2019年高考文科数学知识点总结:直线和圆

合集下载

2019年高考数学考纲解读与热点难点突破专题16直线与圆理

2019年高考数学考纲解读与热点难点突破专题16直线与圆理

直线与圆【2019年高考考纲解读】考查重点是直线间的平行和垂直的条件、与距离有关的问题、直线与圆的位置关系(特别是弦长问题).此类问题难度属于中低档,一般以选择题、填空题的形式出现. 【重点、难点剖析】 一、直线的方程及应用 1.两条直线平行与垂直的判定若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在. 2.求直线方程要注意几种直线方程的局限性.点斜式、斜截式方程要求直线不能与x 轴垂直,两点式不能表示与坐标轴垂直的直线,而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线. 3.两个距离公式(1)两平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2(A 2+B 2≠0). (2)点(x 0,y 0)到直线l :Ax +By +C =0的距离公式d =|Ax 0+By 0+C |A 2+B 2(A 2+B 2≠0).二、圆的方程及应用 1.圆的标准方程当圆心为(a ,b ),半径为r 时,其标准方程为(x -a )2+(y -b )2=r 2,特别地,当圆心在原点时,方程为x 2+y 2=r 2.2.圆的一般方程x 2+y 2+Dx +Ey +F =0,其中D 2+E 2-4F >0,表示以⎝ ⎛⎭⎪⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆.三、直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离,判断的方法主要有点线距离法和判别式法.(1)点线距离法:设圆心到直线的距离为d ,圆的半径为r ,则d <r ⇔直线与圆相交,d =r ⇔直线与圆相切,d >r ⇔直线与圆相离.(2)判别式法:设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0(A 2+B 2≠0),方程组⎩⎪⎨⎪⎧Ax +By +C =0,x -a 2+y -b2=r2消去y ,得到关于x 的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系有五种,即内含、内切、相交、外切、外离.设圆C1:(x-a1)2+(y-b1)2=r21,圆C2:(x-a2)2+(y-b2)2=r22,两圆心之间的距离为d,则圆与圆的五种位置关系的判断方法如下:(1)d>r1+r2⇔两圆外离.(2)d=r1+r2⇔两圆外切.(3)|r1-r2|<d<r1+r2⇔两圆相交.(4)d=|r1-r2|(r1≠r2)⇔两圆内切.(5)0≤d<|r1-r2|(r1≠r2)⇔两圆内含.【高考题型示例】题型一、直线的方程及应用例1、已知点P(3,2)与点Q(1,4)关于直线l对称,则直线l的方程为( )A.x-y+1=0 B.x-y=0C.x+y+1=0 D.x+y=0【解析】由题意知直线l与直线PQ垂直,所以k l=-1k PQ=-14-21-3=1.又直线l经过PQ的中点(2,3),所以直线l的方程为y-3=x-2,即x-y+1=0.【答案】A【方法技巧】(1)求解两条直线平行的问题时,在利用A1B2-A2B1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的可能性.(2)判定两直线平行与垂直的关系时,如果给出的直线方程中存在字母系数,不仅要考虑斜率存在的情况,还要考虑斜率不存在的情况.【变式探究】(1)已知直线l1:x·sin α+y-1=0,直线l2:x-3y·cos α+1=0,若l1⊥l2,则sin 2α等于( )A.23B.±35C.-35D.35答案 D解析因为l1⊥l2,所以sin α-3cos α=0,所以tan α=3,所以sin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α=35. (2)在平面直角坐标系xOy 中,直线l 1:kx -y +2=0与直线l 2:x +ky -2=0相交于点P ,则当实数k 变化时,点P 到直线x -y -4=0的距离的最大值为________. 答案 3 2【感悟提升】(1)求解两条直线的平行或垂直问题时要考虑斜率不存在的情况. (2)对解题中可能出现的特殊情况,可用数形结合的方法分析研究.