混凝土结构基本原理第8章
混凝土结构设计原理 课后习题第八章答案

第八章8.2承受集中荷载的T 形截面独立梁,截面尺寸为250mm b =,f 450mm b '=,f 100mm h '=, 500mm h =。
作用于梁截面上的弯矩90kN m M =⋅,60kN V =,12kN m T =⋅。
混凝土强度等级为C25,纵向钢筋采用HRB400级,箍筋采用HPB235级。
试配置纵向钢筋和箍筋。
解:查附表知,C25级混凝土:2c 11.9N/mm f =,2t 1.27N/mm f =;HRB400级钢筋:2y 360N/mm f =;0s 50035465mm h h a =-=-=(环境类别未知,按一类环境取25mm c =,s 35mm a =)截面塑性抵抗矩的计算: 腹板:()()2263100450250110mm 22f tf f h W b b '''=-=⨯-=⨯ 翼缘:()()2232503350025013020833mm 62tw b W h b =-=⨯⨯-= 631302083311014020833mm t tw tf W W W '=+=+⨯=(1)验算截面尺寸()()0/465100/250 1.464w f h b h h '=-=-=<3622060101210 1.59N/mm 0.250.25 1.011.9 2.975N/mm 0.82504650.814020833c c t V T f bh W β⨯⨯+=+=<=⨯⨯=⨯⨯所以截面尺寸满足要求(2)验算是否按构造配筋3622060101210 1.37N/mm 0.70.7 1.0 1.270.889N/mm 2504650.814020833t t V T f bh W ⨯⨯+=+=>=⨯⨯=⨯⨯ 所以必须按照计算配筋(3)判别腹板配筋是否可以忽略剪力V 或扭矩T6309010 3.2336010465M Vh λ⨯===>⨯⨯,取3λ= )()00.87510.875 1.272504653132.3kN<60kN t f bh λ+=⨯⨯⨯+=,故不能忽略剪力影响 0.1750.175 1.2714020833 3.1kN mm 12kN mm t t f W =⨯⨯=⋅<⋅,故不能忽略扭矩的影响(4)扭的分配 腹板:130208331211.1kN m 14020833tw w t W T T W ==⨯=⋅ 翼缘:6110120.9kN m 14020833tf f t W T T W '⨯'==⨯=⋅ (5)腹板箍筋的配置 ()3tw 6w 01.51.5 1.01160101302083310.2(1).10.23111.110250465t W V T bh βλ===>⨯⨯+++⨯+⨯⨯⨯⨯,取1t β=由001.75(1.5)1sv u t t yv A V V f bh f h Sβλ≤=-++得 ()30201.75 1.75(1.5)6010 1.51 1.272504651310.284mm /mm 210465t t sv yv V f bh A s f h βλ--⨯--⨯⨯⨯⨯++=≥=⨯ 对腹板矩形cor 2250225200mm b b c =-=-⨯=cor 2500225450mm h h c =-=-⨯=2cor 20045090000mm A =⨯=,()2cor 22004501300mm u =⨯+=6210.214mm /mm st A s === 腹板采用双肢箍,故腹板上单肢箍筋所需要的面积为21110.2840.2140.356mm /mm 2sv st sv st A A A A s s ns s +=+=+= 腹板高为500mm ,查表知箍筋最小直径为6mm ,max 200mm S =,选箍筋直径为8mm ,则150.3141.3mm 0.2480.356sv A s ===,取140mm s =,即A 8@140 250.3 1.270.287%0.280.280.169%250140210sv t sv yv A f bs f ρ⨯===>=⨯=⨯,满足要求(6)腹板纵筋计算①配置在梁截面弯曲受拉区的纵向钢筋先判别T 形截面类型:()()10/2 1.011.9450100465100/2222.2kN m 90kN m c f f f f b h h h M α'''-=⨯⨯⨯⨯-=⋅>=⋅ 故为第一类T 形截面6221090100.0781.011.9450465s c f M f b h αα⨯==='⨯⨯⨯b 110.0810.518ξξ===<=1021.011.94504650.081560.3mm 360c f s y f b h A f αξ'⨯⨯⨯⨯=== t min y 1.27max 0.2%.45max 