简谐振动 旋转矢量法
旋转矢量法在简谐振动中的应用探讨

旋转矢量法在简谐振动中的应用探讨摘要:结合旋转矢量法的理论依据探究旋转矢量法在简谐振动中的应用,探究结果发现:旋转矢量法的理论依据是两个振幅相等,频率相同的简谐振动,相位差等于π/2,沿垂直方向的合成就是圆周运动;而旋转矢量法可计算简谐振动的矢端速度与加速度、相位与初相位、运动时间间隔及合振动。
关键词:旋转矢量法;简谐振动;应用0.旋转矢量法旋转矢量法[1],也叫匀速圆周运动法,参考圆法,用其方法来解决简谐振动中的问题,相对来说比较简单。
如图1,做一个圆周,以O为原点,向右为正方向建立坐标轴,根据题目条件确定半径位置,要观察的是半径的端点在x轴上的投影的位置,如果速度为正,半径端点一定处于x轴下方,反之在x轴上方,比如,t=0时,质点正经过平衡位置向正方向运动,那么这个半径端点就是在原点正下方,即端点的投影刚好在原点[2]。
而以O为原点的旋转向量A的端点与在x 轴上的投影点的运动为简谐振动。
图1 旋转矢量图2 相位差为π/2互相垂直简谐振动的合成1.简谐振动矢量法的理论依据互相垂直相同频率简谐振动的合成[3],现将分振动的运动学方程表示为,,质点既沿Ox轴又沿Oy轴运动,实际上是在Oxy平面上运动。
从上面方程消去t,得合振动的轨迹方程:=。
当相位差为时,,表明合振动的轨迹为以x和y为轴的椭圆,如图2所示这里又可分为两种情况,时,x方向的振动比y方向的振动超前,即,当某一瞬时,则x=0,y=A2,即质点在图2(a)中的P点,经过很短时间后略大于零,y将略小于A2,为正,而略大于,x将为负,故质点运动到第二象限,即质点沿椭圆逆时针运动。
反之,时,y方向的振动比x方向的振动超前,质点沿椭圆顺时针方向运动,如图2(b)。
以上两分运动中,若=且相位差为,则其合运动轨迹方程褪化为圆。
两个振幅相等,频率相同的简谐振动,相位差等于沿互相垂直方向合成的为圆周运动;反推理可得,圆周运动亦能分解为两互相垂直的同振幅同频率的简谐振动。
大学物理-11第十一讲简谐振动、振动能量、旋转矢量法

14
例:边长l的立方体木块浮于静水中,浸入水中部分 的高度为b。今用手将木块压下去,放手让其开始运 动。忽略水的阻力,证明木块作谐振动。 解:以水面为原点建立坐标OX。
任意时刻 F浮水(bx)l2g mgF浮ma
水 b l2g水 l2(bx)gm a
力使 减小.
