求数列极限的方法
求数列极限的十五种解法

求数列极限的十五种方法1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ;记作:lim n n a a →∞=,否则称{}n a 为发散数列.例1.求证:1lim 1nn a →∞=,其中0a >.证:当1a =时,结论显然成立.当1a >时,记11n a α=-,则0α>,由()1111(1)nn a n n ααα=+≥+=+-,得111na a n--≤, 任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11na ε-<,即1lim 1nn a →∞=.当01a <<时,令1b a=,则1b >,由上易知:1lim 1nn b →∞=,∴111lim 1lim n n nn a b→∞→∞==.综上,1lim 1nn a →∞=,其中0a >.例2.求:7lim !nn n →∞. 解:变式:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≤⋅=⋅-;∴77710!6!n n n -≤⋅, ∴0ε∀>,7716!N ε⎡⎤∃=⋅⎢⎣⎦,则当n N >时,有77710!6!n n n ε-≤⋅<;∴7lim 0!n n n →∞=. 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0ε∀>,∃正整数N ,使得当n m N >、时,总有:n m a a ε-<成立. 例3.证明:数列1sin (1, 2, 3, )2nn kk kx n ===⋅⋅⋅∑为收敛数列. 证:11111sin(1)sin 111112(122222212n mn m m n m n m m m n x x m -+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-, 0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<,由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件:11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1, 2, )n =⋅⋅⋅,则称{}n x 为有界变差数列,试证:有界变差数列一定收敛.证:令1112210, n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-,那么{}n y 单调递增,由已知可知:{}n y 有界,故{}n y 收敛, 从而0ε∀>,∃正整数N ,使得当n m N >>时,有n m y y ε-<;此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-<;由柯西收敛准则,数列{}n x 收敛. 注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5.证明:数列n x =n 个根式,0a >,1, 2, n = )极限存在,并求lim nn x →∞.证:由假设知n x =;①用数学归纳法可证:1, n n x x k N +>∈;② 此即证{}n x 是单调递增的.事实上,10n x +<<<1=;由①②可知:{}n x 单调递增有上界,从而lim n n x l →∞=存在,对①式两边取极限得:l =解得:l =l =;∴lim n n x →∞=4.利用迫敛性准则(即两边夹法)迫敛性:设数列{}n a 、{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n N >时,有:n n n a c b ≤≤,则数列{}n c 收敛,且lim n n c a →∞=. 例6.求:22212lim()12n nn n n n n n n→∞++⋅⋅⋅+++++++.解:记:2221212n n x n n n n n n n =++⋅⋅⋅+++++++,则:2212121n n nx n n n n n ++⋅⋅⋅+++⋅⋅⋅+≤≤++++;∴22(1)(1)2(2)2(1)n n n n n x n n n n ++≤≤+++;从而22(1)1(1)lim lim 2(2)22(1)n n n n n n n n n n →∞→∞++==+++, ∴由迫敛性,得:222121lim()122n n n n n n n n n →∞++⋅⋅⋅+=++++++.注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用. 5.