0.2%.450.002360f f ρ⎧⎫⎪⎪⎧⎫==⨯=⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭,0,0 2min 0.002250500250mm stl A bh ρ>=⨯⨯=,满足要求②腹板受扭纵筋 由11//stl y stl y cor st yv cor st yv A f sA f u A f u A f s ζ==得:2121013001.20.214194.7mm 360yv cor st stl y f u A A s f ζ⨯=⨯=⨯⨯= 6312100.826010250T Vb ⨯==<⨯⨯,min 194.70.156%0.60.189%250500stl tl tl A bh ρρ===<===⨯ 故取2,min 0.189%250500236.7mm tl tl bh ρρ==⨯⨯=③腹板纵筋总用量 顶部:2200236.736.4mm 1300cor stl cor b A u ⨯=⨯=,选配2C 8(2101mm stl A =) 底部:2560.336.4596.7mm cor s stl cor b A A u +⨯=+=,选配2C 20(2628mm stl A =) 每侧面:2450236.781.9mm 1300cor stl cor h A u ⨯=⨯=,选配2C 8(2101mm stl A =) (7)翼缘受扭钢筋计算翼缘不承担剪力,按纯扭构件计算对翼缘:cor f 210022550mm b h c '=-=-⨯=cor f 2450250225150mm h b b c '=--=--⨯=2cor 501507500mm A =⨯=,()2cor 250150400mm u =⨯+=受扭箍筋:66210.350.22mm /mm st T f W A s ''-=== 为与腹板箍筋协调,取A 8(2150.3mm st A =),取140mm s =,150.30.359140st A s ==,即A 8@140 250.30.719%0.169%100140sv sv A bs ρ⨯===>⨯,满足要求 受扭纵筋:212104001.20.359100.5mm 360yv cor st stl y f u A A s f ζ⨯=⨯=⨯⨯=,选配4C 8(2201mm stl A =)。
混凝土结构基本原理复习

混凝⼟结构基本原理复习第⼀章混凝⼟结构包括:素混凝⼟结构、钢筋混凝⼟结构、预应⼒混凝⼟结构及配置各种纤维筋的混凝⼟结构。
钢筋与混凝⼟两种材料能够有效地结合在⼀起⽽共同⼯作,主要基于以下三个条件:①钢筋与混凝⼟之间存在着粘结⼒,使两者能结合在⼀起。
②钢筋与混凝⼟两种材料的温度线膨胀系数很接近。
③钢筋埋置于混凝⼟中,混凝⼟对钢筋起到了保护和固定作⽤,使钢筋不容易发⽣锈蚀,且使其受压时不易失稳,在遭受⽕灾时不致因钢筋很快软化⽽导致结构整体破坏。
混凝⼟结构的特点:优点:①就地取材②耐久性和耐⽕性好③整体性好④具有可模性⑤节约钢材缺点:①⾃重⼤②抗裂性差③需⽤模板④混凝⼟结构施⼯⼯序复杂,周期较长,且受季节⽓候影响⑤对于现役混凝⼟,如遇损伤则修复困难⑥隔热隔声性能也⽐较差。
第⼆章我国常⽤的钢筋品种有热轧钢筋、钢绞线、钢丝等。
普通热轧钢筋包括300HPB (⼀级),335HRB (⼆级),400HRB (三级),500HRB (四级)。
钢筋表⽰中各字母记数字含义:第⼀个字母处H :热轧钢筋, R :余热处理;第⼆个字母处R :带肋,P :光圆,B :钢筋。
数字表⽰屈服强度标准值。
⽆明显流服的钢筋,⼯程上⼀般取残余应变为0.2%时所对应的应⼒0.2σ作为⽆明显流服钢筋的假定屈服点,称为钢筋的条件屈服强度。
反映钢筋塑性性能和变形能⼒的两个指标——钢筋的延伸率和冷弯性能。
钢筋的延伸率是指钢筋试件上标距为10d 或5d (d为钢筋直径)范围内的极限延伸率,记为10δ或5δ。
延伸率越⼤,说明钢筋的塑性性能和变形能⼒越好。
钢筋冷弯是将钢筋绕某个规定直径D 的辊轴弯曲⼀定⾓度,弯曲后钢筋⽆裂纹、鳞伤、断裂现象。
要求钢筋具有⼀定的冷弯性能可使钢筋在使⽤时不发⽣脆断,在加⼯时不致断裂。
(了解,能叙述出来)冷拉仅能提⾼钢筋的抗拉屈服强度,其抗压强度将降低,故冷拉钢筋不宜作为受压钢筋。
钢筋冷拔之后强度⼤为提,但塑性降低,冷拔后的钢丝没有明显屈服点和流福(即由软钢变为硬钢),冷拔后可同时提⾼抗拉和抗压强度。
混凝土结构设计原理 第八章钢筋混凝土构件裂缝及变形的验算习题+答案

第八章 钢筋混凝土构件裂缝及变形的验算一、填空题1.混凝土构件裂缝开展宽度及变形验算属于 正常使用 极限状态的设计要求,验算时材料强度采用 标准值 。
2. 增加截面高度 是提高钢筋混凝土受弯构件刚度的最有效措施。
