快速傅里叶变换 _

合集下载

快速傅里叶变换(FFT)详解

快速傅里叶变换(FFT)详解

⽂中内容均为个⼈理解,如有错误请指出,不胜感激前⾔先解释⼏个⽐较容易混淆的缩写吧FMT 快速莫⽐乌斯变化—>感谢stump提供多项式复数在介绍复数之前,⾸先介绍⼀些可能会⽤到的东西(好像画的不是很标准。

)定义设a ,b 为实数,i 2=−1,形如a +bi 的数叫复数,其中i 被称为虚数单位,复数域是⽬前已知最⼤的域在复平⾯中,x 代表实数,y 轴(除原点外的点)代表虚数,从原点(0,0)到(a ,b )的向量表⽰复数a +bi模长:从原点(0,0)到点(a ,b )的距离,即√a 2+b 2幅⾓:假设以逆时针为正⽅向,从x 轴正半轴到已知向量的转⾓的有向⾓叫做幅⾓运算法则加法:因为在复平⾯中,复数可以被表⽰为向量,因此复数的加法与向量的加法相同,都满⾜平⾏四边形定则(就是上⾯那个)乘法:⼏何定义:复数相乘,模长相乘,幅⾓相加代数定义:(a +bi )∗(c +di )=ac +adi +bci +bdi 2=ac +adi +bci −bd=(ac −bd )+(bc +ad )i单位根下⽂中,默认n 为2的正整数次幂在复平⾯上,以原点为圆⼼,1为半径作圆,所得的圆叫单位圆。

以圆点为起点,圆的n 等分点为终点,做n 个向量,设幅⾓为正且最⼩的向量对应的复数为ωn ,称为n 次单位根。

根据复数乘法的运算法则,其余n −1个复数为ω2n ,ω3n ,…,ωn n 注意ω0n =ωn n =1(对应复平⾯上以x 轴为正⽅向的向量)那么如何计算它们的值呢?这个问题可以由欧拉公式解决ωk n =cos k ∗2πn +i sin k ∗2πn例如图中向量AB 表⽰的复数为8次单位根单位根的幅⾓为周⾓的1n在代数中,若z n =1,我们把z 称为n 次单位根单位根的性质ωk n =cos k2πn +i sin k 2πn (即上⾯的公式)ω2k 2n =ωk n证明:ω2k 2n =cos2k ∗2π2n +i sin2k ∗2π2n =ωk nωk +n2n =−ωk n ωn2n =cos n 2∗2πn +i sin n 2∗2πn =cos π+i sin π=−1ω0n =ωn n =1讲了这么多,貌似跟我们的正题没啥关系啊。

matlab 快速傅里叶变换

matlab 快速傅里叶变换

快速傅里叶变换(Fast Fourier Transform,FFT)是一种在数字信号处理和数值分析中广泛应用的算法,它能够高效地计算离散傅里叶变换(Discrete Fourier Transform,DFT),从而在频域中分析信号的频谱特性。

