微分方程模型.ppt
合集下载
微分方程(组)模型

③
(2) 方程③是一阶线性微分方程,通解为②当n>0时,有特解y=0.
求微分方程(组)的解析解命令: dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自 变量’) 符号说明:在表达微分方程时,用字母D表示求微分, D2、D3等表示求2阶、3阶等微分。任何D后所跟的 字母为因变量,自变量可以指定或由系统规则选定为 确省。 d2y
方法:
• 规律分析法:根据相关学科的定理或定律、规律(这些涉及 到某些函数变化率)建立微分方程模型,如曲线的切线性质. • 微元分析法:应用一些已知规律和定律寻求微元之间的关系式. • 近似模拟法:在社会科学、生物学、医学、经济学等学科的 实际问题中,许多现象的规律性不清楚,常常用近似模拟的 方法建立微分方程模型.
4.符号说明
• • • • • • • a---某人每天在食物中摄取的热量 b---某人每天用于新陈代谢(及自动消耗)的热量 α ---某人每天从事工作、生活每千克体重必需消耗的热量 β---某人每天从事体育锻炼每千克体重消耗的热量 w---体重(单位:千克) w0---体重的初始值 t---时间(单位:天)
若Q(x)≡0,则称为一阶线性齐次方程,一阶线性微分方程通解为 P ( x ) dx P ( x ) dx ② y ( x) e ( Q( x)e dx C )
从而可得
dz (1 n) P ( x) z (1 n)Q ( x) dx
dz dy (1 n) y n dx dx
一、微分方程模型 二、微分方程的数学形式 三、微分方程(组)的MATLAB解法 四、减肥的数学模型 五、人口增长数学模型 六、兰彻斯特(Lanchester)作战模型 七、硫磺岛战役案例
大学微积分课件(PPT幻灯片版)pptx

高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关
系
连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。
第四章 微分方程数学模型

s 0 在轨线方程中,令t知 1 s ln s0 s是[0, ]中的单根 1 1
3)、若s0
1
, 则i(t )先增加,当 s
1
1
时,i(t )达到最大
im 1
(1 ln s0 ), 然后减小趋于0, s(t ) s
若s0
1
, 则i(t )单调趋于0,(i)单调趋于s s
i0
i0
1
i
1
i
1
O
1
1
1
t
i0
O
t
O
t
1 1 i ( ) 0 1
1 1
1 ~ 阈值
1 i (t )
感染期内有效接触感染的 i0小 i(t )按S曲线增长 健康人数不超过病人数
直接求解方程,亦可得到上述结果
di i (1 i ) i dt i (0) i0
时
i0 i (t ) i0 t 1
1
时
1 ( ) t e i(t ) i 0
x s0
i0小, 0 1 s
x x ln(1 ) 0 s0 1
x x2 x ( 2)0 s0 2 s 0 1
x 2s0 ( s0
1
)
令 s0 1 , 又 较小, s0 1)
x 2
模型检验 医疗机构一般依据r(t)来统计疾病的波及人数 ,从广 义上理解,r(t)为t时刻已就医而被隔离的人数,是康 复还是死亡对模型并无影响。
代数方程组 f ( x, y ) 0, g ( x, y ) 0. 的实根x = x0, y = y0称为方程(4-3)的平衡点, 记作P0 (x0, y0). 它也是方程(4-3)的解.
3)、若s0
1
, 则i(t )先增加,当 s
1
1
时,i(t )达到最大
im 1
(1 ln s0 ), 然后减小趋于0, s(t ) s
若s0
1
, 则i(t )单调趋于0,(i)单调趋于s s
i0
i0
1
i
1
i
1
O
1
1
1
t
i0
O
t
O
t
1 1 i ( ) 0 1
1 1
1 ~ 阈值
1 i (t )
感染期内有效接触感染的 i0小 i(t )按S曲线增长 健康人数不超过病人数
直接求解方程,亦可得到上述结果
di i (1 i ) i dt i (0) i0
时
i0 i (t ) i0 t 1
1
时
1 ( ) t e i(t ) i 0
x s0
i0小, 0 1 s
x x ln(1 ) 0 s0 1
x x2 x ( 2)0 s0 2 s 0 1
x 2s0 ( s0
1
)
令 s0 1 , 又 较小, s0 1)
x 2
模型检验 医疗机构一般依据r(t)来统计疾病的波及人数 ,从广 义上理解,r(t)为t时刻已就医而被隔离的人数,是康 复还是死亡对模型并无影响。
代数方程组 f ( x, y ) 0, g ( x, y ) 0. 的实根x = x0, y = y0称为方程(4-3)的平衡点, 记作P0 (x0, y0). 它也是方程(4-3)的解.