3. 裂缝宽度计算公式中的,σsk是指裂缝截面处纵向手拉刚筋的应力,其值是按荷载效应的 标准 组合计算的。
4.钢筋混凝土构件的平均裂缝间距随混凝土保护层厚度的增大而 曾大。
用带肋变形钢筋时的平均裂缝间距比用光面钢筋时的平均裂缝间距 小(大、小)些。
5.钢筋混凝土受弯构件挠度计算中采用的最小刚度原则是指在 同号 弯矩范围内,假定其刚度为常数,并按 最大弯矩 截面处的刚度进行计算。
6.结构构件正常使用极限状态的要求主要是指在各种作用下 裂缝宽度和变形值 不超过规定的限值。
7.裂缝间纵向受拉钢筋应变的不均匀系数Ψ是指 裂缝间钢筋平均应变与裂缝截面钢筋应变 之比,反映了裂缝间 受拉区混凝土 参与工作的程度。
8.平均裂缝宽度是指 受拉钢筋合力重心 位置处构件的裂缝宽度。
9. 钢筋混凝土构件裂缝宽度计算中,钢筋应变不均匀系数ψ愈小,说明裂缝之间的混凝土协助钢筋抗拉的作用 抗拉作用越强。
10.钢筋混凝土受弯构件挠度计算与材料力学方法()相比,主要不同点是前者沿长向有变化的 抗弯刚度 。
11. 混凝土结构的耐久性与结构工作的环境有密切关系,纵向受力钢筋的混凝土保护层厚度 由所处环境类别决定。
12.混凝土的耐久性应根据结构的 使用环境 和设计使用年限进行设计。
二、选择题1. 计算钢筋混凝土梁的挠度时,荷载采用( B )A、平均值;B、标准值;C、设计值。
2. 当验算受弯构件挠度时,出现f>[f]时,采取( C )措施最有效。
A、加大截面的宽度;B、提高混凝土强度等级;C、加大截面的高度;D、提高钢筋的强度等级。
3. 验算受弯构件裂缝宽度和挠度的目的是( B )。
A、使构件能够带裂缝工作;B、使构件满足正常使用极限状态的要求;C、使构件满足承载能力极限状态的要求;D、使构件能在弹性阶段工作。
混凝土结构设计原理第8章

(8-11)
Wtf 受拉翼缘: Tf T Wt
2.箱形截面纯扭构件
Tu = 0.35 h f tWt 1.2
2.5t w 式中 h bh
f yv Ast1 Acor s
(8-12)
2 2 (bh 2t w) bh Wt (3hh bh ) 3hw - (bh 2t w) 6 6
二、纯扭构件的开裂扭矩 试验表明:
• 当tp>ft,长边中点先裂,然后延伸至上、 下短边,形成三面开裂、一面受压的状态。
T
tp
按 照 塑 性 理 论 分 析 , 认 为 材 料 塑 性 充 分 发 展 ,
全截面从表面至中心达到max所计算的开裂扭矩:
Tcr = max
b2 3h b 6
1. T形和I形截面纯扭构件
Wtf Wt =Wtw Wtf
(8-9)
• 可将其截面划分为几个矩形截面进行配筋计算, 划分的各矩形截面所承担的扭矩值,按各矩形截 面的受扭塑性抵抗矩与截面总的受扭塑性抵抗矩 的比值进行分配的原则确定,并分别按式(8-8)计 算受扭钢筋。
Wtw Tw T 腹板: Wt Wtf 受压翼缘: Tf T WtD0.5Fra bibliotek1.0
E 1.5
Tc/Tc0
• 从图中看出,无腹筋构件的剪、扭相关性符合1/4 圆规律。 • 有腹筋梁,认为混凝土部分提供的抗扭、抗剪承 载力之间也符合1/4圆相关性。 • 用三折线代替1/4圆弧线,相关系数t 1)当Vc0.5Vco即Vc 0.35ftbh0 ,忽略剪力的影 响,按纯扭公式计算;由抗扭确定箍筋数量。 2)当Tc 0.5Tco即Tc0.175ftWt ,忽略扭矩的影 响,按抗剪公式计算;由抗剪确定箍筋数量。
混凝土结构设计基本原理_最全选择题判断题名词解释简答题计算题归纳大全

第1章 钢筋和混凝土的力学性能1.混凝土立方体试块的尺寸越大,强度越高。
( )2.混凝土在三向压力作用下的强度可以提高。
( )3.普通热轧钢筋受压时的屈服强度与受拉时基本相同。
( )4.钢筋经冷拉后,强度和塑性均可提高。
( )5.冷拉钢筋不宜用作受压钢筋。
( )6.C20表示f cu =20N/mm 。
( )7.混凝土受压破坏是由于内部微裂缝扩展的结果。
( )8.混凝土抗拉强度随着混凝土强度等级提高而增大。
( )9.混凝土在剪应力和法向应力双向作用下,抗剪强度随拉应力的增大而增大。
( )10.混凝土受拉时的弹性模量与受压时相同。
( )11.线性徐变是指压应力较小时,徐变与应力成正比,而非线性徐变是指混凝土应力较大时,徐变增长与应力不成正比。
( )12.混凝土强度等级愈高,胶结力也愈大( )13.混凝土收缩、徐变与时间有关,且互相影响。
( )第3章 轴心受力构件承载力1. 轴心受压构件纵向受压钢筋配置越多越好。
( )2. 轴心受压构件中的箍筋应作成封闭式的。
( )3. 实际工程中没有真正的轴心受压构件。
( )4. 轴心受压构件的长细比越大,稳定系数值越高。
( )5. 轴心受压构件计算中,考虑受压时纵筋容易压曲,所以钢筋的抗压强度设计值最大取为2/400mm N 。