利用定积分的定义计算极限黎曼积分定义:设为()f x 定义在[, ]a b 上的一个函数,J 为一个确定的数,若对任给的正数0ε>,总存在某一正数δ,使得对[, ]a b 的任意分割T ,在其上任意选取的点集{}i ξ,i ξ∈[]1,i i x x -,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数()f x 在[, ]a b 上(黎曼)可积,数J 为()f x 在[, ]a b 上的定积分,记作()baJ f x dx =⎰.例7.求:()()11lim !2!nnn n n n --→∞⎡⎤⋅⋅⎣⎦. 解:原式n n →∞→∞==112lim (1)(1)(1)nn n n n n →∞⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦11exp lim ln(1)nn i i nn →∞=⎛⎫=+ ⎪⎝⎭∑()()1expln(1)exp 2ln 21x dx =+=-⎰.例8.求:2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫⎪++⋅⋅⋅+ ⎪+ ⎪++⎪⎝⎭. 解:因为:222sinsinsin sin sin sin sin sin sin 111112n n n nn n n n n n n n n n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++,又:2sinsinsin 12limlim (sin sin sin )11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤=⋅⋅++⋅⋅⋅+⎢⎥++⎣⎦∴02sinsinsin 12limsin 1n n nn n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰; 同理:2sinsinsin 2lim1n n nn n n nππππ→∞++⋅⋅⋅+=+; 由迫敛性,得:2sin sin sin 2lim 1112n n n n n n n n n ππππ→∞⎛⎫⎪++⋅⋅⋅+= ⎪+ ⎪++⎪⎝⎭. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论.6.利用(海涅)归结原则求数列极限归结原则:0lim ()x xf x A →=⇔对任何0 ()n x x n →→∞,有lim ()n n f x A →∞=. 例9.求:11lim 1n n e n →∞-. 解:11001lim lim ()111n nx x n n e e e e n n=→∞→∞--'===-. 例10.计算:211lim 1nn n n →∞⎛⎫+- ⎪⎝⎭. 解:一方面,2111(1)(1) ()n n e n n n n+-<+→→∞; 另一方面,2221112221111(1)(1)(1n n n n n n n n n n n n n -------+-=+≥+;由归结原则:(取2, 2, 3, 1n n x n n ==⋅⋅⋅-),22222111222211111lim(1)lim(1lim(1lim(1)lim(1)n n n x n n n n n n n x n n n n e x n n n n ----→∞→∞→∞→∞→∞----+=+⋅+=+=+=; 由迫敛性,得:211lim(1)nn e n n →∞+-=. 注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7.利用施托尔茨(stolz )定理求数列极限stolz 定理1:()∞∞型:若{}n y 是严格递增的正无穷大数列,它与数列{}n x 一起满足:11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.stolz 定理2:0()0型:若{}n y 是严格递减的趋向于零的数列,n →∞时,0n x →且11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.例11.求:112lim ()p p pp n n p N n +→∞++⋅⋅⋅+∈. 解:令112, , p p p p n n x n y n n N +=++⋅⋅⋅+=∈,则由定理1,得:112lim p p p p n n n +→∞++⋅⋅⋅+=11(1)lim (1)p p p n n n n ++→∞+=+-1(1)1lim (1)1(1)12p n p p n p p p p n n →∞-+=+⋅++-+⋅⋅⋅+. 注:本题亦可由方法五(即定积分定义)求得,也较为简便,此处略.例12.设02ln nk nk n CS n ==∑,求:lim n n S →∞. 解:令2n y n =,则{}n y 单调递增数列,于是由定理2得:lim n n S →∞=02ln lim nknk n C n =→∞∑110022ln ln lim (1)n nk k n nk k n C C n n++==→∞-=+-∑∑01ln 1lim 21nk n n n k n =→∞+-+=+∑11(1)ln(1)ln lim 21n k n n n k n +=→∞++-=+∑ 1ln()(1)ln(1)ln ln(1)1lim lim 2122nn n n n n n n n n n →∞→∞+++--+===+.注:stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则. 8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级数求和的知识使问题得到解决.例13.求:212lim()n n na a a→∞++⋅⋅⋅+,(1)a >. 解:令1x a =,则1x <,考虑级数:1nn nx ∞=∑.∵11(1)lim lim 1n n n n n n a n x x a nx ++→∞→∞+==<, ∴此级数是收敛的.令1()nn S x nx ∞==∑11n n x nx∞-==⋅∑,再令11()n n f x nx ∞-==∑,∵111()xxn n n n f t dt nt dt x ∞∞-=====∑∑⎰⎰1xx-;∴21()(1(1)x f x x x '==--; 而2()()(1)x S x x f x x =⋅=-;因此,原式=1112()(1)a S a a ---==-.9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此数列极限的存在性及极限值问题,可转化为研究级数收敛性问题. 例14.设00x >,12(1)2n n nx x x ++=+(0, 1, 2, )n =⋅⋅⋅,证明:数列{}n x 收敛,并求极限lim nn x →∞. 证:由00x >,可得:0n x >(0, 1, 2, )n =⋅⋅⋅,令2(1)(), (0)2x f x x x+=>+, 则2210'()(2)2f x x <=<+,且12(1)(), 0, (0, 1, 2, )2n nn n nx f x x x n x ++==>=⋅⋅⋅+, 考虑级数:10n n n x x ∞+=-∑;由于11n n n n x x x x +--=-11()()n n n n f x f x x x ---=-11'()()12n n n n f x x x x ξ---<-;所以,级数10n n n x x ∞+=-∑收敛,从而10()n n n x x ∞+=-∑收敛.令()10nn k k k S x x +==-∑10n x x +=-,∵lim n n S →∞存在,∴10lim lim n n n n x x Sl +→∞→∞=+=(存在);对式子:12(1)2n n n x xx ++=+,两边同时取极限:2(1)2l l l+=+,∴l =或l =(舍负);∴lim nn x →∞= 例15.证明:111lim(1ln )23n n n→∞++⋅⋅⋅+-存在.(此极限值称为Euler 常数). 证:设1111ln 23n a n n =++⋅⋅⋅+-,则1n n a a --=[]1ln ln(1)n n n---; 对函数ln y n =在[1, ]n n -上应用拉格朗日中值定理, 可得:1ln ln(1) (01)1n n n θθ--=<<-+,所以1211111(1)(1)n n a a n n n n n θθθ---=-=<-+-+-; 因为221(1)n n ∞=-∑收敛,由比较判别法知:12n n n a a ∞-=-∑也收敛, 所以lim nn a →∞存在,即111lim(1ln )23n n n→∞++⋅⋅⋅+-存在. 10.利用幂级数求极限利用基本初等函数的麦克劳林展开式,常常易求出一些特殊形式的数列极限. 例16.设11sin sin , sin sin(sin ) (2, 3, )n n x x x x n -===⋅⋅⋅,若sin 0x >,求:sin n n x →∞. 解:对于固定的x ,当n →∞时,1sin n x单调趋于无穷,由stolz 公式,有: 2222111lim sin lim lim 111sin sin sin n n n n n n n n n n x x x x →∞→∞→∞++-==-221lim 11sin (sin )sin n n n x x→∞=-46622220002244221()1sin 3lim lim lim 111sin (())sin 3t t t t t o t t t t t t t t o t t t +++→→→-⋅+⋅===----+46622004411()1()33lim lim 311()(1)33t t t t o t t o t t o t o ++→→-⋅+-⋅+===++. 11.利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛.下面我们来看一下拉格朗日中值定理在求数列极限中的应用.例17.求:2lim (arctan arctan )1n a an n n →∞-+,(0)a ≠. 