聚合物的物理状态和主要性能
聚合物的电学、热学和光学性能—聚合物的电学性能(高分子物理课件)

表征材料电性能的另一个重主要参量是电导率。电导率的定义可以由欧姆定律给出:当施加的电场产生电流时,电流密度J正比于电场强度E,其比例常数,即为电导率σ,即:电导率σ= J(电流密度) /E(电场强度) 电导率与电阻率关系为σ=1/ρ,单位为西门子每米,即S/m。 电导率的大小反映了物质输送电流的能力。ρ愈小,σ愈大,材料导电性能就越好。
界面极化
PE能否发生取向极化?纯PE,界面极化能否发生?
思考题
介电性指在电场作用下,构成物质的带电粒子只能产生微观上的位移而不能进行宏观上的迁移的性质,宏观表现出对静电能的储蓄和损耗的性质,这是由于聚合物分子在电场作用下发生极化引起的,通常用介电系数ε和介电损耗表示。
二、聚合物的介电性能
例如喷涂在聚合物表面的抗静电剂,通过其亲水基团吸附空气中的水分子,会形成一层导电的水膜,使静电从水膜中跑掉。
在涤纶电影片基上涂敷抗静电剂烷基二苯醚磺酸钾,结果片基表面电阻率降低7~8个数量级。
另外,根据制造复合型导电高分子材料的原理,在聚合物基体中填充导电填料如炭黑、金属粉、导电纤维等也同样能起到抗静电作用。
相对于本征型导电高分子而言,这种复合材料的制备无论在理论上还是应用上都比较成熟,具有成型简便、重量轻、可在大范围内根据需要调节材料的电学和力学性能、成本低廉等优点,因而得以广泛开发应用。
复合型导电高分子的基体有:
常用的导电填料有:
碳类(石墨、炭黑、碳纤维ห้องสมุดไป่ตู้石墨纤维等)
金属类(金属粉末、箔片、丝、条或金属镀层的玻璃纤 维、玻璃珠等)
聚合物与聚合物摩擦时,介电系数大的聚合物带正电,介电系数小的带负电。另外聚合物的摩擦起电顺序与其逸出功顺序也基本一致,逸出功高者一般带负电。
高分子化学与物理

中国科学院大学硕士研究生入学考试《高分子化学与物理》考试大纲本《高分子化学与物理》考试大纲适用于中国科学院大学高分子化学与物理专业的硕士研究生入学考试。
高分子化学与物理是化学学科的基础理论课。
高分子化学内容主要包括连锁聚合反应、逐步聚合反应和聚合物的化学反应等聚合反应原理,要求考生熟悉相关高分子化学的基本概念,掌握常用高分子化合物的合成方法、合成机理及大分子化学反应,能够写出主要聚合物的结构式,熟悉其性能并且能够对给出的现象给以正确、合理的解释。
高分子物理内容主要包括高分子的链结构与聚集态结构,聚合物的分子运动,聚合物的溶液性质以及聚合物的流变性能、力学性能、介电性能、导电性能和热性能等,要求考生熟悉相关高分子物理的基本概念,掌握有关聚合物的多层次结构及主要物理、机械性能的基本理论和基本研究方法。
考生应具备运用高分子化学与物理的知识分析问题、解决问题的能力。
一、考试基本要求1.熟练掌握高分子化学与物理的基本概念和基础理论知识;2.能够灵活运用所学知识来分析问题、解决问题。
二、考试方式与时间硕士研究生入学《高分子化学与物理》考试为闭卷笔试,考试时间为180分钟,总分150分。
三、考试主要内容和要求高分子化学部分(一)绪论1、考试内容(1)高分子的基本概念;(2)聚合物的命名及分类;(3)分子量;(4)大分子微结构;(5)线形、支链形和体形大分子;(6)聚合物的物理状态;(6)聚合物材料与强度。
2、考试要求【掌握内容】(1)基本概念:单体、聚合物、聚合反应、结构单元、重复单元、单体单元、链节、聚合度、均聚物、共聚物。