( )6.螺旋箍筋柱既能提高轴心受压构件的承载力,又能提高柱的稳定性。
( )第7章 偏心受力构件承载力1.小偏心受压破坏的的特点是,混凝土先被压碎,远端钢筋没有受拉屈服。
( )2.轴向压力的存在对于偏心受压构件的斜截面抗剪能力是有提高的,但是不是无限制的。
( )3.小偏心受压情况下,随着N 的增加,正截面受弯承载力随之减小。
( )4.对称配筋时,如果截面尺寸和形状相同,混凝土强度等级和钢筋级别也相同,但配筋数量不同,则在界限破坏时,它们的u N 是相同的。
( )5.钢筋混凝土大偏压构件的破坏特征是远侧钢筋受拉屈服,随后近侧钢筋受压屈服,混凝土也压碎。
混凝土结构基本原理课后答案(主编:梁兴文)

《混凝土结构基本原理》习题参考答案第4章 受弯构件正截面的性能与设计4.1 k 19.4kN/m q =4.2 20s 60040560mm, 875mm h A =-==,220 +118(s A =882mm 2) 4.3 20s 1000370mm, 177mm h A =-==, φ6@150(s =189mm 2/m )4.4 HRB400, C30,b × h = 200mm×500mm ,s A =450mm 2,314(s A =462mm 2)4.5 20s 450mm, 45040410mm, 915mm h h A ==-==20s 500mm, 50040460mm, 755mm h h A ==-== 20s 550mm, 55040510mm, 664mm h h A ==-==随梁截面高度增加,受拉钢筋面积减小。
4.6 20s 200mm, 50040460mm, 925mm b h A ==-==20s 250mm, 50040460mm, 709mm b h A ==-== 20s 300mm, 50040460mm, 578mm h h A ==-==随梁截面宽度增加,受拉钢筋面积减小。
4.7 20s C20, 50040460mm, 981mm h A =-==20s C25, 50040460mm, 925mm h A =-== 20s C30, 50040460mm, 895mm h A =-==随梁截面宽度增加,受拉钢筋面积减小。
4.8 20s HRB400, 50040460mm, 925mm h A =-==20s HRB500, 50040460mm, 765mm h A =-==随受拉钢筋强度增加,受拉钢筋面积减小。
4.9 (1)u 122.501M =kN·m(2)u 128.777M =kN·m (3)u 131.126M =kN·m (4)u 131.126M =kN·m4.10 s 45mm a =,2s 878mm A =,选配320(2s 942mm A =)4.11 's s 40mm a a ==,2s 1104mm A =,选配220+218(2s 1137mm A =)4.12 (1)u 121.882M =kN·m(2)u 214.169M =kN·m4.13 (1)2s 822mm A =,选配220+218(2s 1137mm A =)(2)2s 2167mm A =,选配622(2s 2281mm A =)4.14 s 60mm a =,2s 2178mm A =,选配622(2s 2281mm A =)第5章 受压构件5.1 2c 16.7N/mm f =,2y 410N/mm f '=,取400mm b =,400mm h =,2s 2718mm A '=,选配822。
第8章 混凝土柱承载力计算原理

( 1 )大偏心受压构件的截面计算
情况1:已知N , M , fc , fy , fy’ , b , h 配筋As , A's
3.用偏心距增大系数考虑纵向弯曲的影响
柱:在压力作用下 产生纵向弯曲
短柱 长柱
––– 材料破坏
细长柱 ––– 失稳破坏
• 轴压构件中: φ = N长 N短
• 偏压构件中:
偏心距增大系数
N A
N0 N0ei N1 N1ei
N2 N2ei
短柱(材料破坏)
B
长柱(材料破坏)
N1f C
细长柱(失稳破坏)
S
Ass1
f y Ass1
r
dcor
f y Ass1
根据力的平衡条件,得:
Nu fAcor fy' As' fc 4r Acor fy' As'
代入得:
Nu
fc Acor
f
' y
As'
2
fy Asso
N
Nu
0.9(
fc Acor
f
' y
As'
2
8.1.4 箍 筋
箍筋:直径 6mm 或 d/4
当柱中全部纵向钢筋的配筋率超过3%时, 箍筋直径不宜小于8mm
当搭接钢筋为受拉时,其箍筋间距不应大于5d, 且不应大于100mm;当搭接钢筋为受压时, 纵筋搭接范围 S 10d 或 200mm 。
