高二数学函数综合试题

合集下载

高二数学函数试题答案及解析

高二数学函数试题答案及解析

高二数学函数试题答案及解析1.若定义在R上的函数满足:,且对任意满足,则不等式的解集为().A.B.C.D.【答案】C【解析】构造,则;因为对任意满足,所以恒成立,即在上为减函数;又因为,所以的解集为.【考点】抽象不等式的解集.2.设函数在区间上的导函数为,在区间上的导函数为,若在区间上恒成立,则称函数在区间上为“凸函数”.已知,若对任意的实数满足时,函数在区间上为“凸函数”,则的最大值为()A.4B.3C.2D.1【答案】C【解析】由题意,得,.令对上恒成立,∴,解得,∴,故选C【考点】1、利用导数求最值;2、二次函数的图象应用.3.已知函数在与时都取得极值.(1)求的值与函数的单调区间(2)若对,不等式恒成立,求的取值范围.【答案】(1),函数的递增区间是与,递减区间是;(2)或.【解析】(1)先求出,进而得到,从中解方程组即可得到的值,然后再通过求出函数的增区间,通过求出函数的减区间; (2)要使对,不等式恒成立问题,则只需,从而目标转向函数的最大值,根据(1)中所得的值,确定函数在区间的最大值,进而求解不等式即可. 试题解析:(1)由,得,函数的单调区间如下表:-极大值¯极小值-所以函数的递增区间是与,递减区间是(2),当时,为极大值,而,则为最大值,要使恒成立,则只需要,得或.【考点】1.函数的极值与导数;2.函数的单调性与导数;3.函数的最值与导数.4.已知函数的导函数的图象如图所示,则关于函数,下列说法正确的是 ( )A.在处取得最大值B.在区间上是增函数C.在区间上函数值均小于0D.在处取得极大值【答案】D【解析】因为函数的导函数的图象如图所示,导函数在,的值小于零,所以函数在,上递减;导函数在的值大于零,所以函数在递增.所以A,B,C选项都错了,所以选D.【考点】1.导函数的图像.2.导函数的几何意义.3.利用导数解决函数的性质.5.已知函数.(1)解关于的不等式;(2)若在区间上恒成立,求实数的取值范围.【答案】(1)当时,原不等式的解集为或;当时,解集为且;当时,解集为或;(2)的取值范围是.【解析】(1)本小题是含参数的一元二次不等式问题,求解时先考虑因式分解,后针对根的大小进行分类讨论,分别写出不等式的解集即可;(2)不等式的恒成立问题,一般转化为函数的最值问题,不等式即在上恒成立可转化为(),而函数的最小值可通过均值不等式进行求解,从而可求得的取值范围.试题解析:(1)由得,即 1分当,即时,原不等式的解为或 3分当,即时,原不等式的解为且 4分当,即时,原不等式的解为或综上,当时,原不等式的解集为或;当时,解集为且;当时,解集为或 6分(2)由得在上恒成立,即在上恒成立,所以() 8 分令,则 10分当且仅当等号成立,即故实数的取值范围是 12分.【考点】1.一元二次含参不等式;2.分类讨论的思想;3.分离参数法;4.均值不等式.6.设F(x)=3a+2bx+c,若a+b+c=0,且F(0)>0,F(1)>0.求证:a>0,且—2<<—1.【答案】主要求出F(0)和F(1)【解析】证明:由题意,又,所以.注意到,又,所以,即,又,,所以,即.综上:,且【考点】不等关系与不等式.点评:本题主要考查二次函数的基本性质与不等式的应用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.7.若函数f(x)在定义域D内某区间I上是增函数,且在I上是减函数,则称y=f(x)在I 上是“弱增函数”.已知函数h(x)=x2-(b-1)x+b在(0,1]上是“弱增函数”,则实数b的值为.【答案】【解析】根据题意,由于函数f(x)在定义域D内某区间I上是增函数,且在I上是减函数,则称y=f(x)在I 上是“弱增函数”,则可知函数h(x)=x2-(b-1)x+b在(0,1]上是“弱增函数”则在给定区间是递减函数,则利用对称轴x=,开口向上,利用定义域和对称轴的关系可知,b的值为1,故可知答案为1.【考点】函数的单调性点评:主要是考查了函数的单调性的运用,属于基础题。