mgsinmldd2t2
很小,sin mg
ml
d2
dt2
l m
f mg
d 2
dt 2
g
l
0
角谐振动
解为 0cos(t)
g T 2 l
l
g
12
例:如图所示装置,轻弹簧k =50N/m,滑轮 M =1kg,
半径 R =0.2m,物体 m =1.5kg。若将物体由平衡位置
X
P
xAcos(t)
◆可用该旋转矢量末端的投影点 P 的运动来表示简 谐振动。
16
旋转矢量法的应用
1.确定初位相 ●由初始位置 x0 确定旋转矢量两个可能的位置。 (特殊情况下只有一个位置) ●根据初始速度方向,由旋转矢量两个可能的位 置中确定初始位置,从而找出初相.。
A
Ox
17
例:确定下列情况的初位相 (a) 已知 t = 0 时,x = -A。 (b) 已知 t = 0时,x = 0,且向 x 轴正方向运动。 (c) 已知 t = 0,x = -A/2,且向 x 轴负方向运动。 (d) 已知 t = 0,x = -A/2,且向 x 轴正方向运动。
13
d2x dt2
k x0 m(1/2)m
d2x dt 2
简谐振动的旋转矢量法

简谐振动的旋转矢量法
简谐振动的旋转矢量法(also known as the rotational vector method)是一种描述简谐振动运动的方法。
这种方法将简谐振动的位移表示为一个旋转矢量,该旋转矢量的大小和方向都随时间变化。
在这种方法中,假设物体在振动过程中绕一个固定轴旋转。
这个固定轴被称为挠度轴,它垂直于振动平面。
振动的位移被表示为从挠度轴指向物体的矢量。
根据简谐振动的性质,位移矢量旋转的角度随时间变化,而角度的变化速率与振动频率相关。
通过将位置矢量的旋转速率与振动频率相关联,可以得到简谐振动的动态方程。
旋转矢量法可以应用于各种简谐振动问题,包括简谐振子、摆线振动等。
通过使用该方法,可以更轻松地分析和计算简谐振动的运动特性,例如位移、速度和加速度等。
此外,该方法还可以用于解决相关问题,如相位差和共振等。
总的来说,简谐振动的旋转矢量法是一种较为直观和简便的分析简谐振动运动的方法,它通过描述位移矢量的旋转来描述振动过程,并可以得到简谐振动的动态方程。
大学物理简谐振动

A2
A
A2 sin 2
2 -1
2
O
1 A1 x2
A1 sin 1
x2 x
x1x1
x2
x
A1 cos1 A2 cos2
合振动振幅:A A12 A22 2A1A2 cos(2 1)
1. 两个分振动的相位相同(同相)
5 (或 3 )
4
4
第六章
机械波
mechanical wave
6.1 机械波的产生、传播和描述 波动: 振动在空间中的传播过程.
机械波: 机械振动在弹性介质中的传播过程. 波动
电磁波: 交变电磁场在空间中的传播过程. 6.1.1 机械波的产生
当弹性介质中的一部分发生振动时,由于介质各个 部分之间的弹性力作用,振动就由近及远地传播出去. (1) 机械波实质上是介质中大量质点参与的集体振动;
20 0.47
(2) 30为何值时, x1+x3 的振幅为最大; 30为何值时, x2+x3的振幅为最小.
x1 0.05cos10t 3 4
x2 0.06cos10t 4
x3 0.07 cos10t 30
30
10
0 时,x1+x3 振幅最大:30
10
3
4
30 20 时,x2+x3 振幅最小:30 20
t 时刻点 P 的振动状态
P点在
t
时刻的位移
y P ,t
yO ,t x
u
A c os [ (t
x) u
0 ]
波函数 (波方程)
y( x, t )
A cos[ (t
简谐振动的旋转矢量图示法

解:
点 2 在 x = - A / 2 处 向 右 运 动 , 试 用 旋
转 矢 量 法 求 两 质 点 的 相 位 差 。 1
3
x
2
4
3
2
A
2A
O
1
A 2
2143 3
例2、一物体沿x轴作简谐振动,振幅A=0.12m,周期 T=2s。当t=0时,物体的位移x=0.06m,且向x轴正向运
动。求: (1)简谐振动表达式;
向正方向运动,求运动方程。
解:(1) k 0.726.0s-1
m 0.02
由旋转矢量可知初相位 谐振动方程为
0 0
0.05
O
x
x0.05cos(6.0t) m
第一次经过A/2时,相位
(2) v dx 0.056.0sin(6.0t) dt
=0.3sin(6.0t) m/s
6.0t 3
OA
0, x=0.06m可
得0 3
或
3
简谐振动表达式
01
02
03
04
v0Asin00
由于t=0时质点 向x轴正向运动
0 3
因而
可知
x0.12cos(t) m
3
(2)由简谐振动的运动方程可得:
vdx0.12sin(t) m /s
dt
3
adv 0.12 2cos(t)m /s2
dt
3
在t =T/4=0.5s时,可得
A 的长度
振幅A
A 旋转的角速度
角频率ω
A 与参考方向x 的夹角
振动相位ωt+φ0
相位之差为
x1A1cos(t1)
x2A2cos(t2)
大学物理B(Ⅱ)旋转矢量

t 0.667s
x
A
00 7.5 A 2
A v
t0
例 一简谐运动的运动
曲线如图所示,求振动周
期.