【变式探究】(1)直线ax +(a -1)y +1=0与直线4x +ay -2=0互相平行,则实数a =________. 答案 2解析 当a ≠0时,a 4=a -1a ≠1-2,解得a =2.当a =0时,两直线显然不平行.故a =2.(2)圆x 2+y 2-2x -4y +3=0的圆心到直线x -ay +1=0的距离为2,则a 等于( ) A .-1 B .0 C .1 D .2 答案 B解析 因为(x -1)2+()y -22=2,所以|1-2a +1|1+a 2=2,所以a =0. 题型二 圆的方程及应用例2、(2018·天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________. 答案 x 2+y 2-2x =0解析 方法一 设圆的方程为x 2+y 2+Dx +Ey +F =0.∵圆经过点(0,0),(1,1),(2,0),∴⎩⎪⎨⎪⎧F =0,2+D +E +F =0,4+2D +F =0,解得⎩⎪⎨⎪⎧D =-2,E =0,F =0.∴圆的方程为x 2+y 2-2x =0. 方法二 画出示意图如图所示,则△OAB 为等腰直角三角形, 故所求圆的圆心为(1,0),半径为1, ∴所求圆的方程为(x -1)2+y 2=1, 即x 2+y 2-2x =0.【变式探究】(1)圆心为(2,0)的圆C 与圆x 2+y 2+4x -6y +4=0相外切,则C 的方程为( ) A .x 2+y 2+4x +2=0 B .x 2+y 2-4x +2=0 C .x 2+y 2+4x =0 D .x 2+y 2-4x =0 答案 D解析 圆x 2+y 2+4x -6y +4=0, 即(x +2)2+(y -3)2=9, 圆心为(-2,3),半径为3. 设圆C 的半径为r . 由两圆外切知,圆心距为+2+-2=5=3+r ,所以r =2.故圆C 的方程为(x -2)2+y 2=4, 展开得x 2+y 2-4x =0.(2)已知圆M 与直线3x -4y =0及3x -4y +10=0都相切,圆心在直线y =-x -4上,则圆M 的方程为( ) A.()x +32+(y -1)2=1B.()x -32+()y +12=1C.()x +32+()y +12=1D.()x -32+(y -1)2=1答案 C解析 到两直线3x -4y =0及3x -4y +10=0的距离都相等的直线方程为3x -4y +5=0,联立方程组⎩⎪⎨⎪⎧3x -4y +5=0,y =-x -4,解得⎩⎪⎨⎪⎧x =-3,y =-1.两平行线之间的距离为2,所以半径为1,从而圆M 的方程为()x +32+()y +12=1.故选C.【感悟提升】解决与圆有关的问题一般有两种方法(1)几何法:通过研究圆的性质、直线与圆、圆与圆的位置关系,进而求得圆的基本量和方程. (2)代数法:即用待定系数法先设出圆的方程,再由条件求得各系数.【变式探究】已知a ∈R,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________. 答案 (-2,-4) 5解析 由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,5为半径的圆.【变式探究】已知点A 是直角三角形ABC 的直角顶点,且A (2a,2),B (-4,a ),C (2a +2,2),则△ABC 的外接圆的方程是( )A .x 2+(y -3)2=5 B .x 2+(y +3)2=5 C .(x -3)2+y 2=5 D .(x +3)2+y 2=5 解析:由题意得2a =-4,∴a =-2, ∴圆的半径为BC 2=-4+2+-2-22=5,圆心为(-3,0),∴圆的方程为(x +3)2+y 2=5,故选D. 答案:D题型三 直线与圆、圆与圆的位置关系例3、(1)[2018·全国卷Ⅰ]直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________. 【解析】由x 2+y 2+2y -3=0,得x 2+(y +1)2=4. ∴圆心C (0,-1),半径r =2.圆心C (0,-1)到直线x -y +1=0的距离d =|1+1|2=2,∴|AB |=2r 2-d 2=24-2=2 2. 【答案】2 2(2)[2016·山东卷]已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A .内切 B .相交 C .外切 D .相离【解析】方法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0x +y =0得两交点为(0,0),(-a ,a ).