高二数学函数的奇偶性试题答案及解析

高二数学函数的奇偶性试题答案及解析

高二数学函数的奇偶性试题答案及解析1.已知是定义在R上的奇函数,当时(m为常数),则的值为(). A.B.6C.4D.【答案】D【解析】因为是定义在R上的奇函数且当时,所以.则.【考点】函数奇偶性的应用.2.以下命题正确的是(1)若;(2)若,则必要非充分条件;(3)函数;(4)若奇函数满足,则函数图象关于直线对称.【答案】(1)(2).【解析】(1),,故正确;(2),,,所以必要非充分条件,故正确;(3)令,则在上为减函数,所以;(4)为奇函数,,又因为,则,即函数图像关于对称.【考点】函数的性质.3.设是定义在上的奇函数,当时,,则 .【答案】-3【解析】由奇函数的定义可知,【考点】奇函数的应用.4.若是定义在R上的奇函数,且满足,给出下列4个结论:(1);(2)是以4为周期的函数;(3);(4)的图像关于直线对称;其中所有正确结论的序号是 .【答案】①②③【解析】①因为是定义在R上的奇函数,所以,则;②,,即周期为4;③因为是定义在R上的奇函数,所以,又,;④因为是定义在R上的奇函数,所以的图像关于直线对称;故选①②③.【考点】函数的奇偶性、周期性.5.设函数.若,则.【答案】【解析】因为,所以,即有,而.【考点】初等函数的性质及函数部分奇、偶性.6.设函数,若是奇函数,则的值是 .【答案】.【解析】由题意可知,又∵是奇函数,∴.【考点】函数的奇偶性与分段函数.7.下列函数是奇函数的是()A.B.C.D.【答案】C【解析】根据奇偶函数的定义易知,A、B都满足,均为偶函数,C中,函数的定义域为,且,故C中的函数为奇函数,而D 中,定义域为,但,且,该函数为非奇非偶函数,综上可知,选C.【考点】函数的奇偶性.8.已知函数是定义在区间-2,2上的偶函数,当时,是减函数,如果不等式成立,则实数的取值范围()A.B.1,2C.D.【答案】【解析】根据题意知,函数在上单调递增,在上单调递减.首先满足,可得.根据函数是偶函数可知:,所以分两种情况:当时,根据不等式成立,有,解得;当时,根据不等式成立,有,解得;综上可得.【考点】偶函数性质.9.现有四个函数:①;②;③; ④的图象(部分)如下,但顺序被打乱,则按照从左到右的顺序对应的函数序号是()A.④①②③B.①④②③C.①④③②D.③④②①【答案】【解析】首先判断函数的奇偶性,显然①是偶函数, ②③奇函数, ④非奇非偶函数.所以从左到右①④②③或①④③②.③中当时,显然,当时,.所以其对应第四个图.所以从左到右①④②③.【考点】函数图像的观察,函数奇偶性的判断.10.设函数是定义在R上的偶函数,当时,,若,则实数的值为【答案】【解析】因为函数是定义在R上的偶函数,所以又因为当时,,所以【考点】偶函数性质11.观察,,,由归纳推理可得:若定义在上的函数满足,记为的导函数,则=()A.B.-C.D.-【答案】D【解析】由中,原函数为偶函数,导函数为奇函数;中,原函数为偶函数,导函数为奇函数;中,原函数为偶函数,导函数为奇函数;…,同此可以推断,偶函数的导函数为奇函数.若定义在上的函数满足,则函数为偶函数.又∵为的导函数,则奇函数,所以,即,故选D.【考点】1、归纳推理;2、函数的奇偶性.12.已知偶函数f(x)在[0,∞)上是增函数,则不等式的解集是【答案】【解析】根据偶函数的性质:,所以,函数在[0,∞)上是增函数,所以,,解得【考点】1.偶函数的性质;2.解不等式.13.已知函数f(x)=x3.(1)判断f(x)的奇偶性;(2)求证:f(x)>0.【答案】(1)偶函数(2)见解析【解析】(1)解∵2x-1≠0,∴函数f(x)的定义域为{x|x≠0}.∵f(-x)-f(x)= (-x)3-x3= (-x)3-x3=·x3-x3-·x3-x3=x3-x3=0,∴f(-x)=f(x),∴f(x)是偶函数.(2)证明由题意知x≠0,当x>0时,∵2x-1>0,x3>0,∴f(x)>0;当x<0时,∵-x>0,∴f(-x)=f(x)>0,∴f(x)>0.综上所述,f(x)>0.14.已知函数,,则。

高二数学函数与方程试题

高二数学函数与方程试题

高二数学函数与方程试题1.若函数满足,且时,,函数,则函数在区间内的零点的个数为()A.8B.9C.10D.13【答案】B【解析】函数满足知函数的周期,判断函数的零点个数,就是判断和图像的在区间交点个数,因此零点的个数为9个.【考点】函数的零点与函数图像的交点的个数.2.函数的零点必落在区间()A.B.C.D.(1,2)【答案】B【解析】要验证函数的零点存在区间,只需验证在区间有即可,经验证B符合条件.【考点】函数零点所在区间验证.3.方程x3﹣6x2+9x﹣4=0的实根的个数为()A.0B.1C.2D.3【答案】C【解析】方程x3﹣6x2+9x﹣4=0的实根的个数就是函数的零点个数.对函数求导,得,可得在为增函数,在时为减函数,又当时,当时,结合图象可知函数的零点有个,故方程有根.【考点】函数的零点,数形结合.4.已知函数(),若函数在上有两个零点,则的取值范围是()A.B.C.D.【答案】D【解析】显然当x>0时只有一个零点,所以当x≤0时有且只有一个零点,根据指数函数函数值的分布可知a的取值范围是.【考点】(1)函数的零点;(2)函数的性质.5.根据表格中的数据,可以判定函数的一个零点所在的区,则的值为()A.-1 B.0 C.1 D.2【答案】C【解析】由给出的数据,求出对应的函数值f(-1),f(0),f(1),f(2),f(3),根据零点存在性定理:函数是连续不断的,当f(a)f(b)<0时,f(x)在区间(a,b)存在零点,来判断零点所在的区间.解:因为f(-1)=0.37-1<0;f(0)=1-2<0;f(1)=2.72-3<0;f(2)=7.39-4>0;f(3)=20.09-5>0,所以f(1)f(2)<0;所以f(x)在区间(1,2)上有零点.故答案为C【考点】函数零点点评:本题考查了函数零点存在性定理的应用,求出函数在各端点值的符号是解题的关键.6.下列函数在其定义域内,既是奇函数又存在零点的是:()A.B.C.D.【答案】C【解析】函数是奇函数需满足,验证四个选项得B,C满足,当时当时,所以函数不存在零点,因此选C【考点】函数奇偶性即函数零点点评:函数满足在定义域内有,则函数是奇函数,若满足则是偶函数。

高二数学函数与方程试题答案及解析

高二数学函数与方程试题答案及解析

高二数学函数与方程试题答案及解析1.已知函数有零点,则的取值范围是.【答案】【解析】由题意知有解,即方程有解,可转化为直线与方程所表示的曲线有交点,用数形结合思想可得的取值范围。

【考点】函数的零点与相应的方程根的关系及数形结合思想的应用。

2.已知是定义在上且周期为3的函数,当时,,若函数在区间上有10个零点(互不相同),则实数的取值范围是.【答案】【解析】由于函数在区间上有10个零点(互不相同),因此与函数有10个不同的交点,由于函数周期为3,所以与函数在一个周期内交点个数为4,对于函数,当时,,为翻折之后抛物线的顶点,由于恒成立,要使在一个周期内的交点为4,满足,此时,函数在区间上有10个零点(互不相同).【考点】函数的交点.3.下列图象表示的函数能用二分法求零点的是()【答案】C【解析】函数在区间上存在零点,满足两条:一是函数在区间连续,二是,满足这两条的是【考点】函数的零点.4.函数的零点所在区间为()A.B.C.D.【答案】A【解析】,;则,所以函数的零点所在区间为.【考点】零点存在定理.5.已知符号表示不超过的最大整数,若函数有且仅有3个零点,则的取值范围是()A.B.C.D.【答案】C【解析】因为,有且仅有3个零点,则方程在(0,+∞)上有且仅有3个实数根,且 a>0.∵x>0,∴[x]≥0;若[x]=0,则=0;若[x]≥1,因为[x]≤x<[x]+1,∴<<1,∴<a≤1,且随着[x]的增大而增大.故不同的[x]对应不同的a值,故有[x]=1,2,3,4.若[x]=1,则有<≤1;若[x]=2,则有<≤1;若[x]=3,则有<≤1;若[x]=4,则有<≤1;综上所述,<a≤,故选C.考点:函数零点,对新概念的理解,分类整合思想6.函数的零点个数为 ( )A.0B.1C.2D.3【答案】B【解析】在同一个直角坐标系中画出的图像,易知两图像的交点只有一个,故选B。