而在matlab中,使用FFT函数可以方便地进行快速傅里叶变换的计算和处理。

1. FFT的基本原理在介绍matlab中的FFT函数之前,我们先来了解一下FFT的基本原理。

FFT算法是一种分治法的思想,在计算傅里叶变换时通过将原始信号分解为奇偶部分,然后递归地进行计算,最终得到傅里叶变换的结果。

这种分治的思想使得FFT算法的计算复杂度降低到了O(n log n),比直接计算DFT的O(n^2)复杂度要低很多,因此在实际应用中得到了广泛的应用。

2. matlab中的FFT函数在matlab中,可以使用fft函数来进行快速傅里叶变换的计算。

fft函数的基本语法如下:```Y = fft(X)```其中,X表示输入的信号序列,可以是实数或复数序列;Y表示经过FFT变换后得到的频谱结果。

在使用fft函数时,最常见的是对时域信号进行FFT变换,然后得到其频谱特性。

3. FFT在信号处理中的应用FFT算法在信号处理中有着广泛的应用,其中最常见的就是对信号的频谱特性进行分析。

通过对信号进行FFT变换,可以得到其频谱图,从而可以直观地了解信号的频域特性,包括频率成分、幅度特性等。

这对于音频处理、振动分析、通信系统等领域都是非常重要的。

4. FFT在图像处理中的应用除了在信号处理中的应用,FFT算法也在图像处理中有着重要的地位。

在图像处理中,FFT可以用来进行频域滤波,包括低通滤波、高通滤波、带通滤波等操作。

通过FFT变换,我们可以将图像从空域转换到频域,在频域中进行滤波操作,然后再通过逆FFT变换将图像恢复到空域,从而达到图像增强、去噪等效果。

5. FFT在数学建模中的应用除了在信号处理和图像处理中的应用外,FFT算法还在数学建模和仿真计算中有着重要的作用。

快速傅里叶变换

快速傅里叶变换

N X 2 ( k ) X 2 (k ) 2
第4章 快速傅里叶变换(FFT)
(N k ) 2 又由于WN
k WN WN
N 2

k WN
,所以
N N N k N 2 X (k ) X 1 (k ) WN X 2 (k ) 2 2 2
k X 1 (k ) WN X 2 (k ),
X 1 (k ) x1 (r )W x(2r )W
r 0 rk 4 r 0
3
3
rk 4
k 0,1,2,3
第4章 快速傅里叶变换(FFT)
(2) n为奇数时,分别记作:
x2 (0) x (1), x2 (1) x (3), x2 ( 2) x (5), x2 (3) x (7);
k N
1 1
k WN
-1
N X ( k ) X 1 (k ) WNk X 2 (k ) (后一半) 2
5.计算工作量分析
按奇、偶分组后的计算量:
第4章 快速傅里叶变换(FFT)
由上图可知,N点DFT的复乘为N2 ;复加N(N-1); 与分解后相比可知,计算工作点差不多减少 一半。
第4章 快速傅里叶变换(FFT)
一个X(k)的值的工作量,如X(1)
0 1 X (1) x(0)WN x(1)WN x(2)WN2 x( N 1)WNN 1
nk 通常x(n)和 W 都是复数,所以计算一个 N X(k)的值需要N次复数乘法运算,和N 1 次 复数加法运算.那么,所有的X(k)就要N2次复 数乘法运算,N(N-1)次复数加法运算.当N很 大时,运算量将是惊人的,如N=1024,则要完 成1048576 次(一百多万次)运算.这样,难 以做到实时处理.

《快速傅里叶变换》课件

《快速傅里叶变换》课件
FFT算法的出现极大地推动了数字信号 处理技术的发展和应用。
FFT的历史背景
01
1960年代,Cooley和Tukey提 出了基于“分治”思想的FFT 算法,为快速傅里叶变换的实 用化奠定了基础。
02
随后,出现了多种FFT算法的 变种和优化,如Radix-2、 Radix-4等。
03
随着计算机技术的发展,FFT 算法在硬件实现上也得到了广 泛应用,如FPGA、GPU等。
《快速傅里叶变换》ppt课件
contents
目录
• FFT简介 • FFT基本原理 • FFT实现 • FFT的应用 • FFT的优化与改进 • FFT的挑战与未来发展
01 FFT简介
FFT的定义
快速傅里叶变换(FFT):一种高效计算离散傅里叶变换(DFT)及其逆变换的 算法。它将复杂度为$O(N^2)$的DFT计算降低到$O(Nlog N)$,大大提高了计 算效率。
详细描述
混合基数FFT算法结合了基数-2和基数-4算法的特点,利用两者在计算过程中的 互补性,减少了计算量,提高了计算效率。同时,该算法在处理大规模数据时 ,能够保持较高的精度。
分段FFT算法
总结词
分段FFT算法将输入数据分成若干段,对每一段进行快速傅里叶变换,以降低计算复杂度和提高计算效率。
详细描述
02 FFT基本原理
离散傅里叶变换(DFT)
定义
应用
DFT是时间域信号到频域的变换,通 过计算信号中各个频率成分的幅度和 相位,可以分析信号的频谱特性。
DFT在信号处理、图像处理、频谱分 析等领域有广泛应用。
计算量
DFT的计算量随着信号长度N的增加 而呈平方关系增长,因此对于长信号 ,计算量巨大。

05-第五章-快速傅里叶变换(蝶形运算)

05-第五章-快速傅里叶变换(蝶形运算)
32
W
r N
的确定
W
r N
的确定
以N=8为例:
m 1 时 W N r W , N j/4 W 2 j m W 2 0 ,j 0
m 2 时 W N r W , N j/2 W 2 j m W 4 j,j 0 , 1
m 3 时 W N r W N , j W 2 j m W 8 j,j 0 , 1 , 2 , 3 N2M,第L级:
8.0 1024 1 048 576 5 120 204.8
12.8 2048 4 194 304 11 264 372.4
64 4049 192
21.4
24
5.3.3 按时间抽取的FFT算法的特点
序列的逆序排列
同址运算(原位运算)
蝶形运算两节点间的距离
W
r N
的确定
25
序列的逆序排列
序列的逆序排列
以N/2点序列x1(r)为例
x1x (1 2 (l2 l)1 ) x3 x(4 l()l)
l0,1, ,N1 4
则有
N21
N4 1
N4 1
X1(k) x1(r)WNrk2 x1(2 l)W N 2l2k x1(2 l 1 )W N (2 2 l 1 )k
r0
l 0
l 0
N41
N41
x3(l)W N lk 4W N k2 x4(l)W N lk 4
FFT并不是一种与DFT不同的变换,而是 DFT的一种快速计算的算法。
3
5.2 直接计算DFT的问题及改进的途径
DFT的运算量
设复序列x(n) 长度为N点,其DFT为
N1
X(k) x(n)WNnk n0
k=0,,…,N-1