解:设()arctan f x x =,在[, 1a an n+上应用拉格朗日中值定理, 得:21()()( [, ]1111a a a a a af f n n n n n nξξ-=-∈++++,故当n →∞时,0ξ→,可知:原式22lim 11n a nn a n ξ→∞=⋅⋅=++. 12.巧用无穷小数列求数列极限引理:数列{}n x 收敛于a 的充要条件是:数列{}n x a -为无穷小数列. 注:该引理说明,若lim nn x a →∞=,则n x 可作“变量”替换:令n n x a α=+,其中{}n α是一个无穷小数列. 定理1:若数列{}n α为无穷小数列,则数列{}n α也为无穷小数列,反之亦成立. 定理2:若数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.推论1:设数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.例18.(算术平均收敛公式)设lim n n x a →∞=,求极限12limnn x x x n→∞++⋅⋅⋅+.解:由lim nn x a →∞=,作“变量”代换,令n n x a α=+,其中{}n α是一无穷小数列; 由定理2的结论有:12lim n n x x x n →∞++⋅⋅⋅+12()()()lim n n a a a nααα→∞++++⋅⋅⋅++= 1212()()lim lim 0n n n n na a a a n nαααααα→∞→∞+++⋅⋅⋅+++⋅⋅⋅+==+=+=.此题还可以用方法1(定义法)证明,也可通过方法7(stolz 公式)求得,此处略.例19.设lim n n x a →∞=,lim n n y b →∞=,求极限1211lim n n n n x y x y x y n-→∞++⋅⋅⋅+.解:由lim n n x a →∞=,lim n n y b →∞=,作“变量”代换,令n n x a α=+,n n y b β=+,其中{}n α,{}n β都是一无穷小数列, 故1211lim n n n n x y x y x y n -→∞++⋅⋅⋅+11()()()()lim n n n a b a b nαβαβ→∞+++⋅⋅⋅+++= 1111lim n n n n n ab b a n n n ααββαβαβ→∞+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+⎡⎤=+++⎢⎥⎣⎦ 因为0n β→()n →∞,所以{}n β有界数列,即n M β≤, 从而结合上述推论1,有:12110 ()nn n M n nnααααβαβ++⋅⋅⋅++⋅⋅⋅≤⋅→→∞,再根据定理1,即有:110 ()n n n nαβαβ+⋅⋅⋅→→∞;又由定理2,可知:10na nββ+⋅⋅⋅+⋅→,10 ()nb n nαα+⋅⋅⋅+⋅→→∞;∴1211lim n n n n x y x y x y ab n-→∞++⋅⋅⋅+=.注:利用无穷小数列求数列极限通常在高等数学和数学分析教材中介绍甚少,但却是一种很实用有效的方法.用这种方法求某类数列的极限是极为方便的. 13.利用无穷小的等价代换求某些函数列的极限定理:设函数()f x 、()g x 在0x =的某个领域有意义,()0g x >,0()lim 1()x f x g x →=,且当n →∞时,0mn a →(1, 2, 3, )m =⋅⋅⋅,11lim ()lim ()nnmn mn n n m m f a g a →∞→∞===∑∑,则在右端极限存在时成立.例20.求极限1lim 1)nn i →∞=∑.解:令()1f x =-,1()3g x x =,当0x →1x ~,由定理1,得:2111111lim 1)lim 3326nnn n i i i n→∞→∞===⋅=⋅=∑∑. 例21.求:2231lim (1)nn i i a n →∞=+∏,(a 为非零常数). 解:原式2331exp lim ln(1)nn i i a n →∞=⎛⎫=+ ⎪⎝⎭∑;令()ln(1)f x x =+,当0x →时,ln(1)x x +~, 由定理1,得:22333311lim ln(1)lim nnn n i i i i a a n n→∞→∞==+=∑∑223(1)(21)1lim 63n n n n a a n →∞++==;∴2231lim (1)nn i i a n →∞=+=∏21exp()3a . 注:我们知道,当0x →时,函数sin , tan , arcsin , arctan , 1, ln(1)x x x x x e x -+都x 与等价,倘若熟悉这些等价函数,观察它们与本文定理中的()f x 的关系,把求某些函数列极限问题转化为求熟知的数列极限问题,这样就会起到事半功倍的效果. 14.利用压缩映射原理求数列极限定义1:设()f x 在[, ]a b 上有定义,方程()f x x =在[, ]a b 上的解称为()f x 在[, ]a b 上的不动点. 