t(s) t 0
A A2 0 A x
t 7.5
2π T T
t 7.5s
T 18s
例 已知谐振动的 A 、T ,求 1)如图简谐运动方
A'
44
因为 v0 0 ,由旋转矢量图可知 ' π 4
x Acos(t ) 0.0707cos(6.0t π)
4
例2 一质量为 0.01kg 的物体作简谐运动,其振
幅为 0.08m,周期为 4s ,起始时刻物体在 x 0.04m
处,向 Ox轴负方向运动(如图).试求
(1)t 1.0s 时,物体所处的位置和所受的力;
A/2 t ta
A 0 A x
t0
π ( π) 2π
3 33
tb
T
2π
T 3
的最短时间.
v
x/m
0.08 0.04 o 0.04 0.08
法一 设由起始位置运动到 x 0.04m 处所
需要的最短时间为 t
0.04 0.08cos(π t π) 23
t 0.667s
解法二
t 时刻
t
π3 π3
0.08 0.04 o 0.04
起始时刻
x/m
0.08
t π
3
π s1
x 0.08cos(π t π ) 23
m 0.01kg
v
x/m
0.08 0.04 o 0.04 0.08
x 0.08cos(π t π ) 23
t 1.0s 代入上式得 x 0.069m
第4章《振动》选择题解答与分析

4振动4.1旋转矢量1. 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为答案:(B)参考解答:简谐振动可以用一个旋转矢量的投影来表示。
这一描述简谐振动的几何方法称为旋转矢量法。
以坐标原点o 为始端作一矢量A,该矢量以角速度ω绕o 点逆时针匀速转动。
0=t 时,旋转矢量与x 轴正向的夹角等于ϕ,则在转动过程中的任意时刻t ,矢量A与x 轴正向的夹角为)(ϕω+t ,其端点M 在坐标轴上的投影P 的坐标为)cos(ϕω+=t A x ,P 所代表的运动正是简谐振动。
本题(B)图中,旋转矢量端点在坐标轴上投影点的坐标与运动方向符合题设的要求,即为答案。
对所有选择,均给出参考解答,直接进入下一题。
2. 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 (A) T /12. (B) T /8. (C) T /6. (D) T /4. 答案:(C) 参考解答:根据旋转矢量法,以坐标原点o 为始端作一矢量A,该矢量以角速度ω绕o 点逆时针匀速转动。
0=t 时,旋转矢量与x 轴正向的夹角等于ϕ,则在转动过程中的任意时刻t ,矢量A与x 轴正向的夹角为)(ϕω+t ,其端点在坐标轴上的投影的坐标为)cos(ϕω+=t A x 所代表的运动正是简谐振动。
本题按题意画旋转矢量图,由,3πωθ==t πω2=T 两式联立,解出.6Tt =对所有选择,均给出参考解答,直接进入下一题。
4.2振动曲线、初相1. 一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为(A) π/6. (B) 5π/6. (C) -5π/6.(D) -π/6. (E) -2π/3.答案:(C)参考解答:令简谐振动的表达式:)cos(ϕω+=t A x ,)(ϕω+t 称为振动系统在t 时刻的位相。
简谐振动-旋转矢量法

sin2 (2 1)
y
2) 2 1 π
y A2 x A1
3)2 1 π 2
x A2
o A1
x2 A12
பைடு நூலகம்
y2 A22
1
x A1 cost
y
A2
cos(t
π) 2
A2 y
o A1 x
用 旋 转 矢 量 描 绘 振 动 合 成 图
两
相
互 垂 直 同 频 率 不 同 相
简 谐 运 动 的 合 成 图
x
x
A1 o