微分方程模型

• 2.假设该森林只有这一家伐木场。
二 变量说明
• W(t) 第t年伐木厂将砍伐的树木(单位: 百万方)
• Q 森林的木材储量(单位:百万方)
•X
可供砍伐的年数
三 模型的建立
• 对于第一问: • 因为砍伐树木的速度为砍伐树木的数量关
于时间的变化率,即
dW (t ) R (t ) 2 e 0.2t dt
利用微元法,有
W (5) 5 2 e 0.2 t dt 0
• 对于第二问: • 当森林的木材储量为Q百万方时,设第x年
砍伐完,则有
Q x2e0.2tdt 0
四 模型求解
• 对于问题一 • >>syms x • >>int(2*exp(-0.2*t),t,0,5) • ans=-10*exp(-1)+10 • >> -10*exp(-1)+10 • ans=6.3212
一 模型的假设
• 1.假设今后10年学校的在校生人数均按 280e0.2x 的速度递增,不能出现其他变故 2假设宿舍10年后还能正常使用
二 变量说明
• P(t) 从2005年起的第t年新欣学校的在校人 数
三 模型的建立
由题意知 P'(x) dP 280e0.2x
dx
• 利用微元法,在区间[x,x+dx]上,可将学校 在校人数的增长率视为常数,增加的人数 为
四 模型求解
• 解法一 • 1.求通解 • x(t)=De^-kt • 药物的浓度为 • C(t)=x(t)/V=De^-kt/V • 2.求特解 • 将初始条件x(0)=43.2代入通解,得D=43.2.又因
为V=35000,所以满足该条件的特解为
二 变量说明
• W(t) 第t年伐木厂将砍伐的树木(单位: 百万方)
• Q 森林的木材储量(单位:百万方)
•X
可供砍伐的年数
三 模型的建立
• 对于第一问: • 因为砍伐树木的速度为砍伐树木的数量关
于时间的变化率,即
dW (t ) R (t ) 2 e 0.2t dt
利用微元法,有
W (5) 5 2 e 0.2 t dt 0
• 对于第二问: • 当森林的木材储量为Q百万方时,设第x年
砍伐完,则有
Q x2e0.2tdt 0
四 模型求解
• 对于问题一 • >>syms x • >>int(2*exp(-0.2*t),t,0,5) • ans=-10*exp(-1)+10 • >> -10*exp(-1)+10 • ans=6.3212
一 模型的假设
• 1.假设今后10年学校的在校生人数均按 280e0.2x 的速度递增,不能出现其他变故 2假设宿舍10年后还能正常使用
二 变量说明
• P(t) 从2005年起的第t年新欣学校的在校人 数
三 模型的建立
由题意知 P'(x) dP 280e0.2x
dx
• 利用微元法,在区间[x,x+dx]上,可将学校 在校人数的增长率视为常数,增加的人数 为
四 模型求解
• 解法一 • 1.求通解 • x(t)=De^-kt • 药物的浓度为 • C(t)=x(t)/V=De^-kt/V • 2.求特解 • 将初始条件x(0)=43.2代入通解,得D=43.2.又因
为V=35000,所以满足该条件的特解为
第七次讲课课件微分方程模型

解得: ln8 / 6 0.2877 t0 2.0607
这时求得的t0是大象从死亡时间到被发现的时间(即上午 10点),因此反推回去可知大象被猎杀的时间是早上8点 左右.
四、猪的最佳销售时机
问题的提出: 养猪是否获利,怎样获得最大利 润?如果把饲养技术水平,猪的类型 等因素忽略不计,且不考虑市场需求 的变化,那么影响获利大小的一个主 要因素就是选择猪的售出时机.
试作出适当的假设,建立猪的 最佳销售时机的数学模型.