定义2:若存在一个常数k ,且01k ≤<,使得[, ]x y a b ∀∈、有()()f x f y k x y -≤-,则称()f x 是[, ]a b 上的一个压缩映射.压缩映射原理:设称()f x 是[, ]a b 上的一个压缩映射且0x ∈[, ]a b ,1()n n x f x +=,对n N ∀∈,有[, ]n x a b ∈,则称()f x 在[, ]a b 上存在唯一的不动点c ,且lim nn x c →∞=. 例22.设12ax =,212n n a x x ++=(01)a <<,1, 2, n =⋅⋅⋅,求lim nn x →∞. 解:考察函数2()22a x f x =+,1[0,2ax +∈, 易见对1[0, ]2a x +∀∈,有:21()2n n n a x x f x ++==,11[0, 22a a x +=∈,1()12af x x +'=≤<; 所以,()f x 是压缩的,由压缩映射原理,数列{}n x 收敛.设lim nn x c →∞=,则c 是222a x x =+在1[0, ]2a +的解,解得1c =,即lim 1n n x →∞=例23.证明:数列n x =(n 个根式,14a >,1, 2, n =⋅⋅⋅)极限存在,并求lim nn x →∞.解:易知:n x =,考察函数:()f x =,[0, )x ∈+∞且在[0, )+∞上有:1f '<,因此,()f x 在[0, )+∞上是压缩的;1[0, )x =+∞,1()n n x f x +=,由压缩映射原理,数列{}n x 收敛且极限为方程:()x f x ==的解,解得:lim n n x →∞=本题也可通过方法三(单调有界定理)解得,此处略.注:压缩映射原理在实分析中有着十分广泛的应用,如用它可十分简单的证明稳函数存在定理、微分方程解的存在性定理,特别的在求一些数列极限中有着十分重要的作用,往往可以使数列极限问题得到简便快速的解决.15.利用矩阵求解一类数列的极限(1)若数列的递推公式形如:12n n n x px qx --=+且已知01x x 、,其中p q 、为常数且0p ≠,0q ≠,2, 3, n =⋅⋅⋅;解:可将递推公式写成矩阵形式,则有1111201010n n n n n x x x p q p q x x x ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2, 3, n =⋅⋅⋅,从而可利用线性代数知识求出n x 的表达式,并进一步求出lim nn x →∞.(2)若数列的递推公式形如:11n n n ax bx cx d--+=+且已知0x ,其中0c ≠且ad bc ≠,1, 2, n =⋅⋅⋅,解法1:令211n n n y cx d y ---+=,则1121()n n n y x d c y ---=-,11()n n n yx d c y -=-, 从而有:121211()(())n n n n n n y yy a d d b c y c y y ------=-+⋅,整理得:12()()n n n y a d y bc ad y --=++-,再由(1)可以求解. 解法2:设与关系式010ax b x cx d +=+对应的矩阵为a b A c b ⎛⎫= ⎪⎝⎭,由关系式11n nn ax b x cx d --+=+; 逐次递推,有00n nn n n a x b x c x d +=+,其对应的矩阵为nn n n a b B c d ⎛⎫= ⎪⎝⎭, 利用数学归纳法易证得n B A =,通过计算n A 可求出n x 的表达式,并进一步求出lim nn x →∞. 例24.证明:满足递推公式11(1)n n n x x x αα+-=+-(01)α<<的任何实数序列{}n x 有一个极限,并求出以α、0x 及1x 表示的极限.解:由已知可得:111111200111010n n n n n n x x x x A x x x x αααα-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(110A αα-⎛⎫=⎪⎝⎭); 矩阵A 的特征值121, 1λλα==-,对应的特征向量分别为:''12(1, 1), (1, 1)ξξα==-;令1211(, )11P αξξ-⎛⎫== ⎪⎝⎭,则11001P AP α-⎛⎫= ⎪-⎝⎭,从而有:()()11111111111111120101n n n AP P ααααα----⎛⎫⎛⎫--⎛⎫⎛⎫==⎪⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭()()()()111111121111n nn n ααααααα--⎛⎫---+- ⎪= ⎪----+-⎝⎭; 于是,101(1(1))(1(1))2n n n x x x αααα=--+-+-⎡⎤⎣⎦-. 因为11α-<,所以lim(1)0nn α→∞-=,从而[]011lim (1)2n n x x x αα→∞=-+-. 