8.2轴心受压构件正截面受压承载力
钢筋混凝土轴心受压柱,按照箍筋配置方式和 作用的不同分为两类: ①配有纵向钢筋和普通箍筋的柱; ②配有纵向钢筋和螺旋形箍筋的柱。
顾祥林混凝土结构基本原理第8章

练习题8-1有一矩形截面纯扭构件,已知截面尺寸为错误!未找到引用源。
,配有纵筋4ϕ14(错误!未找到引用源。
),箍筋为ϕ8@150(错误!未找到引用源。
)。
混凝土为C25(错误!未找到引用源。
),试求该截面所能承受的扭矩值。
解:错误!未找到引用源。
,错误!未找到引用源。
故该截面能承受的扭矩值为错误!未找到引用源。
8-2 已知某钢筋混凝土构件截面尺寸错误!未找到引用源。
,受纯扭荷载作用,经计算知作用于其上的扭矩值为4940N·m,混凝土采用C30(错误!未找到引用源。
),钢筋用I级钢筋(错误!未找到引用源。
),试计算其配筋。
解:错误!未找到引用源。
验算截面限制条件0.2错误!未找到引用源。
验算是否按计算配筋错误!未找到引用源。
按构造配筋纵筋配6ϕ6配箍ϕ6@150。
8-3已知钢筋混凝土弯扭构件,截面尺寸为错误!未找到引用源。
,弯矩值M=55kN·m,扭矩值T=9kN·m,采用C25级混凝土(错误!未找到引用源。
),箍筋用Ⅰ级(错误!未找到引用源。
),纵筋用Ⅱ级(错误!未找到引用源。
),是计算其配筋。
解:计算抗弯纵向钢筋:错误!未找到引用源。
解得错误!未找到引用源。
计算抗扭钢筋:0.2错误!未找到引用源。
取ξ=1.0,错误!未找到引用源。
采用ϕ6,错误!未找到引用源。
故可取ϕ6@70顶部纵筋截面积错误!未找到引用源。
中部纵筋截面积错误!未找到引用源。
底部纵筋截面积错误!未找到引用源。
箍筋用量错误!未找到引用源。
错误!未找到引用源。
,可以故顶部中部纵筋配2ϕ10,底部纵筋配4ϕ16,箍筋配ϕ6@70。
8-4已知某构件截面尺寸为b错误!未找到引用源。
,经计算求得作用于其上的弯矩值M=142kN·m,扭矩值T=12kN·m,采用C30级混凝土(错误!未找到引用源。
),箍筋用Ⅰ级(错误!未找到引用源。
),纵筋用Ⅱ级(错误!未找到引用源。
),是计算其配筋(剪力主要由均布荷载产生)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考题8-1在实际工程中哪些构件中有扭矩作用?答:框架边梁、雨篷梁8-2矩形截面纯扭构件从加荷直至破坏的过程分哪几个阶段?各有什么特点?答:①试件开裂前:性能符合弹性扭转理论,钢筋应力很小,扭矩——扭转角之间呈线性关系。
②初始裂缝发生在截面长边的中点附近,其方向与构件呈45度角,此裂缝在后来的加载中向两端发展成螺旋状,并仍与构件呈45度,同时出现许多新的螺旋形裂缝。
③长边的裂缝方向与构件轴线基本上呈45度角,而短边的裂缝方向则较为不规则些。
④开裂后,试件的抗扭刚度大幅下降,扭矩——扭转角曲线出现明显的转折。
在开裂后的试件中,混凝土受压,纵筋和箍筋则均应受拉,形成了新的受力机制。
随着扭矩的继续增加,此受力机制基本保持不变,而混凝土和钢筋的应力则不断增加,直至试件破坏。
8-3矩形截面纯扭构件的裂缝与同一构件的剪切裂缝有哪些相同点和不同点?答:相同点:都会出现与构件轴线有夹角的斜裂缝。
不同点:纯扭构件会产生一些螺旋形裂缝,而受剪切不会。
8-4矩形截面纯扭构件的裂缝方向与作用扭矩的方向有什么对应关系?答:纯扭裂向底部发展的方向与作用扭矩的方向一致。
8-5纯扭构件的破坏形态和破坏特征是什么?答:纵筋和箍筋的配置量适中时,纵筋和箍筋首先达到屈服强度,然后混凝土被压碎而破坏。
这种试件呈现较好的延性。
纵筋较少、箍筋较多时,破坏时纵筋屈服而箍筋不屈服。
反之,箍筋屈服而纵筋不屈服。
这两种构件称为超配筋构件。
纵筋、箍筋均配得很多时,破坏时二者均不屈服。
构件的破坏始于混凝土的压坏,属脆性破坏。
纵筋和箍筋均配得较少时,一旦裂缝出现,构件随即破坏。
8-6什么是平衡扭转?什么是协调扭转?试举出各自的实际例子。
答:①当构件所受扭矩大小与该构件的扭转刚度无关时,相应的扭转就称为平衡扭转,如雨篷梁。
②当构件所受扭矩的大小取决于该构件的扭转刚度时,相应的扭转就称为协调扭转,如框架边梁。
8-7矩形截面受扭塑形抵抗矩是如何导出的?对T形和I形截面如何计算?答:矩形截面:;对于T形、I形截面则T形截面:I 形截面:8-8什么是配筋强度比?配筋强度比的范围为什么要加以限制?配筋强度比不同时对破坏形式有何影响? 答:配筋强度比达到承载力极限状态时,临界斜裂缝的倾角由配筋强度比控制。
过大过小时,纵筋或箍筋就达不到屈服。
时,两种钢筋均能达到屈服强度。
8-9矩形截面纯扭构件的第1条裂缝出现在什么位置? 答:截面长边中点附近。