fft的用法 -回复

fft的用法 -回复

fft的用法-回复FFT,即快速傅里叶变换(Fast Fourier Transform),是一种高效的信号处理算法,用于快速计算傅里叶变换。

它广泛应用于数字信号处理、图像处理、通信和音频处理等领域。

在本文中,我将详细介绍FFT的原理、算法步骤以及应用。

一、傅里叶变换简介傅里叶变换是一种将信号从时域转换为频域的数学工具,它可以将一个信号分解为不同频率成分的叠加。

傅里叶变换公式为:F(w) = ∫f(t)e^(-jwt)dt其中,F(w)表示频域的复数函数,f(t)表示时域的函数,w为频率。

二、快速傅里叶变换原理FFT算法是在1965年由J.W. Cooley和J.W. Tukey发现的,它利用了傅里叶变换的对称性质,将O(n^2)复杂度的计算降低为O(nlogn)的复杂度。

FFT算法通过将信号采样点划分为不同的子集进行计算,并利用了旋转因子运算的特性,实现了快速的计算。

三、FFT算法步骤1. 输入信号首先,我们需要准备一个输入信号,该信号是以时间为自变量的实数函数。

通常,我们会对信号进行采样,得到一组离散的采样点。

2. 信号的长度针对采样点的数量,我们需要确定信号的长度为N。

在实际应用中,为了确保FFT的正确性,通常会选择2的整数次幂,即N=2^k。

3. 填充零如果信号的长度小于N,我们需要对其进行零填充,使其长度等于N。

这样做是为了保证FFT算法的正确性以及计算的高效性。

4. 快速傅里叶变换采用分治法的思想,FFT算法将信号分为两个子集,并分别计算它们的频谱。

然后,通过合并这些子集的结果以及旋转因子的运算,得到整个信号的频谱。

5. 频谱结果最后,我们可以得到信号的频谱结果,它表示了信号中不同频率成分的振幅和相位。

四、FFT的应用1. 音频处理在音频处理中,FFT被广泛应用于音频信号的频谱分析、波形绘制和滤波处理等方面。

通过FFT算法,我们可以将音频信号转化为频域表示,实现音频特征提取、音频识别以及音频效果的处理。

快速傅里叶变换

快速傅里叶变换

快速傅⾥叶变换快速傅⾥叶变换快速傅⾥叶变换(FFT )是根据计算量的最⼩化原理来设计和实施离散傅⾥叶变换(DFT)计算的⽅法。

1965年,库利(T.W.Cooley )和图基(J.W.tukey )发表了著名的《计算机计算傅⾥叶级数的⼀种算法》论⽂。

从此掀起了快速傅⾥叶变换计算⽅法研究的热潮。

快速傅⾥叶变换(FFT )的出现,实现了快速、⾼效的信号分析和信号处理,为离散傅⾥叶变换(DFT)的⼴泛应⽤奠定了基础。

1.1离散傅⾥叶变换(DFT)的计算设x(n)是⼀个长度为M 的有限长序列,则定义x(n)的N 点离散傅⾥叶变换为∑-===10)()]([)(N n kn NW n x n x DFT k X 其中由于计算⼀个X(k)值需要N 次复乘法和(N-1)次复数加法,因⽽计算N 个X(k)值,共需N2次复乘法和N(N-1)次复加法。

每次复乘法包括4次实数乘法和2次实数加法,每次复加法包括2次实数加法,因此计算N 点的DFT 共需要4N2次实数乘法和(2N2+2N ·(N-1))次实数加法。

当N 很⼤时,这是⼀个⾮常⼤的计算量。

1.2减少DFT 计算量的⽅法减少DFT 的计算量的主要途径是利⽤k N W 的性质和计算表达式的组合使⽤,其本质是减少DFT 计算的点数N 以便减少DFT 的计算量。

k N W 的性质:(1)对称性: (2)周期性: (3) 可约性: (4) 特殊点:选择其中⼀个证明N N j k N j N k N j N k N e e e W 222)2(22πππ--+-+==ππj k N j e e --=2k N j e π2--=k N W -=FFT 算法是基于可以将⼀个长度为N 的序列的离散傅⾥叶变换逐次分解为较短的离散傅⾥叶变换来计算这⼀基本原理的。

