠加性和均匀性以及时不变特性的系统,称为线性时不变系统。

即:如果一个系统,当输入信号分别为1()x t 和2()x t 时,输出信号分别是1()y t 和2()y t 。

当输入信号()x t 是1()x t 和2()x t 的线性叠加,即:12()()()x t ax t bx t =+,其中a 和b 是任意常数时,输出信号()y t 是1()y t 和2()y t 的线性叠加,即:12()()()y t ay t by t =+;且当输入信号()x t 出现延时,即输入信号是0()x t t -时, 输出信号也产生同样的延时,即输出信号是0()y t t -。

其中,如果当12()()()x t x t x t =+时,12()()()y t y t y t =+,则称系统具有叠加性;如果当1()()x t ax t =时,1()()y t ay t =则称系统具有均匀性。

典型信号的傅里叶变换

典型信号的傅里叶变换

f
t 非 周周 期期
统一的分析方法:傅里叶变换
由欧拉公式
cos0t
1 2
e j0t
e j0t
sin0t
1 2j
e j0t
e j0t
已知
1 2π
由频移性质
1 ej 0 t 2 0
1 ej0 t 2 0
cos0t
同理
1 2

0

0
π
0
π
0
sin0t jπ 0 jπ 0
dt
t
2
E
ejt d t E
e
j
t
e
jt
dt
E
e
j
t
e
jt
dt
2
4
4
ESa
E
2
Sa
π
E
2
Sa
π
F
E sin
1
2
π
E Sa
1 2
π
F
E
E
2
O π 2π 3π
其频谱比矩形脉冲更集中。

•冲激函数 •冲激偶 •单位阶跃函数
F( ) t ej t d t 1
f t
1
O
t
F
1
O
t看作
1 的矩形脉冲,
0时, B
冲激函数积分是有限值,可以用公式求。而u(t)不
满足绝对可积条件,不能用定义求。
(t) 1 ( ) 1

f t
1
O
t
F
1
O
F
1
O
1 f t

傅里叶变换常用公式大全

傅里叶变换常用公式大全

傅里叶变换常用公式大全傅里叶变换是一种重要的数学工具,用于将信号从时域转换到频域。

在信号处理、图像处理和通信领域广泛应用。

本文将介绍一些傅里叶变换中常用的公式,以帮助读者更好地理解和应用傅里叶变换。

1. 傅里叶变换的定义公式傅里叶变换的定义公式如下:F(ω) = ∫[f(t) * e^(-jωt)]dt其中F(ω)表示信号f(t)在频率ω处的傅里叶变换。

2. 傅里叶变换的逆变换公式傅里叶变换的逆变换公式如下:f(t) = ∫[F(ω) * e^(jωt)]dω其中f(t)表示频域信号F(ω)的逆变换。

3. 傅里叶级数展开公式傅里叶级数展开公式将一个周期信号表示为一系列正弦和余弦函数的和。

公式如下:f(t) = a₀ + Σ[aₙ * cos(nω₀t) + bₙ * sin(nω₀t)]其中a₀, aₙ, bₙ为系数,n为正整数,ω₀为基本角频率。

4. 傅里叶级数系数计算公式傅里叶级数系数的计算公式如下:a₀ = 1/T₀ * ∫[f(t)]dtaₙ = 2/T₀ * ∫[f(t) * cos(nω₀t)]dtbₙ = 2/T₀ * ∫[f(t) * sin(nω₀t)]dt其中T₀为周期。

5. 傅里叶变换的线性性质公式傅里叶变换具有线性性质,公式如下:F(a * f(t) + b * g(t)) = a * F(f(t)) + b * F(g(t))其中a和b为常数。

6. 傅里叶变换的频移性质公式傅里叶变换具有频移性质,公式如下:F(f(t - t₀)) = e^(-jωt₀) * F(f(t))其中t₀为时间偏移量。

7. 傅里叶变换的频率缩放公式傅里叶变换具有频率缩放性质,公式如下:F(f(a * t)) = (1/|a|) * F(f(t/a))其中a为常数。

8. 傅里叶变换的频域微分公式傅里叶变换的频域微分公式如下:F(d/dt[f(t)]) = jωF(f(t))其中d/dt表示对时间t的导数。

图像处理1--傅里叶变换(FourierTransform)