8-10高强混凝土纯扭构件的破坏形式与普通混凝土纯扭构件的破坏形式相比有何不同? 答:在未配抗扭腹筋的情况下,其破坏过程和破裂面形态基本上与普通混凝土构件一致,但斜裂缝比普通混凝土构件陡,破裂面较平整,骨料大部分被拉断。
其开裂荷载比较接近破坏荷载,脆性破坏的特征比普通混凝土构件更明显。
配有抗扭钢筋的高强度混凝土构件受纯扭时,其裂缝发展与破坏过程与普通混凝土构件基本一致,但斜裂缝的倾角比普通混凝土构件略大。
8-11拐角脱落破坏形式的机理是什么?如何防止出现这种破坏形式?答:根据空间模型桁架,受压腹杆会在截面拐角处相交会产生一个把拐角推离截面的径向力U.如果没有密配的箍筋或刚性的角部纵筋来承受此径向力,则当此力足够大时,拐角就会脱落;当扭转剪应力大时,只有使箍筋间距mm 100≤才能可靠地防止这类破坏,使用较粗的角部纵筋也能防止此类破坏。
8-12什么是部分超配筋构件?答:当纵筋配得较少,箍筋配得较多时,破坏时纵筋屈服箍筋不屈服,反之则破坏时箍筋屈服,纵筋不屈服,这两种类型的构件称为部分超配筋构件。
8-13最小扭抗钢筋量应依据什么确定?答:最小抗扭配筋量应依据需要计算构件的极限扭矩确定。
8-14变角空间桁架模型的基本假定有哪些?答:1.极限状态下原实心截面构件简化为箱形截面构件.此时,箱形截面的混凝土被螺旋型裂缝分成一系列倾角为α的斜压杆,与纵筋和箍筋共同组成空间桁架. 2.纵筋和箍筋构成桁架的拉杆. 3.不计钢筋的销栓作用。
8-15弯扭构件的抗弯—抗扭承载力相关曲线是怎样的?它随纵筋配置的不同如何变化? 答:如课本P208图8-21所示.在受压筋拉屈服段,随纵筋的用量增多,抗扭承载力提高.在受拉筋屈服阶段,随纵筋用量增多,抗扭承载力减少。
8-16抗扭承载力计算公式中的t β的物理意义是什么?其表达式表示了什么关系?此表达式的取值考虑了哪些因素?答:t β为剪扭构件混凝土受扭承载力降低系数,其表达式表示了其为剪扭和纯扭混凝土的受扭承载力之商,考虑了00,,,c c c c V V T T 等四项因素。
8-17受扭构件中纵向钢筋和箍筋的布置应注意什么?答:应考虑是否大于最小配筋率,受弯纵筋应布置在弯曲受拉区,受扭纵筋应沿截面周边均匀布置。
8-18受扭箍筋和受剪箍筋的受力情况和构造要求是否相同?为什么?答:不相同;因为两者的受力状况不同,所以两者的构造要求也各不相同。
8-19轴向压力和轴向拉力对复合受力构件的剪扭承载力各有何影响?为什么?答:轴向压力在一定程度上可以抑制斜裂缝的发生与发展,但压力过大又会使构件的破坏形态发生变化,因为轴向压力能使混凝土较好地参加工作,同时又能改善裂缝处混凝土的咬合作用和纵向钢筋的销栓作用,故一定程度上提高构件的抗剪承载力,反之,轴向拉力会削弱构件的受剪扭承载力,原因与上相反。
练习题8-1有一矩形截面纯扭构件,已知截面尺寸为,配有纵筋414(),箍筋为8@150()。
混凝土为C25(),试求该截面所能承受的扭矩值。
解:,故该截面能承受的扭矩值为。
8-2 已知某钢筋混凝土构件截面尺寸,受纯扭荷载作用,经计算知作用于其上的扭矩值为4940N·m,混凝土采用C30(),钢筋用I级钢筋(),试计算其配筋。
解:验算截面限制条件0.2验算是否按计算配筋按构造配筋纵筋配66配箍6@150。
8-3已知钢筋混凝土弯扭构件,截面尺寸为,弯矩值M=55kN·m,扭矩值T=9kN·m,采用C25级混凝土(),箍筋用Ⅰ级(),纵筋用Ⅱ级(),是计算其配筋。
解:计算抗弯纵向钢筋:解得计算抗扭钢筋:0.2取ξ=1.0,采用6,故可取6@70顶部纵筋截面积中部纵筋截面积底部纵筋截面积箍筋用量,可以故顶部中部纵筋配210,底部纵筋配416,箍筋配6@70。
8-4已知某构件截面尺寸为b,经计算求得作用于其上的弯矩值M=142kN·m,扭矩值T=12kN·m,采用C30级混凝土(),箍筋用Ⅰ级(),纵筋用Ⅱ级(),是计算其配筋(剪力主要由均布荷载产生)。
解:验算截面限制条件:验算是否需按计算配置剪扭钢筋:故需计算配置剪扭钢筋,计算抗扭钢筋:采用6配筋,s=257mm,可取6@200故取,可取6@100计算抗剪箍筋:由计算抗弯纵向钢筋:解得顶部纵筋截面积中部纵筋截面积底部纵筋截面积箍筋用量验算最小配筋率:都满足要求配筋:顶部中部纵筋配210,底部纵筋配420,箍筋配8@175。
8-5已知某均布荷载作用下的弯剪扭构件,截面为T形,尺寸为,其配筋图如图所示,构件所承受的弯矩值M=54kN·m,剪力值V=42kN,扭矩值T=8kN·m。
混凝土为C20级(),钢筋为Ⅰ级钢(),验算截面是否能承受上述给定的内力()。
练习题8-5图解:计算又计算剪力和扭矩:假定,所以所以截面不能承受给定内力。
8-6已知钢筋混凝土剪扭构件,截面尺寸b,截面上作用的剪力值V=80kN,扭矩值T=8kN·m,采用C30级混凝土(),Ⅰ级钢筋(),试计算能够承受上述内力的配筋(剪力主要由均布荷载引起)。