这⼀原理产⽣了许多不同的算法,但它们在计算速度上均取得了⼤致相当的改善。

0,1,,1k N =-()*nk nk N N W W -=()()nk N n k n N k N N NW W W ++==nk mnk N mN W W =//nk nk m N N mW W =01N W =/21N N W =-(/2)k N k N NW W +=-在这⾥讨论两类基本的FFT 算法。

数字信号处理中的快速傅里叶变换

数字信号处理中的快速傅里叶变换

数字信号处理中的快速傅里叶变换快速傅里叶变换(Fast Fourier Transform, FFT)是数字信号处理中一种重要的算法,用于将时域信号转换为频域信号。

通过将信号分解成不同频率的正弦和余弦波,可以提取出信号的频谱信息,进而进行频域分析和滤波等操作。

本文将介绍快速傅里叶变换的原理、算法流程以及在数字信号处理中的应用。

一、快速傅里叶变换的原理快速傅里叶变换是以傅里叶变换为基础的一种高效的算法。

傅里叶变换是将一个周期函数(或有限长的信号)分解成若干个不同频率的正弦和余弦波的叠加。

这些正弦和余弦波的频率和振幅反映了原始信号的频谱特征。

传统的傅里叶变换算法复杂度较高,难以在实时信号处理中应用。

而快速傅里叶变换通过巧妙地利用信号的对称性和周期性,将传统傅里叶变换的复杂度从O(n^2)降低到O(nlogn),大大提高了计算效率。

二、快速傅里叶变换的算法流程快速傅里叶变换算法采用分治法的思想,将信号逐步分解成更小的子问题,并通过递归地计算子问题的频域结果来获得最终的结果。

其算法流程如下:1. 输入原始信号,设信号长度为N。

2. 如果N为1,则直接返回原始信号。

3. 将原始信号分为偶数项和奇数项两部分。

4. 对偶数项序列进行快速傅里叶变换,得到频域结果D1。

5. 对奇数项序列进行快速傅里叶变换,得到频域结果D2。

6. 根据傅里叶变换的性质,将D1和D2组合成整体的频域结果,得到最终结果。

7. 返回最终结果。

三、快速傅里叶变换在数字信号处理中的应用1. 频谱分析:快速傅里叶变换可以将信号从时域转换到频域,通过分析信号的频谱特征,可以提取信号的频率成分,并得到各频率成分的振幅和相位信息。

在音频、图像处理等领域,频谱分析是常见的操作,可以实现音乐信号的频谱可视化、图像去噪和图像压缩等任务。

2. 滤波操作:快速傅里叶变换可以将信号转换到频域后进行滤波操作。

在通信系统中,为了提高信号抗干扰能力和传输效率,通常使用滤波器对信号进行处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回顾 —— 截断效应
若使泄漏→至0,则
8
,意味着需要无限加宽窗函数,等于未截短。
所以不能用无限加宽窗口来减少泄漏。
j 具有旁瓣,并且主瓣也占有一定宽度。 不过,泄漏的产生是由于 W
小、主瓣窄的窗函数。
主瓣
W N ( e j )
为了尽量减少泄漏,需要寻找频域中窗函数 W j 接近 ,即旁瓣
快速傅里叶变换
回顾
信号逼近所产生的问题
2
为了分析连续信号频谱,需要使用 DFT来逼近连续时间信
号的傅里叶变换。但由于 DFT要对连续信号进行采样和截
断等处理,因此,常产生误差分析,体现在三个方面。 ① 混叠现象:由于不满足抽样定理而引起; ② 截断效应:由于序列截断引起; ③ 栅栏效应:由于对频谱的有限点采样引起。
回顾 —— 截断效应
可见: 原来在
处的一根谱线,变成了以 0 为中心,形状 为 的连续频谱。 Sa /2
0
7
“泄漏”是由矩形窗函数带来的, 求极限:
1 lim Sa / 2 lim X e j W j 2 2
1 lim X e j Sa / 2 2 j X e X e j
N
旁瓣
旁瓣