∵圆M 截直线所得线段长度为22, ∴a 2+-a2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0,即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2. 又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=-2+-2= 2.∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3,∴两圆相交. 方法二:∵x 2+y 2-2ay =0(a >0)⇔x 2+(y -a )2=a 2(a >0), ∴M (0,a ),r 1=a .依题意,有a2=a 2-2,解得a =2.以下同方法一. 【答案】B【举一反三】[2018·江苏卷]在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为________. 解析:设A (a,2a ),则a >0.又B (5,0),故以AB 为直径的圆的方程为(x -5)(x -a )+y (y -2a )=0. 由题意知C ⎝⎛⎭⎪⎫a +52,a .由⎩⎪⎨⎪⎧x -x -a +y y -2a =0,y =2x ,解得⎩⎪⎨⎪⎧x =1,y =2,或⎩⎪⎨⎪⎧x =a ,y =2a .∴D (1,2).又AB →·CD →=0,AB →=(5-a ,-2a ),CD →=(1-a +52,2-a ),∴(5-a ,-2a )·(1-a +52,2-a )=52a 2-5a -152=0, 解得a =3或a =-1. 又a >0,∴a =3. 答案:3【方法技巧】弦长的求解方法(1)根据平面几何知识构建直角三角形,把弦长用圆的半径和圆心到直线的距离表示,l =2r 2-d 2(其中l 为弦长,r 为圆的半径,d 为圆心到直线的距离).(2)根据公式:l =1+k 2|x 1-x 2|求解(其中l 为弦长,x 1,x 2为直线与圆相交所得交点的横坐标,k 为直线的斜率).(3)求出交点坐标,用两点间距离公式求解.【变式探究】(1)设圆C 1:x 2+y 2=1与圆C 2:(x -2)2+(y +2)2=1,则圆C 1与圆C 2的位置关系是( ) A .外离 B .外切 C .相交 D .内含 答案 A解析 圆心距为22+-2=22>1+1,故两圆外离.(2)已知直线4x -3y +a =0与⊙C :x 2+y 2+4x =0相交于A ,B 两点,且∠ACB =120°,则实数a 的值为( ) A .3 B .10 C .11或21 D .3或13答案 D解析 圆的方程整理为标准方程即(x +2)2+y 2=4,作CD ⊥AB 于点D ,由圆的性质可知△ABC 为等腰三角形,其中|CA |=|CB |, 则|CD |=|CA |×sin 30°=2×12=1,即圆心(-2,0)到直线4x -3y +a =0的距离为d =1, 据此可得|-8+0+a |42+-2=1,即|a -8|=5,解得a =3或a =13.【感悟提升】(1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.(2)圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.【变式探究】(1)已知直线y=ax与圆C:x2+y2-2ax-2y+2=0交于两点A,B,且△CAB为等边三角形,则圆C的面积为________.答案6π(2)如果圆(x-a)2+(y-a)2=8上总存在到原点的距离为2的点,则实数a的取值范围是( )A.(-3,-1)∪(1,3) B.(-3,3)C.[1,1] D.[-3,-1]∪[1,3]答案 D解析圆心(a,a)到原点的距离为|2a|,半径r=22,圆上的点到原点的距离为d.因为圆(x-a)2+(y-a)2=8上总存在点到原点的距离为2,则圆(x-a)2+(y-a)2=8与圆x2+y2=2有公共点,r′=2,所以r-r′≤|2a|≤r+r′,即1≤|a|≤3,解得1≤a≤3或-3≤a≤-1,所以实数a的取值范围是[-3,-1]∪[1,3].【变式探究】已知⊙C:x2+y2-4x-6y-3=0,M(-2,0)是⊙C外一点,则过点M的圆C的切线的方程是( ) A.x+2=0或7x-24y+14=0B.y+2=0或7x+24y+14=0C.x+2=0或7x+24y+14=0D.y+2=0或7x-24y+14=0。