图像处理1--傅里叶变换(FourierTransform)

图像处理1--傅⾥叶变换(FourierTransform)楼下⼀个男⼈病得要死,那间壁的⼀家唱着留声机;对⾯是弄孩⼦。

楼上有两⼈狂笑;还有打牌声。

河中的船上有⼥⼈哭着她死去的母亲。

⼈类的悲欢并不相通,我只觉得他们吵闹。

OpenCV是⼀个基于BSD许可(开源)发⾏的跨平台计算机视觉库,可以运⾏在Linux、Windows、Android和Mac OS操作系统上。

它轻量级⽽且⾼效——由⼀系列 C 函数和少量 C++ 类,同时提供了Python、Ruby、MATLAB等语⾔的接⼝,实现了和计算机视觉⽅⾯的很多通⽤算法。

OpenCV⽤C++语⾔编写,它的主要接⼝也是C++语⾔,但是依然保留了⼤量的C语⾔。

该库也有⼤量的Python、Java andMATLAB/OCTAVE(版本2.5)的接⼝。

这些语⾔的API接⼝函数可以通过在线获得。

如今也提供对于C#、Ch、Ruby,GO的⽀持。

所有新的开发和算法都是⽤C++接⼝。

⼀个使⽤CUDA的GPU接⼝也于2010年9⽉开始实现。

图像的空间域滤波:空间域滤波,空间域滤波就是⽤各种模板直接与图像进⾏卷积运算,实现对图像的处理,这种⽅法直接对图像空间操作,操作简单,所以也是空间域滤波。

频域滤波说到底最终可能是和空间域滤波实现相同的功能,⽐如实现图像的轮廓提取,在空间域滤波中我们使⽤⼀个拉普拉斯模板就可以提取,⽽在频域内,我们使⽤⼀个⾼通滤波模板(因为轮廓在频域内属于⾼频信号),可以实现轮廓的提取,后⾯也会把拉普拉斯模板频域化,会发现拉普拉斯其实在频域来讲就是⼀个⾼通滤波器。