o
A
A2
A A1 A2
Tt
结论
A A12 A22 2A1 A2 cos(2 1 )
若两分振动同相位:
2 1 2k k 0,1, 2,
A A1 A2
若两分振动反相位:
两分振动相互加强
2 1 (2k 1) k 0,1, 2,
A A1 A2
两分振动相互减弱
再若 A1= A2 , 则 A= 0
M
A
P
x
注意:旋转矢量在第 2 象限
速度v <0
M
PA
x
注意:旋转矢量在第 2 象限
速度v <0
M
PA
x
<
注意:旋转矢量在第 3 象限
速度v 0
P x
MA
<
注意:旋转矢量在第 3 象限
速度v 0
P x
A
M
<
注意:旋转矢量在第 3 象限
速度v 0
P x
A
M
<
注意:旋转矢量在第 3 象限
速度v 0
找到谐振动的特征量,问题就解决了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单位: s
1 T
单位: 赫兹(Hz, 1/s)
圆(角)频率 : 2 秒内振动的次数.
2 单位: 弧度/秒(rad/s)
周期, 频率与角频率关系: k
m
T 1 2π
只取决于系统本身.
P.7/35
简谐运动的运动方程
x Acos(t )
3. 初相位, 相位和相位差
振动学是波动学的基础
第5章 机械振动
第5章 机械振动
振动: 任何一个物理量(物体的位置, 电流强度, 电场强度, 磁场强度等)在 某一固定值附近作往复变化. 机械振动: 物体在固定位置(平衡位置) 附近作来回往复的运动. 简谐运动: 是最基本, 最简单的振动.
复杂振动 = ∑简谐振动
研究目的 —— 利用, 减弱 or 消除
第5章 机械振动
x Acos( t ) Acos( t 2 )
x Acos(t )
5.1.2 简谐运动方程中的 三个基本物理量
A cos
(t
2
)
)
T 2
频率 : 单位时间内完成的振动次数.
1. 描述振动强弱的物理量
振幅 A : 离开平衡位置的 最远距离.
单位: m
2. 描述振动快慢的物理量
第三篇 机械振动&机械波
第五章 机械振动
第5章 机械振动
为何讨论的重点是简谐运动 复杂振动可分解为若干简谐运动
振动的运动学规律
简谐振动的动力学特征
振动能量的周期性特征
P.2/35
振动和波动的关系: 波动——振动的传播 振动——波动的源头
机械振动, 电磁振荡 机械波, 电磁波 德布罗意波——几率波
t
0
an
a
v
2 A
x
vm A an A 2
v A cos(t π )
x Acos(t )
2
a A2 cos(t )
远离 x ,v 0 接近 x ,v 0
P.11/35
5.2.2 旋转矢量图的应用
1. 求初相位
振子沿 x 轴正方向运动
x x
第5章 机械振动
Φ (t ) (t )
P.3/35
§5.1 简谐运动
第5章 机械振动
5.1.1 简谐运动的特征及其运 动方程
弹簧振子——理想模型
简谐运动的受力
f kx
始终指向平衡位置(有心力)
简谐运动的动力学方程
单
摆
d2x
m dt 2 k x
P.4/35
简谐运动动力学方程
m d2x k x 令 2 k
dt 2
m
d2 dt
x
P.5/35
第5章 机械振动
x Acos(t )
x
A
T 2π 取 0
o
A
v
v A sin(t ) A
o
A cos(t π ) A
2
a
a A 2 cos(t ) A 2
o
A 2 cos(t π ) A 2
xt图
t
T
vt 图
Tt
a t图
Tt
P.6/35
简谐运动的运动方程
解: (1)
x0 0.04m, v0 0, 6.0s1
振幅: A
x0 2
v02
02
x0 0.04m
arctan v0 0 x0
(为什么 不取π ?)