高中直线与圆的方程知识点总结

高中直线与圆的方程知识点总结

高中直线与圆的方程知识点总结直线与圆的方程在高中数学里就像两颗璀璨的星星,各自闪耀又相互关联。

咱先说说直线的方程吧。

直线在平面直角坐标系里那可是千变万化的。

最常见的斜截式方程y = kx + b,这里的k就像是直线的“坡度”,如果k 越大,直线就越陡峭,就好像爬山的时候,坡度大的路爬起来更费劲呢。

b 呢,是直线在y轴上的截距,就好比是直线这个小火车在y轴这个站台的起始位置。

那要是k = 0呢,直线就变成了一马平川的平地,也就是平行于x 轴的直线了。

还有点斜式方程,知道直线上一点的坐标和它的斜率就能确定这条直线的方程,这就像你知道一个人的起点和他前进的方向,就能知道他的路线一样。

再看看直线之间的关系。

平行的直线啊,它们的斜率相等,就像两条同向行驶而且速度一样的铁轨,永远不会相交。

而垂直的直线呢,它们斜率的乘积是 - 1,这就好比是两个互相制约的力量,一个向上一个向下,形成了一种完美的平衡关系。

说到圆的方程,标准方程(x - a)²+(y - b)² = r²,这里的(a,b)就是圆心的坐标,圆心就像圆这个大家庭的家长,r就是半径,半径就像是这个家庭的活动范围,在这个范围内的点都属于这个圆家族。

圆是一个特别对称的图形,关于圆心对称,不管从哪个方向看,都是那么圆润、和谐。

直线和圆的位置关系可有趣了。

有相交、相切和相离三种情况。

相交的时候,直线就像一个调皮的小孩,闯进了圆的领地,和圆有两个交点,就像小孩在圆里踩了两个脚印。

相切的时候呢,直线就像是圆的守护神,刚好和圆亲密接触于一点,这一点就是切点,多像两个好朋友轻轻地碰了一下手。

相离就比较惨了,直线和圆就像两个互不相干的陌生人,远远地分开,谁也不挨着谁。

那怎么判断直线和圆的位置关系呢?我们可以用圆心到直线的距离d和半径r来比较。

如果d < r,那就是相交,就好像一个小蚂蚁距离一个圆形的蛋糕中心的距离小于蛋糕的半径,那这个小蚂蚁肯定是在蛋糕上啦。

高中数学直线和圆知识点复习总结

高中数学直线和圆知识点复习总结

高中数学直线和圆知识点复习总结
高中数学中的直线和圆的总结有很多知识点,本文就针对这些知识点进行一个总结,同学们可以查阅,以便加深对直线和圆的理解。

首先,在直线方面需要知道的是什么?
一、直线的定义
直线是平面上双等距平行的两条线,可以用一元二次方程来表示。

二、直线的性质
1、平等的距离及同一平面的
直线的夹角相等,距离也相等,两直线交于一点,其中一条直线经过这一点,另一条不经过,而在同一平面上的两直线是相互垂直的。