(2)加成聚合与缩合聚合;连锁聚合与逐步聚合。
(3)从不同角度对聚合物进行分类。
(4)常用聚合物的命名、来源、结构特征。
(5)线性、支链形和体形大分子。
(6)聚合物相对分子质量及其分布。
(7)大分子微结构。
(8)聚合物的物理状态和主要性能。
【熟悉内容】(1)系统命名法。
(2)典型聚合物的名称、符号及重复单元。
第六章-聚合物的结构-3

内聚能密度:单位体积的内聚能,可表示为 E CED ~ V 对小分子而言,内聚能近似于恒容蒸发热或升华热。
高分子难以直接测定高聚物的内聚能,通常采用一些间接的 方法,如用高聚物的良溶剂,以良溶剂的内聚能密度来估计高 聚物的CED。内聚能密度同分子的极性有很大的关系,分子的 极性越小,内聚能密度越低。
氢键
静电力:存在于极性分子间,由极性基团的永久偶极引起的, 与偶极距的大小、定向程度和分子间的距离有关 静电力的作用能在12~20KJ/mol,在一些极性高聚物如聚 甲基丙烯酸甲酯、聚乙烯醇、聚酯等分子间的作用力主要为静 电力。
诱导力:极性分子的永久偶极与其它分子的诱导偶极之间 的相互作用 诱导力的作用能一般在 6 ~ 12KJ/mol 。存在于极性分子 与其它分子(极性与非极性)之间。 色散力:由于分子间的瞬间偶极引起的相互作用,它存在于 所有的极性和非极性分子之间 色散力的作用能在 0.8~ 8KJ/mol,在一些非极性高分子 如聚乙烯、聚丙烯中主要存在的分子间力是色散力。 范德华力普遍存在于分子中,没有方向性和饱和性,作用 距离小于1纳米,作用能比化学键小1~2个数量级,三种力 所占的比例与分子的极性和变形性有关。
• 4、其它因素 链的柔性:柔性好利于晶体的生成。 例如:聚乙烯具有很强的结晶能力 结构规整的聚对苯二甲酸乙二醇酯 不易结晶 聚碳酸酯、聚砜等则没有结晶能力(刚性过大) 支化和交联:既破坏链的规整性,又限制链的活动性, 因而降低高聚物的结晶能力或失去结晶性。 分子间作用力:不利于晶体的生成。但一旦形成结晶, 有利于结晶结构的稳定,如聚酰胺。
• 3、共聚结构 无规共聚——使结晶能力下降乃至完全丧失 若共聚单元各自的均聚物都是可以结晶的,并且它们的晶态 结构相同,则它们的共聚物也能够结晶,晶胞参数一般随共 聚单元的组成不同而发生变化。 当共聚单元的某一组分的含量占优势时,在共聚物中保持着 这种单元的长序列,这一组分的均聚物若能结晶,那么共聚 物中这种单元仍然可以形成同其均聚物结晶相同的结晶,但 结晶能力变差,这时含量少的共聚单元则作为缺陷存在。 接枝共聚物的主链因支化效应通常使其结晶能力降低。而接 枝共聚物的支链以及嵌段共聚物的各个嵌段则基本上保持其 各自的特性。能够结晶的支链或嵌段可形成自己的晶区。
聚合物的结构与性能知识讲解

聚合物的结构与性能
(2)球晶
聚合物结晶最常见的结晶形态,是一种圆球状的晶体,尺 寸较大,一般是由结晶性聚合物从浓溶液中析出或由熔体冷却 时形成的。球晶在正交偏光显微镜下可观察到其特有的黑十字 消光或带同心圆的黑十字消光图象。
6.2 高分子的聚集态结构
高分子的聚集态结构也称三级结构,或超分子结构, 它是指聚合物内分子链的排列与堆砌结构。
聚合物的结构与性能
虽然高分子的链结构对高分子材料有显著影响,但由 于聚合物是有许多高分子链聚集而成,有时即使相同链结 构的同一种聚合物,在不同加工成型条件下,也会产生不 同的聚集态,所得制品的性能也会截然不同,因此聚合物 的聚集态结构对聚合物材料性能的影响比高分子链结构更 直接、更重要。