【考点】利用函数图像判断函数零点的个数。

高二数学函数的概念试题

高二数学函数的概念试题

高二数学函数的概念试题1.设函数的定义域为R,如果存在函数为常数),使得对于一切实数都成立,那么称为函数的一个承托函数. 已知是函数的一个承托函数,那么实数a的取值范围是()A.B.C.D.【答案】D【解析】解:因为要使是函数的一个承托函数,那么必须满足恒成立,利用函数图像关系可知道实数a的取值范围是,选D2.函数的值域是 .【答案】【解析】,所以值域为.3.使有意义的x的条件是()A.-3≤x<B.<x≤3C.-3≤x< -或D.-3≤x≤3【答案】C【解析】有意义,即解得或.4.若能构成映射,下列说法正确的有()(1)A中的任一元素在B中必须有像且唯一;(2)A中的多个元素可以在B中有相同的像;(3)B中的多个元素可以在A中有相同的原像;(4)像的集合就是集合B.A.1个B.2个C.3个D.4个【答案】B【解析】根据映射的定义,对于集合A的每一个元素在集合B中都有唯一的元素与其对应.所以(1)正确.(2)正确.(3)错.(4)错.B中可以有多余元素.5.函数的定义域为。

【答案】【解析】解:因为,因此定义域为6.已知,则【答案】【解析】=7.若函数f(x)=的定义域和值域均为[1,+∞),则实数a的取值集合为()A.{0}B.{a|0≤a≤1}C.{a|a≥0}D.{a|a≥2}【答案】A【解析】解:根据题意可得可得函数f(x)=≥1时的x≥1即≥2的解集为{x|x≥1}∴≥0的解集为{x|x≥1}所以,a=0故选A.8.函数的定义域为___________【答案】【解析】解得9.函数的定义域是()A.B.C.D.【答案】B【解析】由,所以定义域为.应选B.10.设,则函数的定义域为( )A.B.C.D.【答案】B.【解析】,应选B.。