例25.已知斐波那契数列定义为:1101 (1, 2, 1)n n n F F F n F F +-=+=⋅⋅⋅==;;若令1n n n F x F +=,01x =且111n n x x -=+,(1, 2, )n =⋅⋅⋅,证明极限lim nn x →∞存在并求此极限. 解:显然1011x x =+,相应矩阵0111A ⎛⎫= ⎪⎝⎭的特征值12 λλ==,对应的特征向量分别为:''12 1), 1)ξξ==;令()21121211, 111111P λλλλξξ⎛⎫--⎛⎫ ⎪==== ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭,11211P λλ-⎫=⎪--⎭; 则有:11200P AP λλ-⎛⎫= ⎪⎝⎭;于是11112121112121200nn n n n nn n n n n A P P λλλλλλλλλλ---++--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭;从而,()111212111212, 1, 2, n n n nn nn n n x n λλλλλλλλ--++-+-==⋅⋅⋅-+-, 由于211λλ<,上式右端分子、分母同时除以1n λ, 再令n →∞,则有:1lim limn n n n n F x F →∞→∞+==. 注:求由常系数线性递推公式所确定的数列的极限有很多种方法,矩阵解法只是其一,但与之相关的论述很少,但却简单实用.。
高考数学冲刺数列极限的求解方法

高考数学冲刺数列极限的求解方法在高考数学中,数列极限是一个重要的考点,也是许多同学感到棘手的问题。
在最后的冲刺阶段,掌握有效的求解方法对于提高成绩至关重要。
接下来,让我们一起深入探讨数列极限的求解方法。
一、数列极限的基本概念首先,我们要明确数列极限的定义。
如果当项数 n 无限增大时,数列的通项 an 无限趋近于一个常数 A,那么就称 A 是数列{an}的极限,记作lim(n→∞) an = A。
理解这个定义是求解数列极限的基础。
二、常见的数列极限类型1、简单数列的极限对于一些简单的数列,如常数数列{an = C},其极限就是这个常数C;对于等差数列{an = a1 +(n 1)d},当 n 趋向于无穷大时,如果公差 d = 0,则极限为 a1;如果d ≠ 0,则数列没有极限。
2、等比数列的极限对于等比数列{an = a1 q^(n 1)},当|q| < 1 时,极限为 0;当 q = 1 时,极限为 a1;当|q| > 1 时,数列没有极限。
三、数列极限的求解方法1、利用定义求解直接根据数列极限的定义来进行求解。
通过分析数列通项与极限值之间的差距,随着 n 的增大,这个差距趋向于零,从而证明极限的存在并求出极限值。
例如,对于数列{an = 1 / n},要证明其极限为 0。
对于任意给定的正数ε,要找到一个正整数 N,使得当 n > N 时,|1 / n 0| <ε 成立。
因为|1 / n 0| = 1 / n,所以只要取 N = 1 /ε + 1(x表示不超过 x 的最大整数),当 n > N 时,就有 1 / n < 1 / N <ε,从而证明了lim(n→∞) 1 / n = 0。
2、四则运算法则若lim(n→∞) an = A,lim(n→∞) bn = B,则有:(1)lim(n→∞)(an ± bn) = A ± B(2)lim(n→∞)(an bn) = A B(3)lim(n→∞)(an / bn) = A / B (当B ≠ 0 时)例如,求lim(n→∞)(2n + 1) /(3n 1),可以将分子分母同时除以 n,得到lim(n→∞)(2 + 1 / n) /(3 1 / n) = 2 / 3。
数列极限求解的几种常用方法

数列极限的求解技巧

数列极限的求解技巧数列极限是数学分析中的一个重要概念,它描述了一个数列在趋向于无穷大时的表现。
求解数列极限的过程涉及到各种技巧和方法。
本文将介绍一些常用的数列极限求解技巧。
1. 数列的定义和性质:首先,我们需要理解数列的定义和性质。
一个数列是由一个函数定义的,其中的每个项是函数在自然数集上的取值。
数列有许多重要的性质,如收敛、发散等。
我们需要熟悉这些性质,以便有效地求解极限。
2. 极限的定义和性质:了解极限的定义和性质也是求解数列极限的关键。
数列的极限定义为当数列中的项无限接近某个常数时,这个常数就是数列的极限。
极限有一些基本的性质,如唯一性和保序性等,我们要熟悉并应用这些性质来求解极限。
3. 递归关系:有些数列可以通过递推关系来定义,即每一项都是前一项的函数。
求解这种数列的极限可以利用递归的思想。
通常,我们可以通过递归关系将数列的项表示为较简单的形式,然后求解这个简化后的数列的极限。
4. 二次递推数列的求解:对于二次递推数列,即每一项都是前两项的函数,求解极限有特定的技巧。
通常,我们可以将这种数列的项表示为相关的二次方程,然后利用求解二次方程的方法求解极限。