2、直线的交点
当两条直线在有限空间内相交时,这种相交是称之为直线的交点。

三、直线的位置关系
1、平行
当两条直线从同一个方向平行可以认为这两条直线平行。

接下来,要总结一下圆知识点了。

圆是位于平面中心点到圆上任一点的距离相等的一种曲线,而圆的半径则是指这种距离。

1、圆心在圆的任一点的距离是一致的
2、圆的封闭图形
圆是一种封闭的曲线,无论是确定它的定义还是它的性质,都建立在它是一种封闭图形的基础之上。

1、圆内和内接四边形外接圆
内接四边形外接圆是指圆心和任意两个顶点形成的距离都相等的圆,这圆就是内接四边形外接圆。

当一条直线与圆的关系有六种:即相切、相交、内切、外切、内含和外公切线,因此理解这一关系也是重要的。

以上就是高中数学直线和圆知识点复习总结,希望可以帮助读者们更加深入理解这些概念,提升高中数学学习的能力,顺利通过高考。

高中数学直线和圆知识点总结

高中数学直线和圆知识点总结

高中数学直线和圆知识点总结高中数学是许多学生感到头疼的科目之一,其中直线和圆的知识点又是必考内容。

本文将为大家总结一下高中数学中直线和圆的知识点,帮助大家更好地掌握这一部分内容。

一、直线1、定义:直线是不弯曲的线,它没有宽度,可以无限延伸。

2、性质:直线是平行的,没有交点,可以通过两点确定一条直线。

3、画法:在纸上绘制直线时,要确保线条平直,没有弯曲,且与坐标轴平行。

二、圆1、定义:圆是一个平面内到定点(F)的距离等于定长r的点的集合。

2、性质:圆具有旋转对称性,可以绕圆心旋转任意角度而不改变形状和大小。

圆的直径是最长的弦,直径所在的直线穿过圆心。

3、画法:在纸上绘制圆时,可以使用圆规来绘制,确保圆规的两只脚相等,并在画圆的过程中保持圆规稳定。

三、直线和圆的重要知识点1、点到直线的距离公式:假设点P(x0,y0)到直线Ax+By+C=0的距离为d,则d=|Ax0+By0+C|/√(A^2+B^2)。

2、圆的方程:假设圆心为(x0,y0),半径为r,则圆的方程为(x-x0)^2+(y-y0)^2=r^2。

3、圆的标准方程:假设圆心为(a,b),半径为r,则圆的标准方程为(x-a)^2+(y-b)^2=r^2。

四、总结高中数学中的直线和圆知识点是必考内容,需要大家熟练掌握。

在解决相关问题时,要注意直线的性质和点到直线的距离公式,以及圆的方程和标准方程的求解方法。

此外,还要注意圆和直线的位置关系,如相交、相切、内切等。

在学习过程中,可以通过多做练习题来加深对知识点的理解和掌握。

总之,直线和圆是高中数学中重要的知识点之一,需要大家认真学习和掌握。

希望本文的总结能够帮助大家更好地应对相关问题,提高数学成绩。

高考数学直线与圆归纳总结

高考数学直线与圆归纳总结

高考数学直线与圆归纳总结直线与圆是高中数学中重要的几何概念。

在高考数学中,直线与圆的相关知识点常常出现,并且在解决几何问题时扮演着重要的角色。

下面将对高考数学中涉及直线与圆的知识进行归纳总结。

一、直线与圆的位置关系1. 直线和圆可能有三种位置关系:相离、相切和相交。

a. 如果直线和圆没有交点,则称直线和圆相离。

b. 如果直线与圆有且仅有一个交点,则称直线与圆相切。

c. 如果直线与圆有两个交点,则称直线与圆相交。

2. 判断直线与圆的位置关系的方法:a. 判断直线与圆相离:计算直线到圆心的距离是否大于圆的半径。