高二数学函数与导数试题答案及解析

高二数学函数与导数试题答案及解析

高二数学函数与导数试题答案及解析1. f(x)=x5+ax3+bx-8且f(-2)=0,则f(2)等于()A.-16B.-18C.-10D.10【答案】A【解析】略2.;若..【答案】4【解析】略3.函数,的最大值是()A.B.-1C.0D.1【答案】D【解析】,所以当时;当时,所以函数在上单调递增,在上单调递减.所以.故D正确.【考点】用导数求最值.4.已知曲线f(x)=ln x在点(x0,f(x))处的切线经过点(0,-1),则x的值为()A.B.1C.e D.10【答案】B【解析】【考点】函数导数的几何意义5.函数的定义域为.【答案】【解析】函数的定义域为即函数的定义域为【考点】函数的定义域6.(本小题满分14分)北京市周边某工厂生产甲、乙两种产品.一天中,生产一吨甲产品、一吨乙产品所需要的煤、水以及产值如表所示:在会议期间,为了减少空气污染和废水排放.北京市对该厂每天用煤和用水有所限制,每天用煤最多吨,用水最多吨.问该厂如何安排生产,才能是日产值最大?最大的产值是多少?【答案】该厂每天生产甲种产品5吨,乙种产品7吨,才能使该厂日产值最大,最大的产值是134万元.【解析】设每天生产甲种产品x吨,乙种产品y吨,建立目标函数和约束条件,利用线性规划,即可求出结果.试题解析:解:设每天生产甲种产品吨,乙种产品吨. 1分依题意可得线性约束条件4分目标函数为, 5分作出线性约束条件所表示的平面区域如图所示8分将变形为当直线在纵轴上的截距达到最大值时, 9分即直线经过点M时,也达到最大值. 10分由得点的坐标为 12分所以当时, 13分因此,该厂每天生产甲种产品5吨,乙种产品7吨,才能使该厂日产值最大,最大的产值是134万元. 14分【考点】简单的线性规划.7.(本题满分12分)已知函数(为实数).(Ⅰ)当时,求函数的图象在点处的切线方程;(Ⅱ)设函数(其中为常数),若函数在区间上不存在极值,且存在满足,求的取值范围;(Ⅲ)已知,求证:.【答案】(Ⅰ);(Ⅱ)或;(Ⅲ)详见解析.【解析】(1)先求导,利用导数的几何意义,再求进行求解;(2)求导,求极值点,根据函数在区间上不存在极值,得到的取值范围,根据条件存在满足,所以,所以求函数的最大值,因为含参,所以讨论对称轴于定义域的关系,求二次函数的最值,得到关于的不等式,再进行求解;(3)先判定函数的单调性,并求其最大值,得到,再进行换元,令,则,即,再代入裂项向消法求和,证明不等式.试题解析:(Ⅰ)当时,,,则,函数的图象在点的切线方程为:,即(Ⅱ),由由于函数在区间上不存在极值,所以或由于存在满足,所以对于函数,对称轴①当或,即或时,,由,结合或可得:或②当,即时,,由,结合可知:不存在;③当,即时,;由,结合可知:综上可知:或(Ⅲ)当时,,当时,,单调递增;当时,,单调递减,∴在处取得最大值即,∴,令,则,即,∴.故.【考点】1.导数的几何意义;2.函数的单调性;3.函数的极值;4.放缩法.8.设,那么()A.B.C.D.【答案】C【解析】根据指数函数的性质,可知,根据指数函数的单调性,可知,根据幂函数的单调性,可知,从而有,故C是正确的.【考点】利用指数函数的性质、幂函数的性质比较大小.9.(本小题满分10分)已知函数在处取得极值.(Ⅰ)求实数的值;(Ⅱ)过点作曲线的切线,求此切线方程.【答案】(Ⅰ)(Ⅱ)【解析】第一问根据题中所给的条件,函数在处取得极值,得到函数在处的导数为零,从而得出实数的值,再带入验证,满足条件,第二问根据第一问的结果,从而确定出函数的解析式,根据过某点的曲线的切线方程的求解方法,首先设出切点的坐标,应用导数的几何意义,确定出切线的斜率,从而应用点斜式方程,写出切线方程,将带入切线方程,从而解得切点的横坐标的值,带入求得切线方程.试题解析:(Ⅰ) 1分,即解得, 4分此时在两边(附近)符号相反,所以处函数取得极值,同理,在处函数取得极值. 5分(Ⅱ)设切点坐标为.则切线方程为 7分化简,得,即, 9分所求的切线方程为:.10分【考点】函数的极值,导数的应用,切线的方程.10.设函数,.(1)判断函数在上的单调性;(2)证明:对任意正数a,存在正数x,使不等式成立.【答案】(1)上是增函数;(2)证明详见解析.【解析】本题主要考查了函数单调性的判断方法、导数在最大值、最小值问题中的应用、利用导数判断函数的单调性常用的方法,考查了学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用导数的办法,通过导数大于或小于0判断函数的单调性;第二问,先将化为,从而原不等式化为,即,令,利用导数研究它的单调性和最值,最后得到存在正数,使原不等式成立.试题解析:(1),令,则,当时,,∴是上的增函数,∴,故,即函数是上的增函数.(2),当时,令,则故,∴,原不等式化为,即,令,则,由得:,解得,当时,;当时,.故当时,取最小值,令,则.故,即.因此,存在正数,使原不等式成立.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.11.(本题满分14分)已知函数有最小值.(1)求实数的取值范围;(2)设为定义在上的奇函数,且时,,求的解析式.【答案】(1);(2).【解析】(1)分类讨论将表达式中的绝对值号去掉成为有两个一次函数的分段函数,从而问题可转化于在每个分段上存在最小值,即可求解;(2)利用奇函数的性质可知,当时,,再由结合已知条件即可求解.试题解析:(1),要使函数有最小值,需,即时,有最小值;(2)∵是上的奇函数,∴,设,则,∴,即.【考点】1.分段函数;2.奇函数的性质;3.分类讨论的数学思想.12.若直线与曲线有两个不同的交点,则实数的取值范围是()A.B.C.D.【答案】B【解析】数形结合法如上图.直线:是过定点P(-2,4)的动直线,曲线是以原点为圆心,2为半径的上半圆.当直线在PA位置时,即与圆相切时,由圆心到直线距离等于半径得,;当在PB位置时,.由图像知,当直线在PA与PB之间时,有两个交点,所以.故选B.【考点】直线与圆的相交问题.【方法点睛】直线与圆的位置关系常有两种方法研究:一、利用圆心到直线的距离与半径的关系判断交点个数,或由交点个数求参数范围;二、将直线代入圆的方程,利用判别式研究交点个数,或由交点个数求参数范围.但当直线与半圆或四分之一圆等相交问题,常借助图像属性结合去研究交点问题.例如本题,因研究的圆是半圆,所以数形结合方法比较好.13.已知,符号表示不超过的最大整数,若函数有且仅有个零点,则的取值范围是A.B.C.D.【答案】C【解析】,构造函数,在同一坐标系内作出函数与函数的图象,由图象可知,当时,与的图象有三个公共点,故选C.【考点】1.函数与方程;2.数形结合思想;3.新定义函数问题.【方法点睛】本题主要考查学生接受新知识的能力以及数学中的数学结合思想、函数与方程思想等思想方法,属难题.解决此类问题的关键是将函数的零点问题通过等价转化,将问题转化为两个函数交点的个数问题,再正确画出两个函数的图象,由数形结合进行求解.14.函数的极小值为.【答案】【解析】, 令得;令得.所以函数在上单调递减;在上单调递增.所以在处函数取的极小值为.【考点】用导数求极值.15.若定义在上的函数满足,其导函数满足,则下列结论中一定正确的有①,②,③,④.【答案】①③【解析】令,,,恒成立.在上单调递增. ,,,即恒成立;,即.恒成立.故正确的有①③.【考点】用导数研究函数的性质.16.已知,,,则的大小关系是()A.B.C.D.【答案】B【解析】,,又,,故选B.【考点】1、对数式的运算;2、对数式的比较大小.【方法点睛】纵观历年数学高考试题,几乎每套题都有指数式和对数式大小比较的客观题目,结合近年来的数学高考试题,总结归纳指数式和对数式比较大小的六种解题方法.(1)单调函数法同底的指数式和对数式比较大小,就是利用指数函数和对数函数的单调性来比较;(2)中间桥梁法底不同的指数式和对数式比较大小,如果不能直接利用指数函数和对数函数的单调性来比较,可利用特殊数值(如0 或1)作为中间桥梁,进而可比较出大小;(3)特值代入法对于在给定的区间上比较指数式和对数式的大小的问题,可在这个区间上取满足条件的特殊值,代入后通过计算简化或避免复杂的变形与讨论,使问题简捷获解;(4)估值计算法估值计算是指通过估值、合理猜想等手段,准确、迅速地选出答案;(5)数形结合法画出指数函数和对数函数的图象,利用直观的图象往往能得到更简捷的解法.特征构造法对于含有几何背景的指数式和对数式的大小问题,可根据题目特点,构造函数或利用其他几何特征进行解题.17.已知函数,那么f (1)等于10C.1D.0A.2B.log3【答案】A【解析】【考点】函数求值18.若直线与曲线恰有一个公共点,则实数k的取值范围是______________.【答案】或【解析】曲线,即(x≥0),表示一个半圆(单位圆位于x轴及x轴右侧的部分).如图,A(0,1)、B(1,0)、C(0,-1),当直线y=x+k经过点A时,1=0+k,求得k=1;当直线y=x+k经过点B、点C时,0=1+k,求得k=-1;当直线y=x+k和半圆相切时,由圆心到直线的距离等于半径,可得,求得,或(舍去),故要求的实数k的范围为(-1,1]∪{-2},【考点】直线与圆的位置关系19.