5. 求和数列的求解:对于求和数列,即每一项是前若干项的求和,求解极限可以利用求和公式或求和性质。
例如,我们可以利用等差数列的求和公式或等比数列的求和公式来求解相应的极限。
6. 夹逼定理:夹逼定理是求解数列极限的重要工具。
夹逼定理的基本思想是通过构造两个夹逼数列,使得这两个数列的极限相等,从而求出原数列的极限。
夹逼定理可以用来解决一些复杂的极限问题,尤其是当数列无法直接求解时。
7. 最值性质:数列的最值性质也是求解极限的一种方法。
最大值或最小值定理可以用来确定数列的极限。
通过证明数列的项递增或递减,并有上界或下界,我们可以得出数列的极限。
8. 逐项相加:有些复杂的数列可以通过在等式两边逐项相加或相乘的方式来求解。
通过逐项相加或相乘,我们可以把复杂的数列分解成更简单的数列,然后求解这些简单数列的极限。
求数列极限方法总结归纳

求数列极限方法总结归纳极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到,平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。
极限的计算是核心考点,考题所占比重最大。
熟练掌握求解极限的方法是得高分的关键。
极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数。
熟练掌握求解极限的方法是的高分地关键, 极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算。
以下我们就极限的内容简单总结下。
极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。
四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效; 夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限。
与极限计算相关知识点包括:连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在;渐近线,(垂直、水平或斜渐近线);多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在。
下面我们重点讲一下数列极限的典型方法。
求数列极限可以归纳为以下三种形式。
求数列极限的方法总结及例题

求数列极限的方法总结及例题关于数列极限的几个有关问题: 1、定义在数学中,数列极限是指对数列的各项,分别取某个确定的量x(一般是正数或0)时,对数列的极限。
数列的极限是很重要的概念,也是整个数学的一个非常重要的概念。
2、怎样求n个数?分成两种情况:第一种情况,已知数列的前n项和为c,求其极限n(n是自然数)就是一项一项去求;第二种情况,对数列的每一项取自然数a,则该数列的极限就是这个数列与取极限的那个自然数a之差的绝对值。
如果是已知前n项的和,且满足条件1, 2, 3,…, n,则一次可以把它们写成几个递减的数列的和。
对数列求极限,实际上是对数列中未知数的求导数,用高中阶段所学的求导方法即可。
3、能不能用分类讨论法来证明数列?可以的。
但需要你对数列有比较全面的了解。
如果只是熟悉数列,想通过直接求极限来证明,显然行不通。
但是如果是通过给数列分类,利用分类求和公式证明也是可以的。
如果数列中出现了极限,则说明数列发生了变化。
数列的极限就是该数列与取极限的那个自然数a之差的绝对值。
所以我们可以先将数列进行分类,再分别求出每一类的极限,利用它们之间的关系进行推理证明。
当然还可以借助等比数列的前n项和公式求出数列的极限。
4、数列中的项,怎样才可以取到最大或最小值呢?我们认为,对于任意给定的数列,数列的极限都不会出现两个,并且最大或最小的数都是唯一的,而不是任意取的。
因此,如果数列中存在两个极限,则只能从这两个极限中选取一个。
也就是说,取极限时,我们可以根据极限的性质进行取舍。
5、数列中的某些数据怎样才可以取到最大或最小值呢?我们认为,数列极限都是取到极限中的某一个数,而不是在极限中取最大或最小值。
数列中的数据最大或最小值就是极限值的两倍。
也就是说,对于数列最大或最小值,我们可以用两个不同的数据取它的最大或最小值,从而取到两个不同的极限值。
例如,如果数列中存在两个极限,且两个极限都是1,则数列极限只能取1,但是对于数列的某些数据,如果数据是2, 4, 8,…,则我们完全可以用数据是2取它的极限值。
数列极限计算的方法与技巧

数列极限计算的方法与技巧
有:
1.用变量来代表特殊数列,例如用a_n来代表第n项的值,这样可以使推导变得更清晰。
2.先要观察和把握函数的特点,才能选择合适的解法。
3.通过序列的规律发现其函数关系,有时候可能需要先分解较为复杂的序列,然后进行合并,从而得出其函数关系。
4.对于简单的数列,比如等比数列,等差数列等,可以使用简单的极限运算来求解。
5.当处理考虑极限时,通常有一些变换或转化,比如把分母换算为其因子的乘积,把分子分解成其因子的加和(如果有),以及将指数表达式转化为指数的乘方等技巧。
