假设法解应用题(含问题详解)
假设法解应用题(含标准答案)

假设法解应用题(含答案)————————————————————————————————作者:————————————————————————————————日期:21、小红有1角、5角的硬币共35枚,一共是9元5角,问两种硬币各多少枚?2、某玻璃杯厂要为商店运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这一个不但不给运费,而且要赔偿4元。
结果运到目的地结算时,玻璃杯厂共得运费895元,求打碎了几个玻璃杯?3、小张、小李两进行射击比赛,约定每中一发记20分,脱靶一发则扣12分,两人各打了10发,共得208分,其中小张比小李多得64分,问小张、小李两人各中几发?4、一个化肥厂原计划14天完成一项任务,由于每天多生产15吨,结果9天就完成任务。
原计划每天生产化肥多少吨?5、买来2角邮票和5角邮票共100张,总值41元。
求2角邮票、5角邮票各多少张?6、甲、乙两车间共加工同样零件393个,包装时,把甲车间加工的16个零件并入乙车间的零件中,这时甲车间加工的零件仍比乙车间多5个,问两个车间各加工零件多少个?- 3 -- 4 -7、某校举行的数学竞赛共15道题,规定每做对一题得10分,每做错一题倒扣4分,小明在这次竞赛中共得66分,问他错、对了几道题?8、甲、乙、丙、丁四人上山摘桃子,已知他们共摘了80个桃子,甲比乙少摘8个,丙比甲少摘14个,丁和丙摘的一样多,问他们每人摘了多少个桃子?9、某厂工人,白班补助4元,夜班另加6元,某工人工作24天,共得补助费144元,问他上了几天夜班?【试题答案】1、分析与解:9元5角=95角假设这35枚都是1角的,那么总钱数就应该是()135⨯=35角,比实际95角少了()9535-=60角,这是因为把其中5角的硬币都当成1角了,有一枚5角硬币,少算了()51-=4角,少算的60角中有几个这样的4角,就有几个5角硬币。
953560-=(角) 605115÷-=()(枚) 351520-=(枚) 答:5角硬币有15枚,1角硬币有20枚。
假设法解题应用题及答案

假设法解题应用题及答案1、笼中共有鸡兔100只,鸡和兔的脚共248只,求笼中鸡兔各多少只?假设有鸡100只脚:100×2=200只兔:(248-200)÷(4-2)=24只鸡:100-24=76只2、一堆2分和5分的硬币共39枚,共值1.5元。
问2分和5分的银币各有多少枚?假设有2分39枚1.5元=150分150-39×2=72分5分:72÷(5-2)=24枚2分:39-24=15枚3、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为一元和一角的人民币。
求换来的这两种人民币各多少张?50+5=55角假设有一角28张55-28×1=27角一元:27÷(10-1)=3张5角:28-3=25张4、用大小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱。
现有18车货,价值3024元。
若每箱便宜2元,则这批货物价值2520元。
问大小汽车各多少辆?2520-3024=504元假设大汽车有18辆小车:(18×18×2-504)÷(18×2-12×2)=12辆大车:18-12=6辆5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次。
平均每天运14次。
这几天中有几天是雨天?112÷14=8天假设雨天运8天晴天:(112-12×8)÷(20-12)=2天雨天:8-2=6天6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元。
如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问有多少千克大西瓜?290-250=40元40÷0.05=800千克假设大西瓜有800千克小:(800×0.4-290)÷(0.4-0.3)=300千克大:800-300=500千克7、甲乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。
假设法解应用题鸡兔同笼

假设法解应用题鸡兔同笼举例:一沓人名币,共10张,5 元1元做演示(提问:多少钱?几张?)怎么数?还有什么方法。
引出假设小结:若将10张全当成5元的,则总钱数就多了,因为把1元的也看成了 5 元的,每次多 4 元,几次就多几个4•用多的钱+4就算出1元的张数。