解:验算截面限制条件:验算是否需按计算配置剪扭钢筋:故需计算配置剪扭钢筋,计算抗扭钢筋:抗剪:验算:所以配筋:顶部中部纵筋配4 8,底部纵筋配2 8,箍筋配 6@150。
8-7已知钢筋混凝土弯扭构件,截面尺寸mm mm h b 400200⨯=⨯,作用于其上的弯矩值m kN M ⋅=54,扭矩值m kN T ⋅=7.9,混凝土采用C20级(22/10.1,/6.9mm N f mm N f t c ==),I 级钢筋(22/270,/270mm N f mm N f yv y ==),配筋如图8-25所示,使验算该构件能否承受上述内力(mm a s 35=).练习题8-7图解:根据题意得,22628157*4,785157942mm A mm A stl s ===-=6.9**200270*785x =∴ mm h mm x b b 207,568.0,4.1100===∴ξξ m kN M m kN M u ⋅=>⋅=-=∴547.65)2/4.110365(*270*785m kN W f mm W t c c t ⋅=⨯=-=8.122.0,1067.6))200400*3(*6/(200362β m kN T mm N W f t t ⋅=<⋅⨯=7.9101.57.06331046.3/*85.01085.7/--⨯=>⨯=y t stl f f bh A 33211014.1/*28.01003.5/,3.50--⨯=>⨯==yv t st st f f bs A mm A248.1/1==∴cor st yv stl y u A f s A f ς m kN T m kN s A A f W f T st cor yv t t u ⋅=>⋅=+=7.91.12/2.135.01ς∴可以承受上述内力8-8一I 形截面混凝土纯扭构件,截面尺寸如图8-26所示,承受扭矩值m kN T ⋅=5.8,混凝土采用C20级(22/10.1,/6.9mm N f mm N f t c ==),I 级钢筋(2270/y f N mm =,2270/yv f N mm =)。
试计算腹板,受压翼缘和受拉翼缘各承受扭矩多少?并计算腹板所需的抗扭箍筋和纵筋。
练习题8-8图解:根据题意得,腹板3621006.5)3(6mm b h b W tw ⨯=-= 受压翼缘36'2''108.1)(2mm b b h W f f tf⨯=-=受拉翼缘3621008.1)(2mm b b h W f f tf ⨯=-=36'1094.7mm W W W W tf tf tw t ⨯=++=m kN f W m kN W f t t t c ⋅=⋅=1.67.0,2.152.0 ∴需要计算配筋 腹板,受压,受压翼缘承受的扭矩分别为:m kN T m kN T m kN T W W T f f t tw w ⋅=⋅=⋅==15.1,93.1,42.5*)/('腹板:取245000450*100,0.1mm A cor ===ςmm A f W f T s A cor yv tw t w st 238.0)2.1/()35.0(/1=-=ς取mm A s mm A st st 119238.0/,27.28,6121===φ取100@6φ(经检验,满足最小配筋)218.261)/(*)/(mm s A f u f A st y cor yv stl ==ς 取)8.301(862mm A stl =φ受压翼缘: 取214000200*70,0.1mm A cor ===ςmm A f W f T s A cor yv tf t f st 273.0)2.1/()35.0(/''1=-=ς与腹板同取100@6φ,同理,满足最小配筋 2182.92)/(*)/(mm s A f u f A st y cor yv stl ==ς 取)113(642mm A stl =φ受拉翼缘: 取27000100*70,0.1mm A cor ===ςmm A f W f T s A cor yv tf t f st 324.0)2.1/()35.0(/1=-=ς取100@8φ(经检验,满足最小配筋)212.110)/(*)/(mm s A f u f A st y cor yv stl ==ς 取)113(642mm A stl =φ8-9一钢筋混凝土框架纵向边梁,梁上承受均布荷载,截面尺寸mm mm h b 400250⨯=⨯,经内力计算,支座处截面承受扭矩值m kN T ⋅=8,弯矩值m kN W ⋅=45(截面上边受拉)及剪力值kN V 46=,混凝土采用C20级(22/10.1,/6.9mm N f mm N f t c ==),钢筋采用I 级(22/270,/270mm N f mm N f yv y ==).