主模型的建立——利润模型
模型假设: x(t)为t 时刻的体重; y(t)表示一头猪从开始饲养到t时刻共 消耗的费用(包括人员工薪等); xs为猪可上市销售的最小体重; ts为猪从体重x0增长至xs所需的饲养时 间; p(t,x)为t 时刻体重为x的猪的单位售价.
微分方程模型
平衡原理和数学模型
“平衡”是我们在现实生活中随处可见的一个现象. 如:物理中的能量守恒和动量守恒定律都是在描述物 理中的能量和动量平衡的现象. 再如考虑一段时间内(或一定的范围内)物质的变化, 我们会发现这段时间内物质的改变量与它的增加量和减少 量之差也处于平衡的状态(我们称这种平衡规律为物质平 衡原理). 我们统称这些描述平衡现象的规律为平衡原理. 由于这种平衡关系比较容易由数学表达式给出,注意 发掘实际问题中的平衡原理无疑应该是数学模型组建过程 中的一个关键问题.
流出盐量
t t
t
p( )rO ( )d
p( t t )V ( t t ) p(t )V (t ) [ pI ( )rI ( ) p( )rO ( )]d t • 利用积分中值定理可得
t t
p(t t )V (t t ) p(t )V (t )
微分方程的稳定性模型_图文_图文

甲乙两种群的相互依存有三种形式
1) 甲可以独自生存,乙不能独自生存;甲 乙一起生存时相互提供食物、促进增长。
2) 甲乙均可以独自生存;甲乙一起生存 时相互提供食物、促进增长。
3) 甲乙均不能独自生存;甲乙一起生存 时相互提供食物、促进增长。
模型 假设
• 甲可以独自生存,数量变化服从Logistic规律 ; 甲乙一起生存时乙为甲提供食物、促进增长 。 • 乙不能独自生存;甲乙一起生存时甲为乙 提供食物、促进增长;乙的增长又受到本身 的阻滞作用 (服从Logistic规律)。
假设
• 解释(预测)双方军备竞赛的结局 1)由于相互不信任,一方军备越大,另一 方军备增加越快;
2)由于经济实力限制,一方军备越大,对 自己军备增长的制约越大;
3)由于相互敌视或领土争端,每一方都存
在增加军备的潜力。
进一步 假设
1)2)的作用为线性;3)的作用为常数
建模 x(t)~甲方军备数量, y(t)~乙方军备数量
r1=1, N1=20, 1=0.1, w=0.2, r2=0.5, 2=0.18
相轨线趋向极限环 结构稳定
实质上,我们并不需求解上面的微分方程以得到x(t) 的动态变化过程,只希望知道渔场的稳定鱼量和保 持稳定的条件,即时间 t 足够长以后渔场鱼量 x(t) 的趋向,并由此确定最大持续产量。为此可以直接 求上面常微分方程的平衡点并分析其稳定性。
不求x(t), 判断x0稳定性的方法——直接法
由于
讨论方程(1)的稳定性时,可用
对于消耗甲的资源而言
,乙(相对于N2)是甲(相
对于N1)的1 倍。
对甲增长的阻滞 作用,乙小于甲 乙的竞争力弱
2>1 甲的竞争力强
甲达到最大容量,乙灭绝
1) 甲可以独自生存,乙不能独自生存;甲 乙一起生存时相互提供食物、促进增长。
2) 甲乙均可以独自生存;甲乙一起生存 时相互提供食物、促进增长。
3) 甲乙均不能独自生存;甲乙一起生存 时相互提供食物、促进增长。
模型 假设
• 甲可以独自生存,数量变化服从Logistic规律 ; 甲乙一起生存时乙为甲提供食物、促进增长 。 • 乙不能独自生存;甲乙一起生存时甲为乙 提供食物、促进增长;乙的增长又受到本身 的阻滞作用 (服从Logistic规律)。
假设
• 解释(预测)双方军备竞赛的结局 1)由于相互不信任,一方军备越大,另一 方军备增加越快;
2)由于经济实力限制,一方军备越大,对 自己军备增长的制约越大;
3)由于相互敌视或领土争端,每一方都存
在增加军备的潜力。
进一步 假设
1)2)的作用为线性;3)的作用为常数
建模 x(t)~甲方军备数量, y(t)~乙方军备数量
r1=1, N1=20, 1=0.1, w=0.2, r2=0.5, 2=0.18
相轨线趋向极限环 结构稳定
实质上,我们并不需求解上面的微分方程以得到x(t) 的动态变化过程,只希望知道渔场的稳定鱼量和保 持稳定的条件,即时间 t 足够长以后渔场鱼量 x(t) 的趋向,并由此确定最大持续产量。为此可以直接 求上面常微分方程的平衡点并分析其稳定性。