若将10张全当成1元的则反之。
例1.2 元5 元人名币共100 张,价值410元,5 元 2 元人名币各几张?假设:100xx 看成 2 元100 X 2=20(元)410-200=210(元)210 + (5-2)=70 (张)—5 元100-70=30 (张)—2 元答: 5 元有70xx,2 元有30xx2 .画图方法:2元5元OOO △.△(△100xx正确的 2 2 225 55410元假设的 2 2 222 22200元少算: 3 33210元试做:1. 鸡兔共47只,100 只脚。
鸡兔各几只?2. 停车场上停了45辆小汽车和三轮车,共有160 个轮子。
则停车场上共有几辆三轮车和小汽车?(鸡兔同笼的解题方法为假设,由此而引申出得下几类利用假设法解答的习题)例2.乒乓球训练基地迎战世界杯比赛,56 张乒乓球台上共有160 人正在练球。
正在进行单打的有多少台子i ?正在双打的有多少台子?假设:56xx台子正在进行双打56 X 4=22(人)224-160=64 (人)—多了64宁(4-2)=32 (张)—单打台子56-32=24(张)—双打台子试做:1 某招待所共有客房240 间,可供680 人住宿,标准间可住2 人,普通间少住4人。
标准间O和普通间各有多少间?2某人徒步旅行,平路每天走38千米,山路每天走23千米。
他15天公走了450千米,这O期间他走了多少千米山路?3 若干人参加劳动,一部分人挑土,其余人抬土,共用去27 根扁担44个筐。
抬土和挑土的O各有多少人?利用假设法解应用题的延伸题淘气比小小多20 元钱,淘气每天用 2 元,小小每天存 3 元1 他俩的钱数差每天会消去3+2 元。
小学四年级奥数第30讲 用假设法解题(含答案分析)

第30讲用假设法解题一、知识要点:假设法是一种常用的解题方法。
“假设法”就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找到正确答案。
运用假设法的思路解应用题,先要根据题意假设未知的两个量是同一种量,或者假设要求的两个未知量相等;其次,要根据所作的假设,注意到数量关系发生了什么变化并作出适当的调整。
二、精讲精练:例1:今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。
问鸡、兔各有多少只?练习一1、鸡与兔共有30只,共有脚70只。
鸡与兔各有多少只?2、鸡与兔共有20只,共有脚50只。
鸡与兔各有多少只?3、鸡与兔共有100只,鸡脚比兔脚多80只。
鸡与兔各有多少只?例2:面值是2元、5元的人民币共27张,全计99元。
面值是2元、5元的人民币各有多少张?练习二1、孙佳有2分、5分硬币共40枚,一共是1元7角。
两种硬币各有多少枚?2、50名同学去划船,一共乘坐11只船,其中每条大船坐6人,每条小船坐4人。
问大船和小船各几只?3、小明参加猜谜比赛,共20道题,规定猜对一道得5分,猜错一道倒扣3分(不猜按错算)。
小明共得60分,他猜对了几道?例3:一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。
每辆大车比小车多装4吨,这批水泥有多少吨?练习三1、一批货物用大卡车装要16辆,如果用小卡车装要48辆。
已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?2、有一堆黄沙,用大汽车运需运50次,如果用小汽车运,要运80次。
每辆大汽车比小汽车多运3吨,这堆黄沙有多少吨?3、一批钢材,用小车装,要用35辆,用大车装只用30辆,每辆小车比大车少装3吨,这批钢材有多少吨?例4:某玻璃杯厂要为商场运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这个不但不给运费,而且要赔偿3元。
结果运到目的地后结算时,玻璃杯厂共得运费920元。
求打碎了几个玻璃杯?练习四1、搬运1000玻璃瓶,规定安全运到一只可得搬运费3角。
小学四年级鸡兔同笼20道典型数学题假设法解题(含答案解析易中难度)

小学四年级鸡兔同笼20道典型数学题假设法解题(含答案解析易中难度)1.有一只笼子装着鸡和兔,从上数头有20个,从下数脚64只,问笼中鸡、兔各有多少只?解:①假设笼中全是兔子,共有多少只脚?4×20=80(只)②比原来的总数多多少只脚?80-64=16(只)③一只兔子比一只鸡多多几只脚?4-2=2④(把看多的兔子换成鸡)有几只鸡?16÷2=8⑤兔子有多少只?20-8=12只答:有鸡8只,兔12只。