既然是频域滤波就涉及到把图像⾸先变到频域内,那么把图像变到频域内的⽅法就是傅⾥叶变换。

关于傅⾥叶变换,感觉真是个伟⼤的发明,尤其是其在信号领域的应⽤。

⾼通滤波器,⼜称低截⽌滤波器、低阻滤波器,允许⾼于某⼀截频的频率通过,⽽⼤⼤衰减较低频率的⼀种滤波器。

它去掉了信号中不必要的低频成分或者说去掉了低频⼲扰。

常用傅里叶变换表

常用傅里叶变换表

常用傅里叶变换表在数学和工程领域中,傅里叶变换是一种极其重要的工具,它能够将复杂的时域信号转换为频域表示,从而帮助我们更好地理解和分析各种信号的特性。

而常用傅里叶变换表则为我们提供了一系列常见函数的傅里叶变换结果,方便我们在实际应用中快速查找和使用。

首先,让我们来了解一下什么是傅里叶变换。

简单来说,傅里叶变换是一种数学变换,它将一个函数从时域(以时间为变量)转换到频域(以频率为变量)。

通过这种转换,我们可以将一个信号分解为不同频率的正弦和余弦波的组合,从而揭示出信号中所包含的频率成分。

在常用傅里叶变换表中,有一些基本的函数及其对应的傅里叶变换值得我们熟悉。

单位冲激函数(也称为狄拉克δ函数)是一个非常特殊的函数。

它在某一时刻有一个无限大的值,而在其他时刻的值都为零。

其傅里叶变换是常数 1。

这意味着单位冲激函数包含了所有频率的成分,且各个频率成分的幅度相同。

单位阶跃函数,它在 t < 0 时取值为 0,在t ≥ 0 时取值为 1。

其傅里叶变换是 1 /(jω) +πδ(ω) ,其中 j 是虚数单位,ω 是角频率,δ(ω) 是狄拉克δ函数。

正弦函数sin(ω₀t) 的傅里叶变换是jπδ(ω ω₀) δ(ω +ω₀) 。

这表明正弦函数只包含两个频率成分,即±ω₀。

余弦函数cos(ω₀t) 的傅里叶变换是πδ(ω ω₀) +δ(ω +ω₀) 。

指数函数 e^(jω₀t) 的傅里叶变换是2πδ(ω ω₀) 。

矩形脉冲函数,即在某个时间段内取值为 1,其他时间段为 0 的函数,其傅里叶变换是一个 sinc 函数。

这些常见函数的傅里叶变换在信号处理、通信、控制工程等领域有着广泛的应用。

例如,在通信系统中,我们需要对信号进行调制和解调。

调制过程可以看作是将原始信号与一个高频载波信号相乘,而解调过程则需要通过傅里叶变换将调制后的信号转换到频域,然后提取出原始信号的信息。

在图像处理中,傅里叶变换可以用于图像的滤波、增强和压缩等操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c1
f1
x, y
e
j
2

ux M

vy N

M 1 N 1
c2
f2
x, y e
j
2

ux M

vy N

x0 y0
x0 y0
c1F1 u, v c2F2 u, v
%imagelinear.m %该程序验证了二维DFT的线性性质
f=imread('D:\chenpc\data\thry\chpt4\Fig4.04(a).jpg'); g=imread('D:\chenpc\data\thry\chpt4\Fig4.30(a).jpg'); [m,n]=size(g); f(m,n)=0; f=im2double(f); g=im2double(g); subplot(221) imshow(f,[]) title('f') subplot(222) imshow(g,[]) title('g')
幅值
时域分析
频域分析
一维FT及其反变换
连续函数f(x)的傅立叶变换F(u):
F (u) f (x)e j2uxdx
傅立叶变换F(u)的反变换:
f (x) F (u)e j2uxdu
一维DFT及其反变换
离散函数f(x)(其中x,u=0,1,2,…,N-1)的傅立叶变换:

u
,
v


c2
F2
u
,
v

证明:
DFT c1 f1 x, y c2 f2 x, y
M 1 N 1

c1 f1
x, y
c2 f2
x, y
e
j
2

ux M

vy N

x0 y0
M 1 N1
F(u,v) R(u,v) jI(u,v)
频谱/幅度谱/模 F(u, v) R2 (u, v) I 2(u,v)
能量谱/功率谱 相位谱
P(u, v) F(u, v) 2 R2 (u, v) I 2 (u, v)
(u, v) arctan I (u, v) R(u, v)
离散的情况下,傅里叶变换和逆傅里叶变换始终存在。
例 设一函数如图(a)所示,如果将此函数在自变量
x0 0.5, x1 0.75, x2 1.00, x3 1.25 取样
并重新定义为图(b)离散函数,求其傅里叶变换。
(a)
(b)
1 1 1 1 f (0)
F (u)

1 4
1 1
j 1
1 1
j

f
(1)

1 f (2)
1 j 1 j f (3)
yj
-1
1 x
-j
图像的频谱幅度随频率增大而迅速衰减
许多图像的傅里叶频谱的幅度随着频率的增大而迅速减小,这使 得在显示与观察一副图像的频谱时遇到困难。但以图像的形式显示它 们时,其高频项变得越来越不清楚。
傅里叶变换的作用
傅里叶变换将信号分成不同频率成份。类似光学中的 分色棱镜把白光按波长(频率)分成不同颜色,称数学 棱镜。
傅里叶变换的成份:直流分量和交流分量
信号变化的快慢与频率域的频率有关。噪声、边缘、 跳跃部分代表图像的高频分量;背景区域和慢变部分 代表图像的低频分量
二维DFT傅里叶变换
二维连续傅里叶变换
1) 定义