b. 判断直线与圆相切:计算直线到圆心的距离等于圆的半径。

c. 判断直线与圆相交:计算直线到圆心的距离小于圆的半径。

二、直线与圆的方程1. 直线的一般方程:Ax + By + C = 0。

直线的一般方程表示直线上的所有点 (x, y),满足方程左侧等式。

2. 圆的标准方程:(x - a)^2 + (y - b)^2 = r^2。

圆的标准方程表示平面上距离圆心 (a, b) 距离为半径 r 的点 (x, y)。

3. 直线与圆的方程应用:a. 直线与圆的相交问题可以通过联立直线和圆的方程求解。

b. 直线与圆的相切问题可以通过判断直线方程是否与圆方程有且仅有一个交点来确定。

三、直线与圆的性质1. 切线与半径的关系:切线与半径的夹角是直角,即切线垂直于半径。

2. 切线的性质:a. 切点:切线与圆的交点称为切点。

b. 切线长度:切点到圆心的距离等于半径的长度。

c. 外切线:若直线与圆内切于一点,则这条直线称为外切线。

d. 内切线:若直线切圆于两个相交点,则这条直线称为内切线。

3. 弦的性质:弦是圆上的两个点之间的线段。

弦的性质有:a. 弦长:弦长等于圆心到弦的距离的两倍。

b. 直径:直径是通过圆心的弦。

直径等于半径的两倍。

四、圆的位置关系1. 同心圆:具有共同圆心的多个圆称为同心圆。

2. 内切圆与外接圆:如果一个圆与另一个圆有且仅有一个切点,则这两个圆称为内切圆与外接圆。

高三直线和圆知识点

高三直线和圆知识点

高三直线和圆知识点直线和圆是高中数学中的重要知识点,对于理解几何图形的性质和解题能力起着至关重要的作用。

本文将为大家详细介绍高三直线和圆的相关知识。

一、直线的定义和性质直线是由无数个点按照同一方向延伸而成的图形。

直线的特点是无限延伸,并且上面的任意两点都可以用直线段相连接。

直线的性质有以下几点:1. 直线上的任意两点可以确定一条直线。

2. 直线上的任意一点,都在直线上。

二、圆的定义和性质圆是由平面上与某一点的距离相等的所有点组成的图形。

这个距离称为圆的半径,通常用字母r表示。

圆心是与所有这些点距离相等的点。

直径是通过圆心的两个点,并且是圆的最长的一条线段,长度等于半径的两倍。

圆的性质有以下几点:1. 圆上所有点到圆心的距离都相等。

2. 圆的直径是圆的最长直线段,且等于半径的两倍。

3. 圆的周长公式为C=2πr,其中C表示周长,r表示半径。

4. 圆的面积公式为A=πr²,其中A表示面积,r表示半径。

三、直线和圆的关系直线和圆是几何图形中经常会出现的组合。

它们之间的关系有以下几种情况:1. 直线与圆的位置关系:a) 直线与圆相切:直线与圆只有一个交点,此时交点为切点。

b) 直线与圆相离:直线与圆没有交点。

c) 直线与圆相交:直线与圆有两个交点。

2. 圆上的点到直线的距离:a) 圆心到直线的距离:圆心到直线的距离等于直线的垂直距离,即圆心到直线的距离是最短的。

b) 圆上任意一点到直线的距离:圆上的任意一点到直线的距离都等于它到直线的垂直距离。

3. 直线和圆的方程:a) 直线的方程:直线的方程可以用斜截式、一般式、点斜式等形式表示,根据题目给定的条件来确定具体的方程形式。

b) 圆的方程:圆的方程可以用标准方程和一般方程来表示,其中标准方程为(x-a)²+(y-b)²=r²,一般方程为Ax²+By²+Cx+Dy+E=0,其中a、b为圆心的坐标,r为半径。