不求x(t), 判断x0稳定性的方法——直接法
由于
讨论方程(1)的稳定性时,可用
对于消耗甲的资源而言
,乙(相对于N2)是甲(相
对于N1)的1 倍。
对甲增长的阻滞 作用,乙小于甲 乙的竞争力弱
2>1 甲的竞争力强
甲达到最大容量,乙灭绝
培训资料--微分方程模型人口模型等

x0
x0 0
t
人口发展方程
• 年龄分布对于人口预测的重要性 • 只考虑自然出生与死亡,不计迁移
F(r,t) ~ 人口分布函数 (年龄 r的人口) p(r,t) ~ 人口密度函数 N(t) ~ 人口总数 r ( ) ~ 最高年龄
m
F(0,t) 0, F(r ,t) N(t) m p(r, t) F r
人口发展方程
f
(t
)
(t
)r2 r1
h(r,
t
)k
(r,
t
)
p(r,
t
)dr
(t) ~总和生育率——控制生育的多少
h(r, t) ~生育模式——控制生育的早晚和疏密
p(r,t)
p 0
(r
r
t)e (s)ds r t r
,
0
t
r
f (t r)e0(s)ds , t r
p0 (r)
• 正反馈系统
(r,t) p(r,t)dt, dt dr1
p p (r,t) p(r,t) 一阶偏微分方程
r t
p
r
p t
(r, t )
p(r, t )
人口发展方程
p(r,0) p0 (r), r 0 ~已知函数(人口调查)
p(0,
t)
f
(t ),
t0
~生育率(控制人口手段)
p0 (0) f (0) --------相容性条件
b(r,
t)k
(r,
t)
p(r,
t)dr
b(r,t) (t)h(r,t)
0
r2 r1
h(r , t )dr
1
h~生育模式
(t)
03-1第三章-第1-8节-微分方程模型市公开课获奖课件省名师示范课获奖课件

(5 13)
将(5-10)和( pr 2
ur
(5 14)
最终f 把 (54-1pA4r2)2m和r(05-6)代r0入(rr5-4)式得 (5 15) r 这里 0 是单位向径,指示向径方向。
(5-15)式表白: (1)行星运动时受旳力旳方向与它旳向径方向
相反,即在太阳—行星连线方向,指向太阳;
若记x(t),y(t)为开始用力后铅球运动轨迹旳水平和 铅垂方向旳坐标。则根据牛顿第二运动定理,由假 设3我们有
mx(t) F cos
my(t) F sin mg
(2 3)
式中m为铅球旳质量,F是对铅球旳推力, 为力旳
方向既铅球旳出手角度。
根据假设2,令t=0时运动员开始用力推球,t t0
22
§4 追踪问题旳数学模型
问题:我辑私舰雷达发觉距d海里处有一艘走私船正
以匀速 a沿直线行驶,辑私舰立即以最大旳速度 (匀v速)追赶。若用雷达进行跟踪,保持舰旳瞬时
速度方向一直指向走私船,试求辑私舰旳运动轨迹 及追上旳时间。
(留作自学)
23
§5 万有引力定律旳发觉
历史背景: 开普勒三定律: 1、各颗行星分别在不同旳椭圆轨道上绕太 阳运营,太阳位于这些椭圆旳一种焦点上。 2、每颗行星运营过程中单位时间内太 阳—行星向径扫过旳面积是常数。 3、各颗行星运营周期旳平方与其椭圆轨道 长半轴旳3次方成正比。
14
x
v2 g
cos
sin
(
v2 g2
sin 2
2h
)
1 2
g
v
cos
v
(
F m
2 2
g2
2F m
g sin )t0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用达伦贝尔动力平衡原理建模
• 请建立如图系统的微分方程模型
Example :mass-spring-damper
cy
k ky y M Mຫໍສະໝຸດ cyf(t)
f(t)
达伦贝尔力平衡原理
d y (t ) dy M c ky (t ) f (t ) 2 dt dt
2
古斯塔夫· 罗伯特· 基尔霍夫
y 0 y
y0
df dx
f ( x)
x0
We get Δ y=kΔ x Or y=kx
A
y kx
x
x0 x0 x
非线性系统的线性化
请列出系统的微分方程并线性化。
例 (理想单摆运动)建立理想单摆运动满足的微