已知函数其中为参数.(1)记函数,讨论函数的单调性;(2)若曲线与轴正半轴有交点且交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有.【答案】(1)当时,函数在定义域上单调递增.当时,在上单调递增,在单调递减,在上单调递增;(2)证明见解析.【解析】第(1)小题设计为分类讨论函数的单调性.首先化简g(x),然后对g(x)求导化简得,注意到,所以就找到的临界点,然后对和进行分类讨论求解;第(2)小题设计为证明题,实质转化为求函数的最值.先求,然后构造函数,通过求导求函数H(x)的极值,从而得函数H(x)的最小值,命题得证.试题解析:(1)证明:函数的定义域是.,,当时,则,所以,所以函数在定义域上单调递增.当时,令,则可知函数在上单调递增,在单调递减,在上单调递增.(2)令则或若曲线与轴正半轴有交点,则且交点坐标为又则所以曲线在点处的切线方程为,即令函数在区间上单调递增,在区间上单调递减,所以当时,有最小值,所以,则【考点】导数,导数的几何意义,函数的单调性,函数的极值,函数的最值.【方法点睛】本题以三次为背景,第(1)小题设计为分类讨论函数的单调性,其中讨论的标准就是导函数的正负性,需要一定的运算能力.第(2)小题设计为证明题,其实就是函数的恒成立问题,可以转化为函数的最值问题,求函数的最值,需转化为求函数的极值,需转化为求函数的单调性,解题思路清晰,需要有一定的运算能力.20.已知动点与平面上两定点连线的斜率的积为定值-2.(1)试求动点的轨迹方程;(2)设直线与曲线交于两点,求.【答案】(1)();(2).【解析】(1)设,表示两直线的斜率,利用斜率乘积为,建立方程化简即可得到点的轨迹方程;(2)将直线代入曲线,整理得,可求出方程的根,进而利用弦长公式可求.试题解析:(1)设点,则依题意有整理得由于,求得的曲线的方程为();(2)由消去得:,设,则【考点】直线与圆锥曲线的综合问题;圆锥曲线的轨迹问题.【方法点晴】本题主要考查了轨迹方程的求解及直线与圆锥曲线的弦长的计算,属于中档试题,本题解答中,第1问中,以斜率为载体,考查了曲线方程的求解,关键在于利用斜率公式,根据题设条件建立关于的关系式,化简整理得曲线的轨迹方程;第2问题中,熟记弦长公式,利用弦长公式求解直线与圆锥曲线的弦长,准确、仔细计算是解答的关键.21.若函数在处取得极值.(1)求的值;(2)求函数的单调区间及极值.【答案】(1)(2)单调递增区间是,单调递减区间是,极小值为,极大值为.【解析】(1)求出原函数的导函数,由函数在x=1时的导数为0列式求得a的值;(2)把(1)中求出的a值代入,求其导函数,得到导函数的零点,由导函数的零点对定义域分段,利用导函数在不同区间段内的符号求单调期间,进一步求得极值点,代入原函数求得极值.试题解析:(1),由,得.(2),.由,得或.当时;②当时或.当变化时,的变化情况如下表:-+-因此,的单调递增区间是,单调递减区间是.函数的极小值为,极大值为.【考点】利用导数求过曲线上某点处的切线方程;利用导数研究函数的单调性22.(2015•山东一模)已知函数f(x)=aln(x+1)﹣ax﹣x2.(Ⅰ)若x=1为函数f(x)的极值点,求a的值;(Ⅱ)讨论f(x)在定义域上的单调性;(Ⅲ)证明:对任意正整数n,ln(n+1)<2+.【答案】(Ⅰ)f(x)在x=1处取极大值.满足题意.(Ⅱ)见解析;(Ⅲ)见解析【解析】(Ⅰ)由,f′(1)=0,知,由此能求出a.(Ⅱ)由,令f′(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞),讨论两个根及﹣1的大小关系,即可判定函数的单调性;(Ⅲ)当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,由此能够证明ln(n+1)<2+.解:(1)因为,令f'(1)=0,即,解得a=﹣4,经检验:此时,x∈(0,1),f'(x)>0,f(x)递增;x∈(1,+∞),f'(x)<0,f(x)递减,∴f(x)在x=1处取极大值.满足题意.(2),令f'(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞)①当,即a≥0时,若x∈(﹣1,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;②当,即﹣2<a<0时,若x∈(﹣1,,则f'(x)<0,f(x)递减;若,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;③当,即a=﹣2时,f'(x)≤0,f(x)在(﹣1,+∞)内递减,④当,即a<﹣2时,若x∈(﹣1,0),则f'(x)<0,f(x)递减;若x∈(0,,则f'(x)>0,f(x)递增;若,+∞),则f'(x)<0,f(x)递减;(3)由(2)知当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,∵,∴,i=1,2,3,…,n,∴,∴.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究函数的极值.23.某校内有一块以为圆心,(为常数,单位为米)为半径的半圆形(如图)荒地,该校总务处计划对其开发利用,其中弓形区域(阴影部分)用于种植学校观赏植物,区域用于种植花卉出售,其余区域用于种植草皮出售,已知种植学校观赏植物的成本是每平方米20元,种植花卉的利润是每平方米80元,种植草皮的利润是每平方米30元.(1)设(单位:弧度),用表示弓形的面积;(2)如果该校总务处邀请你规划这块土地,如何设计的大小才能使总利润最大?并求出该最大值.(参考公式:扇形面积公式,表示扇形的弧长)【答案】(1) ;(2),.【解析】(1)由,利用扇形及三角形面积公式即得;(2)先由题意将利润表示成关于的函数关系式,再利用导数判断函数单调性求得最大值即可.试题解析:(1)因为,,所以.(2)设总利润为元,种植草皮利润为元,种植花卉利润为元,种植学校观赏植物成本为元,,,,∴,设,,,,,在上为减函数;,,在上为增函数;当时,取到最小值,此时总利润最大:.答:所以当园林公司把扇形的圆心角设计成时,总利润取最大值.【考点】1、数学建模能力;2、利用导数研究函数的单调性及最值.24.设点是函数图象上的任意一点,点,则的最小值为()A.B.C.D.【答案】A【解析】函数变形为表示圆的下半部分,点在直线上,圆心到直线的距离,圆的半径为2,则的最小值为【考点】1.直线和圆的位置关系;2.数形结合法25.已知a为实数,f(x)=(x2﹣4)(x﹣a).(1)求导数f′(x);(2)若f′(﹣1)=0,求f(x)在[﹣2,2]上的最大值和最小值;(3)若f(x)在(﹣∞,﹣2)和(2,+∞)上都是递增的,求a的取值范围.【答案】(1)3x2﹣2ax﹣4.(2)最大值为,最小值为.(3)[﹣2,2].【解析】(1)按导数的求导法则求解(2)由f′(﹣1)=0代入可得f(x),先求导数,研究函数的极值点,通过比较极值点与端点的大小从而确定出最值(3)(法一)由题意可得f′(2)≥0,f′(﹣2)≥0联立可得a的范围(法二)求出f′(x),再求单调区增间(﹣∞,x1)和[x2,+∞),依题意有(﹣∞,﹣2)⊆(﹣∞,x1)[2,+∞]⊆[x2,+∞)解:(1)由原式得f(x)=x3﹣ax2﹣4x+4a,∴f'(x)=3x2﹣2ax﹣4.(2)由f'(﹣1)=0得,此时有.由f'(x)=0得或x=﹣1,又,所以f(x)在[﹣2,2]上的最大值为,最小值为.(3)解法一:f'(x)=3x2﹣2ax﹣4的图象为开口向上且过点(0,﹣4)的抛物线,由条件得f'(﹣2)≥0,f'(2)≥0,∴﹣2≤a≤2.所以a的取值范围为[﹣2,2].解法二:令f'(x)=0即3x2﹣2ax﹣4=0,由求根公式得:所以f'(x)=3x2﹣2ax﹣4.在(﹣∞,x1]和[x2,+∞)上非负.由题意可知,当x≤﹣2或x≥2时,f'(x)≥0,从而x1≥﹣2,x2≤2,即解不等式组得﹣2≤a≤2.∴a的取值范围是[﹣2,2].【考点】利用导数求闭区间上函数的最值;导数的运算;利用导数研究函数的单调性.26.已知函数.(1)求曲线在点处的切线方程;(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.【答案】(1);(2)直线的方程为,切点坐标为.【解析】(1)第一步,先求函数的导数,第二步,再求,根据导数的几何意义,,最后代入直线方程,就是所求的切线方程;(2)设切点,首先求在切点处的切线方程,即求和,然后因为切线过点,所以将原点代入切线方程,转化为关于的方程,求出切点,最后再整理切线方程. 试题解析:(1)在点处的切线的斜率,切线的方程为;(2)设切点为,则直线的斜率为,直线的方程为:.又直线过点,,整理,得,,,的斜率,直线的方程为,切点坐标为.【考点】本题主要考查导数的几何意义,直线方程的点斜式。