高考文数直线与圆知识点

高考文数直线与圆知识点

高考文数直线与圆知识点在高考数学的考试中,直线与圆是非常重要的几何知识点。

掌握直线与圆的相关性质和计算方法,对于解题有着重要的指导意义。

本文将介绍一些高考中常见的直线与圆知识点,希望能帮助同学们更好地理解和学习。

1. 直线与圆的位置关系直线与圆的位置关系有三种:直线与圆相交、直线与圆相切和直线与圆相离。

当直线与圆相交时,可能会有两个交点或者一个交点。

这要根据直线与圆的位置关系来判断。

如果直线穿过圆的两个交点,则称为直线与圆相交于两点;如果直线与圆只有一个交点,则称为直线与圆相切。

当直线与圆相离时,直线与圆之间没有任何交点。

2. 直线与圆的性质(1)切线性质:过圆外一点,可作无数条与圆相切的直线,这些相切直线上的切点和该点到圆心的线段相等。

当直线与圆相切时,该直线被称为切线。

切线与圆相切于一个点,且切点到圆心的距离与切点到该点的距离相等。

(2)切线定理:切线所构成的角与该切点与圆心连线所构成的角相等。

当直线与圆相切时,切线与该切点与圆心连线所构成的角相等。

(3)幅度定理:圆心角的幅度是其所对应扇形的幅度的两倍。

圆心角是以圆心为顶点的角,其幅度定义为其所对应扇形的幅度的两倍。

(4)正切定理:切线与半径的正切相等。

当直线与圆相切时,该切线与切点处的半径的正切相等。

3. 直线与圆的计算方法(1)直线方程的计算方法:已知直线上的两个点,可以求出直线的方程。

设直线上两点的坐标分别为(x1, y1)和(x2, y2),则直线的方程可以表示为(y - y1)/(y2 - y1) = (x - x1)/(x2 - x1)。

(2)圆的方程的计算方法:已知圆心和半径,可以求出圆的方程。

设圆的圆心坐标为(h, k),半径为r,则圆的方程可以表示为(x - h)² + (y - k)² = r²。

通过计算直线方程和圆的方程,可以解决很多与直线与圆有关的几何问题。

4. 直线与圆的应用在实际生活和工作中,直线与圆的知识点也有很多应用。

高中数学直线和圆知识点总结

高中数学直线和圆知识点总结

直线与圆的位置关系判断方法
01 总结词
比较圆心到直线的距离与圆的 半径
02 详细描述
通过比较圆心到直线的距离与 圆的半径,可以判断直线与圆 的位置关系,即相离、相切或 相交。
03
总结词
04
利用直线方程和圆的方程联立求 解
详细描述
将直线方程和圆的方程联立起来 ,消去一个变量后可以得到一个 二次方程。根据二次方程的判别 式来判断直线与圆的位置关系, 判别式大于0时相交,等于0时相 切,小于0时相离。
直线的交点坐标与距离公式
01
两条直线的交点坐标
通过联立两条直线的方程求得。
02
两条平行线之间的距离公式
利用两平行线间的距离公式d = |c2 - c1| / |a|,其中a是直线的斜率,
c1和c2是直线在y轴上的截距。
03
两条垂直线之间的距离公式
利用两垂直线间的距离公式d = h / p,其中h是两垂直线在x轴上的距
高中数学直线和圆知识点总结
汇报人: 202X-01-08
• 直线知识点 • 圆知识点 • 直线与圆的综合应用 • 解题技巧与思路总结
01
直线知识点
直线的方程
01
02
03
04
直线的点斜式方程
通过直线上的一点和直线的斜 率来表示直线方程。
直线的两点式方程
通过直线上的两点来表示直线 方程。
直线的截距式方程
相切
当直线与圆只有一个交点 时,称直线与圆相切。此 时,圆心到直线的距离等 于半径。
相离
当直线与圆没有交点时, 称直线与圆相离。此时, 圆心到直线的距离大于半 径。
03
直线与圆的综合应用
直线与圆相交的弦长问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考文科数学知识点总结:直线和圆
直线和圆
70、直线的倾斜角的概念:当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°. 倾斜角α的值范围: 0°≤α<180°.
71、直线的斜率:(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;当α∈[0°,90°)时,α越大,l 的斜率越大;当α∈(90°,180°)时,α越大,l 的斜率越大.
(2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212
121x x x x y y k ≠--=; 72、直线的方程: (1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,过定点00(,)P x y 的直线要设成x=x 0和)(00x x k y y -=-);
(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等⇔直线的斜率为-1或直线过原点;直线两截距互为相反数⇔直线的斜率为1或直线过原点;直线两截距绝对值相等⇔直线的斜率为1±或直线过原点。