分方程,并得出理想单摆运动的周期公式。 从图中不难看出,小球所受的合力为mgsinθ, 根据牛顿第二定律可得: ml mg sin
Does not satisfy the superposition property
and
(3)
yx
2
When
x x0 x
y y0 y Equation (2) can be rewritten
as
y0 y kx0 kx b
We have
y kx
or
y kx
Linearization of Weak Nonlinear Characteristic
Linearization using Taylor series point( Equilibrium Position)
expansion about the operating
The output-input nonlinear characteristic of y=f(x) is illustrated in the following figure:
U 2 U c2
由④、⑤得
dU c 2 dU 2 i2 C 2 C2 dt dt
由②导出
dU c1 dU c1 dU 2 i1 C1 i2 C1 C2 dt dt dt
将i1、i2代入①、③,则得
U 1 R1 R2 i2 U c 2
dU c1 dU 2 dU 2 R1 (C1 C2 ) R2 C 2 U2 dt dt dt
输入(已知) 黑匣子 输出(已知)
• • • • •
已知知识和辨识目的 实验设计--选择实验条件 模型阶次--适合于应用的适当的阶次 参数估计--最小二乘法 模型验证—将实际输出与模型的计算输出进行比较,系统模 型需保证两个输出之间在选定意义上的接近。
本章讲怎样建立控制系统的数学模型 数学工具:微分方程
y1(t) f(t)
K1
y2(t)
k2 m1 m2
d2y m1 2 k1 y1 k 2 ( y1 y 2 ) f (t ) dt
d2y m2 2 k 2 ( y1 y 2 ) dt
如果不考虑m2对m1的影响,则会得到错误的结果 解方程,消除y2得
m1m2 p ( m1k2 m2k1 m1k2 ) p k1k2 ] y1 ( m2 p k2 ) f
基尔霍夫在柯尼斯堡大学读物理,1847年毕业后去柏林大学任教, 3年后去布雷斯劳作临时教授。1854年由R.W.E.本生 推荐任海德堡大学教授。 1875年到柏林大学作理论物理教授,直到逝世。
•
• 1845年,21岁时他发表了第一篇论文,提出了稳恒电路网络中电 流、电压、电阻关系的两条电路定律,即著名的基尔霍夫第一电路定律和基 尔霍夫第二电路定律,解决了电器设计中电路方面的难题。后来又研究了 电路中电的流动和分布,从而阐明了电路中两点间的电势差和静电学的电 势这两个物理量在量纲和单位上的一致。 • 1859年,基尔霍夫做了用灯焰烧灼食盐的实验。在对这一实验现 象的研究过程中,得出了关于热辐射的定律,后被称为基尔霍夫定律:基 尔霍夫根据热平衡理论导出,任何物体对电磁辐射的发射本领和吸收本领 的比值与物体特性无关,是波长和温度的普适函数,即与吸收系数成正比。 并由此判断:太阳光谱的暗线是太阳大气中元素吸收的结果。这给太阳和 恒星成分分析提供了一种重要的方法,天体物理由于应用光谱分析方法而 进入了新阶段。1862年他又进一步得出绝对黑体的概念。 • 在海德堡大学期间,他与化学家本生合作创立了光谱化学分析法。 把各种元素放在本生灯上烧灼,发出波长一定的一些明线光谱,由此可以 极灵敏地判断这种元素的存在。利用这一新方法,他发现了元素铯和铷。
Kirchhoff,Gustav Robert (1824~1887)
利用基尔霍夫定律建模
基尔霍夫电压定律:电网络闭合回路中电势的代数和等于回路中电压降的 代数和。 基尔霍夫电流定律:某节点的流出电流之和等于所有流进电流之和。
例题
解(a)题:依基尔霍夫电压定律得电路方程
1 Ri idt u i c
微分方程数学模型
广义上是指表达自然界或社会现象某些特 征本质的数学表达式,也称为数学方程。 实际上,对于任何一个确定的系统,都可以用 微分方程、差分方程、传递函数、状态方程、频率 特性等数学表达式来描述。而微分方程是最基本的。
微分方程的几个简单实例