2.一个商场有两轮摩托车和三轮摩托车共26辆,其中共有轮子67个,问两轮摩托车和三轮摩托车各有多少辆?解:①假设商场全是三轮摩托车,共有多少个轮子?3×26=78(个)②比原来的总数多多少个轮子?78-67=11(个)③一个三轮摩托车比一辆二轮摩托车多几各轮子?3-2=1④(把看多的三轮摩托车换成两轮摩托车)有几辆两轮摩托车?11÷1=11⑤有多少辆三轮摩托车?26-11=15只答:有两轮摩托车11辆,三轮摩托车15辆。
3. 小明家有200千克油,分别装在48个油瓶中,其中大油瓶每瓶装5千克,小油瓶每瓶装3千可,问大、小油瓶各有多少个?解:①假设全部是大油瓶,共装多少千克油?5×48=240(千克)②比原来的总数多多少千克?240-200=40(千克)③一个大油瓶比一个小油瓶多装多少千克油?5-3=2④(把看多的大油瓶换成小油瓶)有几小油瓶?40÷2=20⑤有多少个大油瓶?48-20=28(个)答:有大油瓶28个,小油瓶20个。
4.小亮存钱罐里有42枚硬币,共有32元,分别是硬币1元和5角的,问1元和5角的各有多少枚?解:①假设全部1元的,即10角,共有多少角?10×42=420(角)②比原来的总数多多少角?420-320=100(角)③1元比5角多多少角?10-5=5(角)④(把看多的1元换成5角)有几5角?100÷5=20(枚)⑤有多少个1元?42-20=22(枚)答:有1元的22枚,5角的20枚。
假设法解应用题(1)

假设法解应用题(1)● 学校有排球和足球共58个,排球借出61后,还比足球多8个。
问原来排球和足球各有多少个?1. 小亮家养的鸡和鸭共有200只,将鸭卖掉201后,还比鸡多34只,小亮家原来养的鸡和鸭各有多少只?2. 学校图书馆有科技书和故事书共243本,故事书借出61后,还比科技书多10本。
图书馆里科技书和故事书原各有多少本?3.商场里彩电与冰箱共350台,如果彩电卖出91,就比冰箱少10台。
问彩电与冰箱原来各有多少台?●甲乙两数之和为185,已知甲数的41与乙数的51的和是42,求两数各是多少?1. 大小两种汽车共有84辆,大汽车的85与小汽车的43共58辆,问这两种汽车各有多少辆?2. 水果店里有梨和苹果共72筐,卖了梨的53和苹果的85后,还剩28筐,问水果店原来有梨多少筐?3. 一块长方形土地的周长是100米,如果长增加31,宽增加41,那么周长就增加30米,求这块土地原来面积是多少平方米?● 六(1)班同学折幸运星,如果男生每人折10颗,女生每人折15颗,女生人数是男生的43,女生比男生多折25颗,那么这个班的男生有多少人?1. 某筑路队修一段路,已知白天上班的工人每人修100米,晚上上班的工人没人修60米,白班人数是晚班人数的32.这段路修完是,白班修的长度比晚班的长900米,问白班有多少工人上班?2. 幼儿园的老师给小朋友们发画片,男生每人发8张画片,女生没人发6张画片,男生人数是女生人数的87,女生比男生少发16张画片,那么女生有多少人?3. 六(2)班同学折纸鹤,男生每人折7只,女生每人折10只,女生人数是男生人数的45,女生比男生多折66只,那么男生有多少人?●畜牧场有绵羊、山羊共300只,绵羊只数的52比山羊只数的41多55只,问绵羊、山羊各有多少只?1. 已知甲、乙两数的和是800,乙数的52比甲数的21多50,求甲、乙两数各是多少?。
小学六年级数学假设法解题讲解提高练习(附答案及解析)

假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的41与乙数的51的和是42,求两数各是多少?练习1:1、甲、乙两人共有钱150元,甲的21与乙的101的钱数和是35元,求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人。
抽调甲队人数的71,乙队人数的31,共抽调78人,甲、乙两个消防队原来各有多少人?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出91,则比黑白电视机多5台。
问:两种电视机原来各有多少台?练习2:1、姐妹俩养兔120只,如果姐姐卖掉71,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2、学校有篮球和足球共21个,篮球借出31后,比足球少1个,原来篮球和足球各有多少个?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的83与徒弟加工零件个数的74的和为49个,师、徒各加工零件多少个?练习3:1、某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的52和黑白电视机的73,共卖出57台。