73、点到直线的距离及两平行直线间的距离:
(1)点00(,)P x y 到直线Ax +By +C =0的距离0022Ax By C
d A B ++=+;
(2)两平行线1122:0,:0l Ax By C l Ax By C ++=++=间的距离为12
22C C d A B -=+。

74、直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=的位置关系:
(1)平行⇔12210A B A B -=(斜率相等)且12210B C B C -≠(在y 轴上截距不等);
(2)直线Ax 1+B 1y +C 1=0与直线Ax 2+B 2y +C 2=0垂直⇔12120A A B B +=。

75、对称问题:
(1)中心对称
①点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足x ′=2a-x, y ′=2b-y ②直线关于点的对称可能转化为点关于点的对称问题来解决.
(2)轴对称
①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),
②直线关于直线的对称可转化为点关于直线的对称问题来解决.
提醒:在解几中遇到角平分线、光线反射等条件常利用对称求解。

76、简单的线性规划:
(1)二元一次不等式表示的平面区域:用特殊点判断;②无等号时用虚线表示不包含直线l ,有等号时用实线表示包含直线l ;
(2)求解线性规划问题的步骤是什么?①根据实际问题的约束条件列出不等式;②作出可行域,写出目标函数;③确定目标函数的最优位置,从而获得最优解。

(3)在求解线性规划问题时要注意:①将目标函数改成斜截式方程;②寻找最优解时注意作图规范;③注意直线的斜率正负对最值取点的影响。

(4)线性目标函数的最优解一般在平面区域的顶点或边界处取得,所以对于一般的线性规划问题,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值。

77、圆的方程:
⑴圆的标准方程:()()222x a y b r -+-=。

⑵圆的一般方程:22220(D E 4F 0)+-x y Dx Ey F ++++=>,
⑶圆的参数方程:{cos sin x a r y b r θθ
=+=+(θ为参数),其中圆心为(,)a b ,半径为r 。

78、直线与圆的位置关系:直线:0l Ax By C ++=和圆()()222C :x a y b r -+-=
()0r >有相交、相离、相切。

可从代数和几何两个方面来判断:
(1)代数方法(判断直线与圆方程联立所得方程组的解的情况):0∆>⇔相交;0∆<⇔相离;0∆=⇔相切;
(2)几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d r <⇔相交;d r >⇔相离;d r =⇔相切。

79、圆与圆的位置关系(用两圆的圆心距与半径之间的关系判断):已知两圆的圆心分别为12O O ,,半径分别为12,r r ,则(1)当1212|O O r r |>+时,两圆外离;(2)当1212|O O r r |=+时,两圆外切;(3)当121212<|O O r r r r -|<+时,两圆相交;(4)当1212|O O |r r |=|-时,两圆内切;(5)当12120|O O |r r ≤|<|-时,两圆内含。

80、圆的切线与弦长:
(1)切线:①过圆222x y R +=上一点P (x 0,y 0)圆的切线方程是:200xx yy R +=,过圆
222()()x a y b R -+-=上一点P (x 0,y 0)圆的切线方程是:200()()()()x a x a y a y a R --+--=,
一般地,如何求圆的切线方程?(抓住圆心到直线的距离等于半径);②从圆外一点引圆的切线一定有两条,可先设切线方程,再根据相切的条件,运用几何方法(抓住圆心到直线的距离等于半径)来求;③过两切点的直线(即“切点弦”)方程的求法:先求出以已知圆的圆心和这点为直径端点的圆,该圆与已知圆的公共弦就是过两切点的直线方程;③切线长:圆
(2)弦长问题:①圆的弦长的计算:常用弦心距d ,弦长一半12
a 及圆的半径r 所构成的直角三角形来解:2221()2
r d a =+;②过两圆1:(,)0C f x y =、2:(,)0C g x y =交点的圆(公共弦)系为(,)(,)0f x y g x y λ+=,当1λ=-时,方程(,)(,)0f x y g x y λ+=为两圆公共弦所在直线方程.。

相关文档
最新文档