试按弯剪扭构件计算该截面配筋,并画出截面配筋图. 解:根据题意得,2630365,(3)9.9106t b h mm W h b mm ==-=⨯ 220/4.225.0/514.18.0mm N f mm N W T bh V c t =<=+220/77.01.1*7.0/312.1mm N mm N W Tbh Vt=>=+故需要计算配筋 (1)抗扭钢筋,0.114.15.015.10>=+=Tbh VW t t β取0.1=t β:取270000350*200,0.1mm A cor ===ςmm A f W f T s A cor yv tw t st 185.0)2.1/()35.0(/1=-=ς215.203)/(*)/(mm s A f u f A st y cor yv stl ==ς(2)抗剪钢筋0025.1)5.1(7.0h sA f bh f V svyvt t +-=β,088.0/mm s A sv =∴取mm s A n sv 044.0/,21== (3)抗弯钢筋)2/(0x h A f M A f bx f s y s y c -==解之得mm x mm A s 6.55,4942==(4)总的纵筋和箍筋用量1)顶部纵筋:,8.673/5.2032mm = 中部纵筋:28.673/5.203mm =底部纵筋:228.5614948.67mm mm =+ 2)验算22min ,18345.0,200002.0mm bh f f mm bh A yts ===,满足条件2min ,2046.0mm bh f f VbTA ytstl ==,取2204mm A stl =0014.028.010832.1)044.0185.0(*23=>⨯=+=-yvtsvf f bbs A8-10矩形截面纯扭构件,截面尺寸及配筋如图8-27所示, 混凝土采用C30级(22/43.1,/3.14mm N f mm N f t c ==),纵筋采用6根直径为mm 16的Ⅲ级钢筋(2/400mm N f y =),箍筋采用I 级钢(2/270mm N f yv =).求此构件所能承受的最大扭矩值.练习题8-10解:根据题意得, 4721096.2)3(6mm b h b W t ⨯=-= mm u mm A mm A mm A cor cor st stl 1700,165000,5.78,8.12052212====33105.128.0105.4)100*350/(5.78*2/--⨯=>⨯==yvtst f f bs A33100.385.0107.5/--⨯=>⨯=ytstl f f bh A7.1339.11<==∴corst yv stl y u A f sA f ς0.3563.4u t t T f W kN m ∴=+=⋅又∵m kN W f T t c c u ⋅==8.562.0max ,β m kN T u ⋅=∴8.568-11分别列出轴向压力,轴向拉力作用下钢筋混凝土矩形截面复合受力构件(轴向力,弯矩,剪力和扭矩共同作用)基于承载力的截面设计步骤. 解:1)计算t t h W βλ,,,0值; 2)由sh A f N bh f V sv yv c t t u 00)07.0175.1)(5.1(+++-=λβ(轴压) 或者sh A f N bh f V sv yv t t t u 00)2.0175.1)(5.1(+-+-=λβ(轴拉)计算得s A sv / 3)取ς值,由cor st yv t ct t u A sA f W AN f T 12.1)07.035.0(ςβ++=(轴压) 或者cor st yvt tt t u A sA f W AN f T 12.1)2.035.0(ςβ+-=(轴拉)计算s A st /1,并且由sf A u f A y stlcor yv stl ς=,计算stl A4)用单筋矩形截面受弯设计s A5)验算最小配筋率,配筋8-12分别列出轴向压力,轴向拉力作用下钢筋混凝土矩形截面复合受力构件(轴向力,弯矩,剪力和扭矩共同作用)截面承载力的计算步骤. 解:1)计算ςβλ,,,,0t t h W 值;2)根据单筋矩形截面计算u M ;3) 由sh A f N bh f V sv yv c t t u 00)07.0175.1)(5.1(+++-=λβ(轴压) 或者sh A f N bh f V sv yv t t t u 00)2.0175.1)(5.1(+-+-=λβ(轴拉) 计算u V4) cor st yv t c t t u A s A f W A N f T 12.1)07.035.0(ςβ++=(轴压) 或者cor st yvt tt t u A sA f W AN f T 12.1)2.035.0(ςβ+-=(轴拉)计算u T。