问:原来彩色电视机和黑白电视机各有多少台?【例题4】甲、乙两数的和是300,甲数的52比乙数的41多55,甲、乙两数各是多少? 解析:本题主要考查一元一次方程的应用。
根据题意设甲数是,则乙数是,根据题意可得方程,解得。
练习4:1、畜牧场有绵羊、山羊共800只,山羊的2/5比绵羊的21多50只,这个畜牧场有山羊、绵羊各多少只?2、师傅和徒弟共加工零件840个,师傅加工零件的个数的85比徒弟加工零件个数的32多60个,师傅和徒弟各加工零件多少个?【例题5】育红小学上学期共有学生750人,本学期男学生增加61,女学生减少51,共有710人,本学期男、女学生各有多少人?练习5:1、金放在水里称,重量减轻191,银放在水里称,重量减少101,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?2、某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?三、课后作业1、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的31多50吨,五月份完成总数的52少70吨,还有420吨没完成,第二季度原计划生产多少吨?2、小明甲养的鸡和鸭共有100只,如果将鸡卖掉201,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?3、学校买来足球和排球共64个,从中借出排球个数的41和足球个数的31后,还剩下46个,买来排球和足球各是多少个?4、某校六年级甲、乙两个班共种100棵树,乙班种的101比甲班种的31少16棵,两个班各种多少棵?5、袋子里原有红球和黄球共119个。
六年级奥数第6讲:假设法解应用题

六年级奥数第6讲:假设法解应用题[例1] 学校有排球和足球共58个,排球借出个,排球借出 16后,还比足球多8个。
原来排球和足球各有多少个?球和足球各有多少个?点拨:先画出线段图,从图中可以看出,假设足球增加8个,就和排球借出就和排球借出 16后剩下的同样多。
以排球原有的个数为单位“剩下的同样多。
以排球原有的个数为单位“11”,足球增加8个后,相当于排球个数的(1- 16 ),排球原来有(58+858+8))÷(1+1- 16 ),足球原来有(58-3658-36))个。
解答:(58+858+8)÷()÷()÷(1+1- 1+1- 16 )=36=36(个)(个)(个)58-36=22(个)(个)答:原来排球有36个,原来足球有22个。
个。
[试一试1] 姐妹俩养兔120只,如果姐姐卖掉只,如果姐姐卖掉 17 ,还比妹妹多,还比妹妹多10只,姐姐和妹妹各养了多少只兔?妹妹各养了多少只兔? (答案:姐姐70只,妹妹50只)[例2] 六年级一班和二班共有学生96人,现在抽一班人数的34 与二班人数的与二班人数的 35,组成66人的鼓号队。
六年级一班和二班各有学生多少人?人的鼓号队。
六年级一班和二班各有学生多少人?点拨:假设二班也抽出假设二班也抽出 34 ,就和条件“抽一班人数的,就和条件“抽一班人数的 34 与二班人数的与二班人数的 35,组成66人的鼓号队”产生差异。
如果两个班都抽出34 ,就抽出了(,就抽出了(969696××34)人,比实际多抽出(72-6672-66))人,这6人就是二班人数的34 与二班人数的35 相差的人数。
这样就可以求出原来二班有6÷(34 - 35 )=40=40(人)(人),原来一班有96-40=5696-40=56(人)(人)。
解答:(9696××34 -66)÷()÷(34 - 35 )=40=40(人)(人)(人)96-40=56(人)(人)答:六年级一班有学生56人,二班有学生40人 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、小红有1角、5角的硬币共35枚,一共是9元5角,问两种硬币各多少枚?2、某玻璃杯厂要为商店运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这一个不但不给运费,而且要赔偿4元。
结果运到目的地结算时,玻璃杯厂共得运费895元,求打碎了几个玻璃杯?3、小X、小李两进展射击比赛,约定每中一发记20分,脱靶一发如此扣12分,两人各打了10发,共得208分,其中小X比小李多得64分,问小X、小李两人各中几发?4、一个化肥厂原计划14天完成一项任务,由于每天多生产15吨,结果9天就完成任务。