差;如:
C2 H CH H
C2 HCH C3 H
C2 H CH
柔 顺 性 : 聚 乙 烯 > 聚 丙 烯
> 聚 苯 乙 烯
聚合物的结构与性能
对称性侧基,可使分子链间的距离增大,相互作用减弱, 柔顺性大。侧基对称性越高,分子链柔顺性越好。如:
CH2 CH CH3
CH3 CH2C
CH3
柔顺性: 聚丙烯 < 聚异丁烯
(1)主链结构 当主链中含C-O,C-N,Si-O键时,柔顺性好。 这是因为O、N原子周围的原子比C原子少 ,内旋转的
位阻小;而Si-O-Si的键角也大于C-C-C键,因而其内旋转 位阻更小,即使在低温下也具有良好的柔顺性。 如:
聚合物的结构与性能
O COC
聚 酯
OH CNC
聚 酰 胺
第一章 高分子聚合物结构特点与性能

第一章高分子聚合物结构特点和性能一、概念1.塑料:塑料是以高分子聚合物为原料,在一定温度和压力条件下可塑制成形的高分子材料。
2.高分子聚合物:由成千上万个结构相同的小分子单体通过加聚或缩聚反应形成的长链大分子。
例如:聚氯乙稀就是由氯乙烯(CH2=CHCl)单体通过加聚反应形成的长链大分子。
方括号内为高聚物的结构单元,也是其重复结构单元并简称为重复单元,也是也称为链节。
n代表重复单元数,又称为平均聚合度。
第一节聚合物分子的结构特点二、高分子合成反应高分子化合物一般是利用煤或石油中得到的有机小分子化合物作为单体,通过聚合反应而合成的。
具体的合成方法有加聚反应、缩聚反应等。
1. 加聚含有重键的单体分子,如乙烯、氯乙烯等,它们可以通过加成聚合反应得到聚合物。
在此反应过程中除了生成聚合物外,再没有任何其他产物生成,聚合物中包含了单体的全部原子。
这种反应可以在同一种物质的分子间进行(其反应产物称为均聚物),也可以在不同物质的分子间进行(其反应产物为共聚体)。
(2)缩聚反应含有双官能团或多官能团的单体分子,通过分子间官能团的缩合反应把单体分子聚合起来,同时生成水、醇、氨等小分子化合物,简称缩聚反应。
如聚酰胺是用已二胺和已二酸作为单体通过缩水聚合反应形成的长链高分子,同时形成水。
三、高分子物理结构1.高分子链的近程结构(1)高分子链结构单元的化学组成通常的合成高分子是由单体通过聚合反应连接而成的链状分子,称为高分子链,高分子链的重复结构单元数目称为聚合度,高分子链一般分为碳链高分子(-C-C-C),杂链高分子(C-C-O-C),元素有机与无机高分子(O-Si-O,侧基有无有机基团)等,高分子链的化学组成不同,高分子的化学和物理性能不同。
(2)高分子链结构单元的键接方式键接方式是结构单元在分子链中的连接方式。
在缩聚反应中结构单元的连接方式是固定的。
而在共聚物与均聚物中的键接方式比较复杂。
以氯乙烯为例,其结构单元在分子键中的键接方式可以有三种,即头-尾键接,尾-尾键接和头-头键接。
高分子物理作业解答

高分子物理作业-2-答案聚合物的力学状态及转变1. 解释名词:(1)聚合物的力学状态及转变由于高分子链之间的作用力大于主链的价键力,所以聚合物只具有固态和液态力学状态。
随着温度的升高,分子热运动能量逐渐增加,当达到某一温度时,即可发生两相间的转变。
(2)松弛过程与松弛时间松弛过程:在一定温度和外场(力场、电场、磁场等)作用下,聚合物由一种平衡态通过分子运动过渡到另一种与外界条件相适应的、新的平衡态,这个过程是一个速度过程。