高二数学函数及其表示试题答案及解析

高二数学函数及其表示试题答案及解析

高二数学函数及其表示试题答案及解析1.已知奇函数当时,,则当时,的表达式是( ). A.B.C.D.【答案】A.【解析】设,则;;因为函数是奇函数,所以,即.【考点】函数的解析式、函数的奇偶性.2.已知,,,则;【答案】.【解析】令得,;令得,;令得,.【考点】函数的求值.3.已知,且,则等于_____________.【答案】【解析】令,则,,令,则.【考点】函数的解析式.4.下列关于函数、函数的定义域、函数的值域、函数的对应法测的结构图正确的是()【答案】A【解析】根据函数的三要素有函数的定义域、值域、对应法则,可知A正确.【考点】函数的概念.5.下列各组函数是同一函数的是()A.与B.与C.与D.与【答案】D【解析】函数的要素由两个:定义域与对应法则。

=x(x-1),所以,是同一函数的是与,选D。

【考点】函数的概念点评:简单题,函数的要素由两个:定义域与对应法则。

6.下列各组函数中表示同一函数的是()A.与B.与C.与D.与【答案】D【解析】在D项中,函数与的定义域和对于关系一致,所以是相同函数。

故选D。

【考点】相同函数点评:要看两个函数是否相同,只要看这两个函数的定义域和对于关系是否一致。

7.下列四个函数中,与y=x表示同一函数的是()A.y=()2B.y=C.y=D.y=【答案】B【解析】根据同一函数的定义可知定义域和对应法则相同的即为所求,那么可知选项A定义域不同,选项C,对应法则不同;选项D,定义域不同,故选B8.对任意实数,定义运算,其中是常数,等式右边的运算是通常的加法和乘法运算.已知,并且有一个非零常数,使得对任意实数,都有,则的值是______________【答案】4【解析】由定义可知,所以,所以恒成立,所以.,.9.图中的阴影部分由底为,高为的等腰三角形及高为和的两矩形所构成.设函数是图中阴影部分介于平行线及之间的那一部分的面积,则函数的图象大致为【答案】C【解析】解:根据图象可知在[0,1]上面积增长的速度变慢,在图形上反映出切线的斜率在变小;在[1,2]上面积增长速度恒定,在[2,3]上面积增长速度恒定,而在[1,2]上面积增长速度大于在[2,3]上面积增长速度,故选:C10.给出函数,则等于()A.B.C.D.【答案】 B【解析】解:因为函数,则,选C11.设,在上任取三个数,以为边均可构成的三角形,则的范围是()A.B.C.D.【答案】C【解析】解:由f′(x)=3x2-3=3(x+1)(x-1)=0得到x1=1,x2=-1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m-2,f(x)max=f(2)=m+2,f(0)=m由题意知,f(1)=m-2>0 ①;f(1)+f(1)>f(2),即-4+2m>2+m②由①②得到m>6为所求12.(本小题满分14分)求函数在区间上的最大值和最小值.【答案】函数在上的最小值为,最大值为【解析】∵,令,即,解得(舍去),.当时,,单调递增;当时,,单调递减.∴为函数的极大值.又∵,,∴函数在上的最小值为,最大值为13.设函数的定义域为,若存在常数,使对一切实数均成立,则称为“海宝”函数. 给出下列函数:①;②;③;④其中是“海宝”函数的序号为【答案】③【解析】解:由题意可知若存在常数,使对一切实数均成立,则称为“海宝”函数.,那么可以知道对于成立,则①;②④都不能找到这样的常数k使得成立,所以只有选③是个有界函数,成立。