原计划每天生产化肥多少吨?5、买来2角邮票和5角邮票共100X,总值41元。
求2角邮票、5角邮票各多少X?6、甲、乙两车间共加工同样零件393个,包装时,把甲车间加工的16个零件并入乙车间的零件中,这时甲车间加工的零件仍比乙车间多5个,问两个车间各加工零件多少个?7、某校举行的数学竞赛共15道题,规定每做对一题得10分,每做错一题倒扣4分,小明在这次竞赛中共得66分,问他错、对了几道题?8、甲、乙、丙、丁四人上山摘桃子,他们共摘了80个桃子,甲比乙少摘8个,丙比甲少摘14个,丁和丙摘的一样多,问他们每人摘了多少个桃子?9、某厂工人,白班补助4元,夜班另加6元,某工人工作24天,共得补助费144元,问他上了几天夜班?【试题答案】1、分析与解:9元5角=95角假设这35枚都是1角的,那么总钱数就应该是()135⨯=35角,比实际95角少了()9535-=60角,这是因为把其中5角的硬币都当成1角了,有一枚5角硬币,少算了()51-=4角,少算的60角中有几个这样的4角,就有几个5角硬币。
953560-=〔角〕 605115÷-=()〔枚〕 351520-=〔枚〕 答:5角硬币有15枚,1角硬币有20枚。
如果假设都是5角硬币,该怎样解呢?同学们试一试。
2、分析与解:假设1000个玻璃杯全部运到并完好无损,应得运费:110001000⨯=〔元〕实际上少得运费:1000895105-=〔元〕这说明在运输过程中打碎了玻璃杯,每打碎1个,不但不给1元的运费,还要赔偿4元,即打碎一个玻璃杯要从总钱数1000元中扣除()14+=5元,一共扣除105元,所以打碎的玻璃杯数为:105521÷=〔个〕综合算式:()()110008954121⨯-÷+=〔个〕 答:打碎了21个玻璃杯。
3、分析与解:两人共得208分,其中小X 比小李多得64分。
根据这两个条件可以求出小X 和小李各得多少分。
()208642136+÷=〔分〕……小X 1366472-=〔分〕……………小李 每人打10发,假设这10发全部打中,得2010200⨯=〔分〕,小X 得136分,说明小X 被扣掉()200136-=64分,每脱靶一发,就要从总分中扣掉()2012+=32分,64里面有几个32,就脱靶几发。
()()20013620122-÷+=〔发〕 同理,小李脱靶()()2007220124-÷+=〔发〕那么,小X 打中()102-=8发,小李打中()104-=6发。
4、分析与解:假设实际9天还是按原计划的速度生产,是完不成任务的,还差()149-=5天的工作量,如果每天多生产15吨,9天就要多生产9个15吨,即159135⨯=〔吨〕,这135吨正好是计划5天完成的工作量,进而可以求出原计划每天生产多少吨。
综合算式:15914927⨯÷-=()〔吨〕 答:原计划每天生产27吨化肥。
请同学们检验一下。
5、 41元=410角2100200⨯=〔角〕 410200210-=〔角〕 523-=〔角〕 210370÷=〔X 〕……5角X 数 1007030-=〔X 〕……2角X 数6、()39352194-÷=〔个〕19416178-=〔个〕……乙194165215++=〔个〕……甲 7、1015150⨯=〔分〕1506684-=〔分〕 10414+=〔分〕 84146÷=〔题〕……答错题数1569-=〔题〕……答对题数 8、()808142425-+⨯÷=〔个〕……甲 25833+=〔个〕……………………乙 251411-=〔个〕…………………〔丙或丁〕 答:甲摘25个,乙摘33个,丙和丁各摘11个。
9、42496⨯=〔元〕 1449648-=〔元〕 4868÷=〔元〕 答:他上了8天夜班。
1、小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?2、100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?3、彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
问:两种文化用品各买了多少套?4、鸡、兔共100只,鸡脚比兔脚多20只。
问:鸡、兔各多少只?5、现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。
问:大、小瓶各有多少个?6、一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。