松弛时间τ是用来描述松弛快慢的物理理。
在高聚物的松弛曲线上,∆x t ()变到等于∆x o 的1/e 倍时所需要的时间,即松弛时间。
(3)自由体积与等自由体积状态 分子中未被占据的体积为自由体积;在玻璃态下,由于链段运动被冻结晶,自由体积也被冻结,并保持一恒定值,自由体积“孔穴”的大小及其分布也将基本上维持固定。
因此,对任何高聚物,玻璃温度就是自由体积达到某一临界值的温度,在这临界值以下,已经没有足够的窨进行分子链的构象调整了。
因而高聚物的玻璃态可视为等自由体积状态。
(4)玻璃态与皮革态当非晶态高聚物在较低的温度下受到外力时,由于链段运动被冻结,只能使主链的键长和键角有微小的改变,因此从宏观上来说,高聚物受力变形是很小的,形变与受力和大小成正比,当外力除去后形变能立刻回复。
这种力学性质称为普弹性,非晶态高聚物处于具有普弹性的状态,称为玻璃态;部分结晶聚合物,存在玻璃化转变与高弹态,但由于晶区链段不能运动,此时玻璃化转变不再具有很大弹性的高弹态,而表现为具有一定高弹性、韧而硬的皮革态,即皮革态。
2. 试定性地绘出下列聚合物的形变—温度曲线(画在一张图上)1) 低分子玻璃态物质 2) 线性非晶态聚合物(1M )3) 线性非晶态聚合物(212,M M M 〉212,M M M 〉>1M ) 4) 晶态聚合物(1M )5) 晶态聚合物(212,M M M 〉212,M M M 〉>1M ) 6) 交联聚合物(交联度较小) 7) 交联聚合物(交联度较大)3. 判断下列聚合物(写出分子式)的Tg 的高低,阐述其理由:1) 聚乙烯、聚对苯二甲酸乙二酯、聚苯、聚二甲基硅氧烷 2) 聚氯乙烯、聚氯丁二烯、聚偏二氯乙烯、顺式1,4聚丁二烯 3) 聚乙烯、聚异丁烯、聚苯乙烯、聚乙烯基咔锉 4) 聚乙烯、聚丙烯、聚氯乙烯、聚丙烯腈5) 聚甲基乙烯基醚、聚乙基乙烯基醚、聚正丙基乙烯基醚、聚正丁基乙烯基醚1) 聚乙烯、聚对苯二甲酸乙二酯、聚苯、聚二甲基硅氧烷CH 2CH 2n聚乙烯CO C OO CH 2CH 2On聚对苯二甲酸乙二酯n聚苯Si CH 33On聚二甲基硅氧烷聚二甲基硅氧烷<聚乙烯<聚对苯二甲酸乙二酯<聚苯理由:当主链中引入苯基、联苯基、萘基和均苯甲酸二酰胺基等芳杂环以一,链上可以内旋转的单键比例相对减少,分子链的刚性增大,因此有利于玻璃化温度的提高。
聚合物
聚合物聚合物也叫高分子化合物,是指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。
聚合物是由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。
一般把相对分子质量高于10000的分子称为高分子。
高分子通常由103~105个原子以共价键连接而成。
由于高分子多是由小分子通过聚合反应而制得的,因此也常被称为聚合物或高聚物,用于聚合的小分子则被称为“单体。
聚合物几乎无挥发性,常温下常以固态或液态存在。
固态高聚物按其结构形态可分为晶态和非晶态。
前者分子排列规整有序;而后者分子排列无规则。
同一种高分子化合物可以兼具晶态和非晶态两种结构。
大多数的合成树脂都是非晶态结构。
聚合物的基本分类和特点高分子化合物的种类很多,主要分类方法有如下四种:1、按来源分类可把高分子分成天然高分子和合成高分子两大类。