高二数学摸底测试--函数、不等式、三角、数列综合测试卷

高二数学摸底测试--函数、不等式、三角、数列综合测试卷

函数、不等式、三角、数列综合测试试卷班级_____________ 学号____________ 姓名_____________ 成绩____________一.填空题(每小题4分,共48分)1.已知函数()1a x f x x a -=--的反函数()1f x -的对称中心是()1,3-,则实数a =____________ 2.对于实数a 和b ,定义:22,,a ab a b a b b ab a b⎧-≤⎪*=⎨->⎪⎩.设()()()211f x x x =-*-,且关于x 的方程()()f x m m R =∈恰有三个互不相等的实根123,,x x x ,则123x x x =__________(用含m 的表达式)3.如果()*3223123......,.. (111)n n n n S S S S n n N T S S S =++++∈=⨯⨯⨯---()*2,n n N ≥∈, 则2013T =____________ 4.已知函数()()()()210110x x f x f x x -≤⎧⎪=⎨-+>⎪⎩,把函数()()1g x f x x =-+的零点按从小到大的顺序排列成一个数列,该数列的前n 项和为n S ,则2lim n n S n →∞=____________ 5.若集合12,,......,n A A A 满足12......n A A A A ⋃⋃⋃=则称12,,......,n A A A 为集合A 的 一种拆分.已知:①当{}12133,,A A a a a ⋃=时,A 有33种拆分;②当{}1231234,,,A A A a a a a ⋃⋃=时,A 有47种拆分;……由以上结论,推出一般结论:当{}12121......,,......,n n A A A a a a +⋃⋃⋃=时,A 有__________种拆分6.数列{}n a 的通项222cos sin 33n n n a n ππ⎛⎫=- ⎪⎝⎭,其前n 项和为n S ,则30S =____________ 7.定义在R 上的函数()f x 满足()()()2(,)f x y f x f y xy x y R +=++∈和()12f =, 则()3f -=____________8.已知函数()sin cos 21544x x f x x ππ-+⎫=≤≤⎪⎭,则()f x 的最小值为____________ 9.在ABC ∆中,,,A B C ∠∠∠所对的边长分别为,,a b c ,其外接圆的半径为1,则()222222111sin sin sin a b c A B C ⎛⎫++++ ⎪⎝⎭的最小值为____________ 10.已知()2xf x =可以表示成一个奇函数()g x 和一个偶函数()h x 之和,若关于x 的不等式()()20ag x h x +≥对于[]1,2x ∈恒成立,则实数a 的最小值是____________11.设数列{}n a 的前n 项和n S 满足()1,1,2,...1n n n S a n n n -+==+,则通项n a =____________ 12. 下图展示了一个由区间)1,0(到实数集R 的映射过程:区间中的实数m 对应数轴上的点M ,如图①;将线段围成一个圆,使两端点A 、B 恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y 轴上,点A 的坐标为,如图③.图③中直线与x 轴交于点,则m 的象就是n ,记作.下列说法:①102f ⎛⎫= ⎪⎝⎭;②;③是奇函数; ④在定义域上单调递增;⑤的图象关于点 对称.其中正确命题的序号是.(写出所有正确命题的序号)二.选择题(每小题5分,共20分)1.ABC ∆的内角,,A B C 所对的边分别为,,a b c ,已知()cos cos 1,2A C B a c -+==,则C =() A.6π或56πB.6πC.3π或23π D.3π ()0,1AB ()0,1AM (),0N n ()f m n =114f ⎛⎫= ⎪⎝⎭()f x ()f x ()f x 1,02⎛⎫ ⎪⎝⎭2.已知()()12...201212...2012f x x x x x x x x R =+++++++-+-++-∈,且()()2321f a a f a -+=-,则a 的值的个数为()A.2B.3C.3D.无数3.已知α为锐角,则“1sin 3α>且1cos 3α>”是“sin 2α>”的(). (A)充要条件(B) 必要非充分条件 (C)充分非必要条件(D) 既不充分又不必要条件 4.已知数列{}n a 满足123,7a a ==,且2n a +总等于1n n a a +的个位数字,则2013a 的值为(). (A) 1 (B) 3 (C) 7 (D) 9三.解答题(各题分值依次为10分,12分,14分,16分)1.在ABC ∆中,设内角,,A B C 所对边长分别为,,a b c ,已知()()tan 1tan 12A B ++=.(1)求C ;(2)22cos 2sin 1sin ,2B C A a +=+=,求边长b 和ABC ∆的面积.2.解关于实数x 的不等式: (1)225815x x x x --->-+;(2)()2log 121a x a ->-,其中0,1a a >≠3.定义()[)2211,,,,,,A x b f x x A A a b a b a b a x ⎛⎫⎛⎫=-+-∈=< ⎪ ⎪⎝⎭⎝⎭为正实数. (1)求()A f x 的最小值;(2)确定()A f x 的单调区间,并对单调增区间加以证明;(3)若())()())2222*121,1,1,2,K k x I k k x I k k k N +⎡⎡∈=+∈=++∈⎣⎣. 求证:()()()11241k k I I f x f x k k ++>+.4.设数列{}n a 满足211,1,2,3,...n n n a a na n +=-+=(1)当12a =时,求234,,a a a ,并由此猜想出n a 的一个通项公式;(2)当13a ≥时,证明对所有的1n ≥,有①2n a n ≥+;②121111...1112n a a a +++≤+++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学函数综合试题1.设函数(Ⅰ)当时,求函数的定义域;(Ⅱ)若函数的定义域为,求实数的取值范围.【答案】(1);(2).【解析】(1)理解绝对值、根式不等式的几何意义,表示的是数轴的上点到原点离.(2)对于恒成立的问题,常用到以下两个结论:(1),(2)(3)的应用.(4)掌握一般不等式的解法:,.试题解析:(Ⅰ)当时,依题意得:由绝对值的几何意义知不等式的解集为.∴不等式的解集为.(Ⅱ)依题意得:关于的不等式在上恒成立,即在上恒成立,【考点】(1)考察绝对值不等式的意义;(2)绝对值不等式的应用.2.对于函数,给出下列四个命题:①存在, 使;②存在, 使恒成立;③存在, 使函数的图象关于坐标原点成中心对称;④函数f(x)的图象关于直线对称;⑤函数f(x)的图象向左平移就能得到的图象.其中正确命题的序号是.【答案】③④【解析】第一个函数,由于,因此,,因此①不对;由,,得,由于因此不对;第三个,当时函数的图象关于坐标原点成中心对称,正确;第四个函数的对称轴为,当时,,正确;第五个函数的图象向左平移就能得到,不对.【考点】正弦型函数的图象和性质.3.已知, 则不等式的解集【答案】【解析】当时,,解得,因此;当时,恒成立,综上.【考点】不等式的解集.4.已知函数在上是单调函数,则实数的取值范围是()A.B.C.D.【答案】B【解析】由于函数在上是单调函数,因此在上恒成立,,解得.【考点】函数恒成立的问题.5.已知函数f(x)=,(a是常数且a>0).对于下列命题:①函数f(x)的最小值是-1;②函数f (x)在R上是单调函数;③若f(x)>0在上恒成立,则a的取值范围是a>1;④对任意的x1<0,x2<0且x1≠x2,恒有其中正确命题的序号是__________(写出所有正确命题的序号).【答案】①③④【解析】,在R上为增函数,且恒过点(0,-1);作出的图像(如图),由图像得:的最小值是1,在上单调递减,在单调递增;且在上为凸函数,所以恒有;若f(x)>0在上恒成立,则,即;故选①③④.【考点】分段函数、函数的图像.6.已知定义域为的函数满足,且,若,则()A.B.C.D.【答案】D【解析】令,依题意,可求得,再令,可求得,再对、均赋值-1,即可求得.【考点】抽象函数及其应用.7.已知是上的奇函数,且当时,.(1)求的表达式;(2)画出的图象,并指出的单调区间.【答案】(1) ;(2)由图可知,其增区间为和,减区间为和.【解析】(1)根据是定义在上的奇函数,先设时,则,结合题意得到,然后利用函数的奇偶性进行化简,进而得到函数的解析式.(2)先画出当时的函数图象,结合奇函数图象关于原点对称可画出时的函数图象即可. (3)结合函数的图象进行判断.(1) 设时,则,.又为奇函数,..又,(2)先画出的图象,利用奇函数的对称性可得到相应的图象,其图象如右图所示.由图可知,其增区间为和,减区间为和.【考点】函数的零点与方程根的关系;奇偶性与单调性的综合.8.(1)已知函数的定义域为,是奇函数,且当时,,若函数的零点恰有两个,则实数的取值范围是()A.B.C.D.或(2)对于函数在其定义域内任意的且,有如下结论:①;②;③;④.上述结论中正确结论的序号是________.【答案】(1)D;(2)②③【解析】(1)要使函数的零点恰有两个,则根据函数是奇函数,则只需要当时,函数的零点恰有一个即可.(2)利用对数的基本运算性质进行检验即可.(1)因为是奇函数,所以也是奇函数,所以要使函数的零点恰有两个,则只需要当时,函数的零点恰有一个即可.由得,,若,即,解得.若,要使当时,函数只有一个零点,则,所以此时,,解得.综上或.故选D.(2)利用对数的基本运算性质进行检验:①;②;③在单调递增,可得;④,,由基本不等式可得,从而可得.故答案为:②③.【考点】(1)函数的零点;(2)对数单调性的判断与证明;(3)基本不等式的应用.9.有一种密英文的明文(真实文)按字母分解,其中英文的a,b,c,,z的26个字母(不分大小写),依次对应1,2,3,,26这26个自然数,见如下表格:给出如下变换公式:将明文转换成密文,如,即变成;如,即变成.(1)按上述规定,将明文译成的密文是什么?(2)按上述规定,若将某明文译成的密文是,那么原来的明文是什么?【答案】(1)明文good的密文为dhho;(2)密文shxc的明文为love.【解析】(1)由题意先找出“good”中各个字母对应的数,判断出奇偶数,然后依据不同的解析式进行翻译成数,然后根据数与字母的对应关系,将相应的数变成字母,这样就得到了“good”的密文;(2)先逆变换公式,进而找出“shxc”中各字母对应的数,由对应的数的范围选择不同的解析式进行翻译成数,再由数与字母的对应关系,将数变成字母,这样就得到了“shxc”的明文.(1);;所以明文good的密文为dhho 5分(2)逆变换公式为则有;;故密文shxc的明文为love 10分【考点】1.函数的解析式;2.分段函数;3.函数的实际应用.10.设函数(,为自然对数的底数)。