每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?7、乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。
问:搬运过程中共打破了几只花瓶?8、小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。
小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?1、分析:假设16只都是鸡,那么就应该有2×16=32〔只〕脚,但实际上有 44只脚,比假设的情况多了44-32=12〔只〕脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔〔44-2×16〕÷〔4-2〕=6〔只〕,有鸡16-6=10〔只〕。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64〔只〕脚,但实际上有44只脚,比假设的情况少了64-44=20〔只〕脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了 4-2=2〔只〕。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡〔4×16-44〕÷〔4-2〕=10〔只〕,有兔16——10=6〔只〕。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
2、分析与解:此题由中国古算名题“百僧分馍问题〞演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160〔个〕。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2〔个〕,因为160÷2=80,故小和尚有80人,大和尚有100-80=20〔人〕。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
在下面的例题中,我们只给出一种假设方法。
3、分析与解:我们设想有一只“怪鸡〞有1个头11只脚,一种“怪兔〞有1个头19只脚,它们共有16个头,280只脚。
这样,就将买文化用品问题转换成鸡兔同笼问题了。
假设买了16套彩色文化用品,如此共需19×16=304〔元〕,比实际多304——280=24〔元〕,现在用普通文化用品去换彩色文化用品,每换一套少用19——11=8〔元〕,所以买普通文化用品 24÷8=3〔套〕,买彩色文化用品 16-3=13〔套〕。
4、分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。
这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200——20=180〔只〕。
现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6〔只〕,而180÷6=30,因此有兔子30只,鸡100——30=70〔只〕。
解:有兔〔2×100——20〕÷〔2+4〕=30〔只〕,有鸡100——30=70〔只〕。
答:有鸡70只,兔30只。
5、分析:此题与例4非常类似,仿照例4的解法即可。
解:小瓶有〔4×50-20〕÷〔4+2〕=30〔个〕,大瓶有50-30=20〔个〕。
答:有大瓶20个,小瓶30个。
6、分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。
利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144〔吨〕。
根据条件,要装完这144吨钢材还需要45-36=9〔辆〕小卡车。
这样每辆小卡车能装144÷9=16〔吨〕。
由此可求出这批钢材有多少吨。
解:4×36÷〔45-36〕×45=720〔吨〕。
答:这批钢材有720吨。
×÷1.5=3〔只〕。
×500-115.5〕÷〔0.24+1.26〕=3〔只〕。
答:共打破3只花瓶。
8、分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了12×〔2+3〕=60〔下〕。
可求出小乐每分钟跳〔780——60〕÷〔2+3+3〕=90〔下〕,小乐一共跳了90×3=270〔下〕,因此小喜比小乐共多跳780——270×2=240〔下〕。