F (u) f (x)e j2uxdx
2) 逆傅里叶变换

F (u, v) f (x, y)e j2 (uxvy)dxdy

f (x) F (u)e j2uxdu
3) 傅里叶变换特征参数

f (x, y) F (u, v)e j2 (uxvy)dudv
此过程,得到全部完 整的FT。
离散傅里叶变换及其反变换总存在。 用欧拉公式得 e j cos j sin
N 1
F (u) f (x)[cos 2ux / N j sin 2ux / N ] x0
每个F(u) 由f(x)与对应频率的正弦和余弦乘积和组成;
u 值决定了变换的频率成份,因此,F(u) 覆盖的域 (u值) 称为频率域,其中每一项都被称为FT 的频率 分量。与f(x) 的“时间域”和“时间成份”相对应。
N 1
F (u) f (x)e j2ux/ N x0
•F(u)的反变换的反变换:
f (x)
1
N 1
F (u)e j2ux / N
N x0
计算F(u): 1) 在指数项中代入 u=0,然后将所有x 值
相加,得到F(0); 2) u=1,复对所有x 的 相加,得到F(1); 3) 对所有M 个u 重复
解: %myseparable.m %该程序验证了二维DFT的可分离性质 %该程序产生了冈萨雷斯《数字图像处理》(第二版) %P125 图4.4
f=imread('D:\chenpc\data\thry\chpt4\Fig4.04(a).jpg');
subplot(211)
imshow(f,[]) title('原图') F=fftshift(fft2(f));
f x, y e N e M
x0 y0

M 1
j 2 ux
F x, v e M
x0
f
x, y
1
M 1 N 1
F
u, v
ej
2

ux M

vy N

MN u0 v0
1 M 1 1 N1

M
u
0

N
F
v0
u, v
j2 vy
j 2 ux
e N e M


1
M 1
F
u, y
j 2 ux
e M
M u0
其中:

F
x,v

N 1
f
x,
j2 vy
y e N
~
y方向的DFT

y0

F u,v

M 1
F
x0
f ( x, y)e j 2 (ux / M vy/ N )
MN x0 y0
u 0,1, M 1 v 0,1, N 1
2) 逆傅里叶变换
M 1 N 1
f (x, y)
F (u, v)e j 2 (ux / M vy/ N )
u0 v0
x 0,1, M 1 y 0,1, N 1
F=fftshift(fft2(f)); G=fftshift(fft2(g)); subplot(223) imshow(log(abs(F+G)),[]) FG=fftshift(fft2(f+g)); title('DFT(f)+DFT(g)') subplot(224) imshow(log(abs(FG)),[]) title('DFT(f+g)')
傅里叶变换中出现的变量u和v通常称为频率变量,空间 频率可以理解为等相位线在x,y坐标投影的截距的倒数。
y
Y
0
x
相应的空间频率分别为
X
u 1 cos , v 1 cos
X
Y
思考:噪声、线、细节、 背景或平滑区言,空间频率是指单位长度内亮度作周 期性变化的次数。
一个图像尺寸为M×N的函数f(x,y)的离散傅立叶变换F(u,v):
M 1 N 1
F(u,v)
f ( x, y)e j2 (ux/M vy/N )
x0 y0
F(u,v)的反变换:
f (x, y)
1
M 1 N 1
F (u, v)e j2 (ux/M vy/N )
subplot(223)
imshow(log(1+abs(F)),[]) title('用fft2实现二维离散傅里叶变换') [m,n]=size(f); F=fft(f); %沿x方向求离散傅里叶变换 G=fft(F')'; %沿y方向求离散傅里叶变换 F=fftshift(G);
subplot(224)
解决办法: 对数化
25
26
主极大的值用Fmax表示,第一个旁瓣的峰值用Fmin表示
R log a (1 KFmax) log a (1 KFmin )
例题:对一幅图像实施二维DFT,显示并观察其频谱。 解:源程序及运行结果如下:
%对单缝进行快速傅里叶变换,以三种方式显示频谱, %即:直接显示(坐标原点在左上角);把坐标原点平 %移至中心后显示;以对数方式显示。 f=zeros(512,512); f(246:266,230:276)=1; subplot(221),imshow(f,[]),title('单狭缝图像') F=fft2(f); %对图像进行快速傅里叶变换 S=abs(F); subplot(222) imshow(S,[]) %显示幅度谱 title('幅度谱(频谱坐标原点在坐上角)')
傅里叶变换的意义
傅里叶变换好比一个玻璃棱镜 棱镜是可以将光分成不同颜色的物理仪 器,每个成分的颜色由波长决定。 傅里叶变换可看做是“数学中的棱镜”, 将函数基于频率分成不同的成分。
一些图像的傅里叶变换
相关文档
最新文档