2 N
0
2 N
4 N


回顾 —— 栅栏效应
3. 栅栏效应
9
N点DFT是在区间[0, 2]上的N点等间隔采样,采样点之间的频谱函数
值是不知道的 ,就好像从 N+1 个栅栏缝隙中观看信号的频谱特性,得
到的是N个缝隙中看到的频谱函数值,这种现象称为栅栏效应。 原因:对信号的频谱进行有限点采样; 后果:栅栏效应可能漏掉(挡住)大的频谱分量; 措施:对原序列补0,增大N,以增加采样点。
5
f ,s 导致 F增加, 0
② 反之, 若打算要提高频率分辨率即减小 F 0 , 则导致减小 f s , 最终必须减
小信号的高频容量。

fh 显然,针对高频容量
与频率分辨率 F0
, 想保持其中一个不变而使
另一个性能得以提高的唯一办法是:
增加记录长度内的点数N, 即:N
2 fh F0
这是未采用任何特殊数据处理(例如加窗)情况下,为实现基本DFT算 法所必须满足的基本条件。
回顾 —— 截断效应
6
2. 截断效应 窗函数不可能取无限宽,即其频谱不可能为一冲激函数, 信号的频谱与窗函数的卷积 必然产生拖尾、变宽的现象, 从而造成截断效应 。如下图所示。
x(n )
X ( e jw )
w (n )
W (e
jw
)
x ( n ) xn () w ( n ) N
w j w j w Xe (j ) X ( e ) * W ( e ) N
xn ( ) { 2 ,3 ,3 ,2 } xn ( ) { 2 ,3 ,3 ,2 ,0 ,0 ,0 ,0 } 1
N1 n0 -j 2 nm N
【解】
X (k) x(n) e
N1 n0
x(n) e
n0 7
3
-j
2 nm 4
{ 10, 1 j, 0, 1 j} X1(k) x1(n) e
管中窥豹
回顾 —— 栅栏效应
减小栅栏效应的方法 —— 补零
10
减小栅栏效应的一个方法是, 在所取数据的末端添加一些 零值点,使一个周期内点数增加, 数据。 但是不改变原有的记录
这种方法相当于加长了周期T0,T0增加, 使得频域抽样间
隔变小, 从而能保持原来频谱形式不变的情况下使谱线变 密, 也就使频谱抽样点数增加。 这样,原来看不到的频谱分量就有可能看到了。
1 fs 2 fh tp N N
为抽样点数。
措施: 采样前对信号进行预滤波,采样时满足采样定理,以 避免信号在w=处附近的混迭,再滤去信号中频率高于 f 的频率分量。
s
2
回顾 —— 频谱混叠
需要注意的是:
① 当 N 给定时, 若为了避免混叠现象而一味提高抽样频率 即导致频率分辨能力下降;
-j 2 nk N
x1(n) e
n0
-j
2 nk 8
x(n) e
n0
3
-j
2 nk 8
{ 10, 2.7-j6.5, 1 j, 1.3-j0.5, 0, 1.3 j0.5, 1 j, 2.7 j6.5}
例 1:—— 栅栏效应
x=[2,3,3,2]; subplot(2,2,1); stem(x,'fill');title('x(n)'); N=8*length(x); NFFT = 2^nextpow2(N); Xk=fft(x,NFFT); subplot(2,2,2); f = 0:2*pi/(NFFT-1):2*pi; stem(f,abs(Xk)); title(['X(k) DFT点数 N=' num2str(NFFT)]); x1=[2,3,3,2,0,0,0,0]; subplot(2,2,3);stem(x1,'fill'); title('x1(n)'); N1=8*length(x1); NFFT1 = 2^nextpow2(N1); X1k=fft(x1,NFFT1); subplot(2,2,4); f1 = 0:2*pi/(NFFT1-1):2*pi; stem(f1,abs(X1k)); title(['X1(k) DFT点数 N=' num2str(NFFT1)]);
回顾 —— 频谱混叠
1. 混叠现象
3
回顾 —— 频谱混叠
原因:时域采样不满足奈奎斯特准则:f s 2 f h
fs 其中
4
fh 为抽样频率, 为信号最高频率。 fs 此条件只规定了 的下限,其上限要受 频率分辨率
F0 (抽样间隔)
其中, N
F0 的约束。
F 0
也可表示为记录长度的倒数,即:
回顾 —— 栅栏效应
N 8 fs F 8
11
0
1
2
3
4
5
6
7
8
F
x ( n ) 后面补4个零值,则有:
0 1 2 3 4
N 12 f F s 122源自5 6 789
10 11 12
F
fs fs F F 8 12
2
例 1:—— 栅栏效应
已知:
12
相关文档
最新文档