第5章 机械振动
得: x 0.04cos 6.0t m (2) 由(1)中结果
0.02 0.04cos 6.0t cos 6.0t 1 2
• 旋转矢量A与x轴的夹角(t+)
即为简谐运动的相位.
•
旋转矢量
A
的角速度
即
为振动的角频率.
•
t
=0时,
A
与x轴的夹角即为
简谐振动的初相.
•
旋转矢量
A
旋转一周,
P点完
成一次全振动.
周期: T 2π
结论: 投影点的运动为简谐运动
x Acos( t )
P.10/35
第5章 机械振动
y vm t π
v d x 0.24sin 6.0t dt
sin 6.0t 1 cos2 6.0t
1
1
2
3
2 2
依题意, v<0
v 0.24 3 0.208 m s1 2
P.9/35
§5.2 简谐运动的旋转矢量 表示法
5.2.1 旋转矢量表示法
t
x
P
• 旋转矢量A的模即为简谐运 动的振幅.
第5章 机械振动
相位ωt + : 也叫位相或周相.
一个周期当中, 相位与振子的 运动状态(包括位置, 速度, 加 速度)一一对应.
初相位 : 也叫初位相或初相.
t=0时的相位, 描述初始时刻的 振动状态, 与初始条件有关.
相位差ΔΦ : 相位的差值.
单位: 弧度(rad)
第5章 机械振动
4. 求解振幅和初相
设 t =0 时
x0 Acos , v0 Asin
x2 0
v2 0
2
A2 (sin 2
cos2 )
A2
振幅:
A
x0 2
v0
2
初相: arctan( v0 )
x0
A 和 完全由初始条件决定. 的取值不唯一, 并与坐标正
方向的选取有关.
P.8/35
例1: 轻弹簧一端固定, 另一端连 接一个物块. 整个系统位于水平 面内, 系统的角频率为6.0s-1. 将 物体沿水平向右拉到 x0= 0.04 m 处再释放, 试求: (1)简谐运动表 达式; (2)物体从初始位置起第 一次经过A/2处时的速度.
(t2 t1) ( ) t
P.12/35
第5章 机械振动
Φ 2 1
Φ 0 同步
x
0 超前 Φ π反相 Φ 0 落后
x
x
o
to
o
t
t
相位差为 2 整数倍: 同步
相位差为 或 奇数倍: 反相
P.13/35
3. 用旋转矢量图画简谐运动的x t
第5章 机械振动
P.14/35
例2: 一质点沿x轴作简谐运动 的振幅为12cm, 周期为2s. 当 t = 0 时, 位移为6cm, 且沿 x 轴 正方向运动. 求: (1) 振动表达式; (2) t = 0.5s时, 质点的位置, 速 度和加速度; (3) 如果在某时刻质点位于 x=-6cm, 且沿 x 轴负方向运 动, 求从该位置回到平衡位置 所需要的最短时间.
( )t ( )
若两个振动的频率相 同, 则相位差为
A
A
x
Φ
同一振动不同时刻的相位差
振子沿 x 轴负方向运动 2. 比较各振动之间的相位关系 不同振动同一时刻的相位差
x1 Acos( t ) x2 Acos(t )
x1 Acos( t1 ) x2 Acos( t2 ) Φ (t2 ) (t1 )
2
2
x
Hale Waihona Puke 0微分方程的解(运动方程)
第5章 机械振动
简谐运动的速度与加速度
v dx Asin( t )
a
dt dv
vm
cos(
t
π 2
)
2 Acos( t )
v
dt am cos( t π ) a
x Acos(t )
简谐运动: 某个物理量随时 间的变化规律满足简谐运 动方程, 或遵从余(正)弦规 律, 一般来说, 这一物理量 就作简谐运动.