6.将极限的结果推出后,可能还需要进一步的判断,比如:取极限的结果是无穷,但是可能这个无穷大的值不存在,或者有极限,但是却不存在,或者存在但是又不是有界的,这需要根据例题具体分析对比才能推出结论。
数列求极限的方法总结

数列求极限的方法总结1. 数列的收敛性在数学中,我们经常需要研究数列的极限。
首先,我们需要确定数列是否收敛。
一个数列收敛是指当n趋近于无穷大时,数列的值逐渐趋近于一个常数。
数列不收敛,则意味着数列的值在无穷大的范围内没有趋近于一个特定的值。
常用的方法来判断数列的收敛性有:•利用定义:若存在一个常数L,使得对于任意给定的$\\epsilon>0$,存在自然数N>0,使得当n>N时,$|a_n-L|<\\epsilon$,则数列a n收敛于L。
•利用数列的增减性:若数列a n单调递增且有上界,则数列a n收敛。
•利用数列的单调性:若数列a n单调递增或单调递减,则数列a n收敛。
2. 常用的数列极限求解方法对于已经确定收敛的数列a n,我们可以使用以下方法求解它的极限。
2.1 代入法对于一些简单的数列,可以直接通过代入法求得它的极限。
代入法是将数列的项逐一代入到极限定义中进行计算。
例如,考虑数列$a_n = \\frac{1}{n}$,我们可以代入$n=1,2,3,\\ldots$,计算出相应的数值:$a_1 = \\frac{1}{1} = 1$$a_2 = \\frac{1}{2} = 0.5$$a_3 = \\frac{1}{3} \\approx 0.33$…可以观察到数列a n随着n的增大逐渐趋近于0。
因此,我们可以推断出数列a n的极限为0。
2.2 常用的极限计算公式有一些常用的数列极限计算公式,可以帮助我们快速求解一些特定数列的极限。
2.2.1 基本公式•当k为常数时,$\\lim\\limits_{n\\to\\infty}k = k$•$\\lim\\limits_{n\\to\\infty} \\frac{1}{n} = 0$•$\\lim\\limits_{n\\to\\infty} \\frac{1}{n^k} = 0$,其中k为正整数2.2.2 通项公式对于一些有通项公式的数列,我们可以通过直接计算通项公式在n趋近于无穷大时的极限来求解数列的极限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求数列极限的方法
要求解数列极限,我们首先需要了解数列的定义和性质。
数列是指按照一定规律排列的一系列数的集合。
数列的极限是指当数列中的数字无限接近某个固定值时,该固定值就是数列的极限。
求数列极限的方法有很多,下面我将介绍几种常见的方法。
1. 通过数列的定义求极限。
要求解数列的极限,可以通过对数列的定义进行推导。
数列的定义是指按照一定规律排列的一系列数的集合。
根据定义,我们可以通过逐渐增加数列的项数,观察数列的变化趋势,推测数列的极限。
例如,对于递归数列an = n^2,我们逐渐增加n的值,可以观察到当n趋近于无穷大时,an也趋近于无穷大。
因此,可以猜测该数列的极限是正无穷大。
2. 使用极限运算法则求极限。
极限运算法则是指通过对数列中的各个项进行特定的运算,从而得到数列的极限。
常见的极限运算法则有加法法则、乘法法则和除法法则等。
例如,对于数列an = 1/n,可以将每一项分子分母都乘以n,得到新的数列bn = 1。
由于bn的每一项都是常数1,因此bn的极限是1。
根据极限的乘法法则,我们可以得到原数列an的极限也是1。
3. 利用数列的收敛性求极限。
数列中的一部分项可能已经足够接近极限值,我们可以利用数列的收敛性来求解
数列的极限。
数列的收敛性是指当数列中的项逐渐增加时,数列的极限趋于一个固定值。
例如,对于递归数列an = 1/n,随着n的增大,an逐渐接近于0。
因此,我们可以推测该数列的极限是0。
4. 利用夹逼定理求极限。
夹逼定理是利用数列的中间项来确定数列的极限。
夹逼定理是指当一个数列在某一项之后受到两个趋于同一极限的数列夹逼时,该数列的极限也趋于相同的极限。
夹逼定理常用于求解复杂的数列极限。
例如,对于递归数列an = (n^2 +
1)/(n^2 + n + 1),我们可以证明该数列的极限是1。
首先,我们可以通过将分子和分母都除以n^2,得到新的数列bn = (1 + 1/n^2)/(1 + 1/n + 1/n^2)。
当n趋于无穷大时,数列bn的分子趋于1,分母趋于1,因此bn的极限也是1。
另一方面,我们可以通过将分子和分母都除以n,得到新的数列cn = (1/n^2 + 1/n)/(1/n + 1/n^2 + 1/n^3)。
当n趋于无穷大时,数列cn的分子趋于0,分母趋于0,因此cn的极限也是0。
由于bn<=an<=cn,根据夹逼定理,我们可以推测数列an的极限也是1。
总结起来,求解数列极限的方法有很多,可以通过数列的定义、极限运算法则、数列的收敛性和夹逼定理等方法来推导数列的极限。
通过运用这些方法,我们可以准确地计算出数列的极限。