2、按材料的性能分类可把高分子分成塑料、橡胶和纤维三大类3、按用途分类可分为通用高分子,工程材料高分子,功能高分子,仿生高分子,医用高分子,高分子药物,高分子试剂,高分子催化剂和生物高分子等。
4、按高分子主链结构分类可分为碳链高分子、元素有机高分子和无机高分子四大类。
热固性聚合物:环氧、酚醛、双马、聚酰亚胺树脂等。
分子量较小的液态或固态预聚体,经加热或加固化剂发生交联化学反应并经过凝胶化和固化阶段后,形成不溶、不熔的三维网状高分子。
热塑性聚合物:包括各种通用塑料(聚丙烯、聚氯乙烯等)、工程塑料(尼龙、聚碳酸酯等)和特种耐高温聚合物(聚酰胺、聚醚砜、聚醚醚酮等)。
线形或有支链的固态高分子,可溶可熔,可反复加工而无化学变化。
聚合物基复合材料的制备工艺1、溶胶-凝胶法溶胶-凝胶法是最早用来制备纳米复合材料的方法之一。
所谓的溶胶-凝胶工艺过程是将前驱物在一定的有机溶剂中形成均质溶液,均质溶液中的溶质水解形成纳米级粒子并成为溶胶,然后经溶剂挥发或加热等处理使溶胶转化为凝胶。
根据聚合物与无机组分的相互作用情况,可将其分为以下几类:(1)直接将可溶性聚合物嵌入到无机网络中把前驱物溶解在形行成的聚合物溶液中,在酸、碱或中性盐的催化作用下,让前驱化合物水解,形成半互穿网络。
高分子物理讲义提纲-第九章
第九章 聚合物的电学性质聚合物的电学性质:是指聚合物在外加电压或电场作用下的行为及其所表现出来的各种物理现象。
9.1 聚合物的介电性能介电性是指聚合物在电场作用下,表现出对静电能的储存和损耗的性质,通常电常数和介电损耗来表示。
(1)介电极化 绝大多数聚合物是优良的电绝缘体,有高的电阻率,低介电损耗、耐高频高的击穿强度。
但在外电场作用下,或多或少会引起价电子或原子核的相对,造成了电荷的重新分布,称为极化。
电介质在外电场下发生极化的现象,是其内部分子和原子的电荷在电场中运动的宏观表现。
主要有以下几种极化;①电子极化——分子中各原子的价电子云在外电场作用下,向正极方向偏移,发生了电子相对骨架的移动,使分子的正电荷中心的位置发生变化引起的。
②原子极化——是分子骨架在外电场下发生变形造成的。
分子弯曲极化是原子极化的主要形式。
③偶极极化——在外电场的作用下,极性分子沿电场的方向排列,产生分子的取向。
前两种产生的偶极矩诱导偶极矩,后一种为永久偶极矩的极化。
极化偶极矩(μ)的大小与外电场强度(E)有关,比例系数α称为分子极化率,l u E α=按照极化机理不同,有电子极化率e α,原子极化率a α(上述两者合称变形极化d e a ααα=+)和取向极化率u α,即:23u u kTα= 为永久偶极矩。
因而对于极性分子e a u a ααα=++,对于非极性分子e a a αα=+。
界面极化:由于在外电场作用下,电介质中的电子或离子在界面处堆集的结果,称为~。
根据聚合物中各种基团的有效偶极矩,可以把聚合物按极性大小分为四类。
非极性:PE、PP、PTFE;弱极性:PS、NR;极性:PVC、PA、PVAc PMMA;强极性:PVA、PET、PAN、酚醛树脂、氨基树脂。
聚合物的有效偶极矩与所带基团的偶极矩不完全一致,结构对称性会导致极矩部分或全部相互抵消。
介电常数ε是表示聚合物极化程度的宏观物理量,它定义为介质电容器,容C 比真空电容器C 0的电容增加的倍数,即0000//Q Q Q Q Q U Q U Q C C ′+====ε 式中:0Q 为极板上的原有电荷,Q ′为感应电荷。