在许多实际问题中,当直接导出变量之间的函数关系 较为困难,但导出包含未知函数的导数或微分的关系式较 为容易时,可用建立微分方程模型的方法来研究该问题, 本课程将通过一些最简单的实例来说明微分方程建模 的一般方法。在连续变量问题的研究中,微分方程是十分 常用的数学工具之一。
dv F c(v1 v2 ) c dt
从元器件到简单系统
• 利用机械动力学基础知识,也即达伦贝尔动 力平衡原理建模(机械控制系统)。 • 利用基尔霍夫定律建模(电子控制系统)。
达伦贝尔原理
• 在物理学历史上,关于如何量度机械运动, 用动量还是动能?曾经有过长达半个多世纪 的激烈争论。1743年,达伦贝尔在《动力学 论》中指出:“力既可以表示为在单位时间 内的运动改变(即动量);又可以表示为单 位距离内的运动改变(即动能)” ,才使之 趋于平息。这次争论的直接后果是功能概念 的形成和分析力学的建立。
4 2
p d / dt
微分算子
电路的负载效应
• 请列出方程式!
解: 设回路电流i1、i2,根据基尔霍夫定律,列写方程如下:
U 1 R1i1 U c1
U c1 1 (i1 i2 )dt C1
①
② ③ ④
⑤
U c1 R2 i2 U c 2
U c2 1 i2 dt C2
d uo (t ) duo (t ) LC RC uo (t ) ui (t ) 2 dt dt
2
力-电压相似
机械 电气 电阻 R1 阻尼 B1 电阻 R2 阻尼 B2 弹性系数 弹性系数 K1 K2
1/C1
1/C2
• 机系统(a)和电系统(b)具有相同的数学模型,故这些物理 系统为相似系统。(即电系统为即系统的等效网络) • 相似系统揭示了不同物理现象之间的相似关系。 • 为我们利用简单易实现的系统(如电的系统)去研究机械系 统...... • 因为一般来说,电的或电子的系统更容易,通过试验进行研究。
系统元件间的负载效应
负载效应—由多个元件组成的系统,若后一个元件的存在 会影响到前一个元件的输出,就认为后者给前者增加了负 载。这种现象称为负载效应。
注意:当存在负载效应时,绝不能孤立地分别列出前后两 个元件的微分方程式,而应该把前后两个元件作为一个整 体分析。
图示为由两个质量为m1、m2和弹簧k1、k2串联起来的系统 设输入量为外力f(t),输出量为位移y1(t),y2(t). 试求系统的数学模型。
这就是RC组成的四端网络的数学模型,是一个二阶线性微分方程。
系统的简化 ——非线性系统的线性化
实际的物理系统严格来说都是非线性的。如果非 线性因素对系统影响很小,一般予以忽略。可将 系统视为线性系统处理。
Linear Approximations of Physical Systems
What is the linear system?
1 u 0 idt c
du 0 i dt c
du 0 c i dt
du 0 RC u0 ui dt
解(b)题,依照基尔霍夫定律得
1 idt Ri u i c
1 u 0 dt u 0 u i RC
u 0 Ri
du 0 RC u0 ui dt
解(c)题,依照基尔霍夫定律得
这是理想单摆应满足 的运动方程
从而得出两阶微分方程:
i L U
di U L dt
Differential Equations for Ideal mechanical Elements (4) Mass block
F M
v
dv F M dt
11
(5) Spring
F x1 k x2
(6) Damper
v1 F c v2
dx F k ( x2 x1 ) k dt
A linear system satisfies the properties of superposition and Homogeneity: (Principle of Superposition). 满足叠加原理的系统称为线性系统。叠加原理又可 分为可加性和齐次性。
Principle of superposition
第2章
控制系统的数学模型 ------从物理实在到数学模型
2012.9.24
数学模型的几种表示方式
数学模型
时域模型
频域模型
方框图和信号流图
状态空间模型
建立控制系统数学模型的方法