3.2 聚合物的分子运动和物理状态
与外界条件相适 应的另一种平衡状态
低分子是瞬变过程
此过程只需 10-9 ~ 10-10 秒。
高分子是速度过程 需要时间
松弛过程
5
(三)、分子运动的温度依赖性
1.活化运动单元
温度升高,增加了分子热运动的能量,当达到某 一运动单元运动所需的能量时,就激发这一运动单元 的运动。
2.增加分子间的自由空间
温度升高,高聚物发生体积膨胀,自由空间加大。 当自由空间增加到某种运动单元所需的大小时,这一运 动单元便可自由运动。
15
意义 从工艺上:Tg 是塑料使用的上限温度
Tg是橡胶的使用下限温度,上限温度是T
从学科上:Tg是衡量聚合物链柔性高低的表征温度。Tg 越小,链的柔性越好 总之,Tg是聚合物的特征温度之一,可作为表征高聚物的指标
16
转变机理:自由体积理论
自由体积理论认为聚合物的体积是由两部分组成:高分 子链本身所占的体积和高分子链间未被占据的空隙。高分 子链间未被占据的空隙称自由体积。
11
形 变
玻 璃 态
玻 璃 化 转
I
变 区
高弹态 II
粘弹态粘II流IM态a
转 变 区
Mb Mb > Ma
交联聚合物
Tg
温度 Tf
由玻璃态向高弹态发生突变的区域叫玻璃化转变区,玻璃态开始向高弹 态转变的温度称为玻璃化转变温度,以Tg表示。
当温度升到足够高时,聚合物完全变为粘性流体,其形变不可逆,这种 力学状称为粘流态。高弹态开始向粘流态转变的温度称为粘流温度,以Tf 表示,其间的形变突变区域称为粘弹态转变区。分子量越大,Tf越高。交 联聚合物由于分子链间有化学键连接,不能发生相对位移,不出现粘流态。
聚合物的分类
在习惯命名法中,天然聚合物用专有名称,如纤维 素、淀粉、蛋白质等。另外有的聚合物还有一些习 惯名称或商业名称,如将聚苯二甲酸乙二醇酯叫做 涤纶,聚丙烯腈叫做腈纶等。
编辑ppt
三、聚合物的基本性质
1. 聚合物的聚集态结构
按其分子在空间排列规则与否,固态聚合中并存着 晶态与非晶态两种聚集状态。
编辑ppt
一、聚合物的分类
(4)根据制备时的反应类型可分为:
①由单体加成而聚合起来的反应叫加聚反应,该反应无 副产品,产物的化学组成和反应物(单体)的化学组成 基本相同,如聚氯乙烯的制备:
nC2H2 → (C2H2) n
式中n表示聚合度。加聚物多为线型结构。
②由两种或两种以上的含有官能团(H—、—OH、Cl— 、—NH、—COOH)的单体共聚,同时产生低分子副产品 (如水、氨、醇或氯化氢等)的反应叫缩聚反应,其生 成的聚合物叫缩聚物。缩聚反应生成物的化学组成与反 应物的化学组成完全不同,如苯酚与甲醛反应制得的酚 醛树脂。缩聚物的结构可为线型或体型。
因此大多数聚合物材料的耐高温及大气稳定性都较差。
编辑ppt
第二节 建筑塑料
一、建筑塑料的特性 (1)表观密度小 (2)比强度高,但弹性模量低 (3)加工性能优良 (4)耐化学腐蚀性好 (5)减震、吸声、保温隔热性好 (6)装饰性好 (7)耐水性和耐水蒸气性好 (8)电绝缘性能好 (9)不耐高温和易燃烧 (10)易受热变形
编辑ppt
二、聚合物的命名
常用的聚合物命名方法为习惯命名法,该法主要是 根据聚合物的化学组成来命名,比较简单。
对于由同一种单体经加聚反应而制得的聚合物,通 常是在其单体名称前冠以“聚”字。如聚乙烯等。 而有两种或两种以上单体经加聚反应而得到的聚合 物,则称为××共聚物,如丙烯腈—苯乙烯的共聚 体,可称为腈苯共聚物。