若存在使成立,则的取值范围是()A.B.C.D.【答案】A【解析】由f(f(b))=b,可得f(b)=f-1(b)其中f-1(x)是函数f(x)的反函数因此命题“存在b∈[0,1]使f(f(b))=b成立”,转化为,“存在b∈[0,1],使f(b)=f-1(b)”,即y=f(x)的图象与函数y=f-1(x)的图象有交点,且交点的横坐标b∈[0,1],∵y=f(x)的图象与y=f-1(x)的图象关于直线y=x对称,∴y=f(x)的图象与函数y=f-1(x)的图象的交点必定在直线y=x上,由此可得,y=f(x)的图象与直线y=x有交点,且交点横坐标b∈[0,1],根据,化简整理得e x=x2-x+a记F(x)=e x,G(x)=x2-x+a,在同一坐标系内作出它们的图象,可得,即,解之得1≤a≤e,即实数a的取值范围为[1,e],故选:A【考点】含有根号与指数式的基本初等函数; 基本初等函数的图象与性质、函数的零点存在性定理和互为反函数的两个函数的图象特征11.已知是定义在上的奇函数,且,若,有恒成立.(1)判断在上是增函数还是减函数,并证明你的结论;(2)若对所有恒成立,求实数的取值范围.【答案】(1)见解析(2).【解析】(1)先在定义域内取,然后用作差法判断出,根据单调性的定义即可得到结果.(2)转化不等式为,,再看成关于a的一次函数,满足即可得到结果.(1)增函数,证明:设由题知:(2)由(1)知要使对所有恒成立,即令只要:【考点】单调性的判断方法;恒成立问题;12.已知函数为偶函数.(1)求的值;(2)若方程有且只有一个根,求实数的取值范围.【答案】(1)-,(2){a|a>1或a=-2-2}【解析】(1)根据偶函数性质列等量关系:∵f(x)为偶函数,∴f(-x)=f(x),即log4(4-x+1)-kx=log4(4x+1)+kx,即(2k+1)x=0,∴k=-.(2)先将方程转化为一元二次方程.由得log4(4x+1)-x=log4 (a·2x-a),即令t=2x,则(1-a)t2+at+1=0,只需其有一正根即可满足题意.①当a=1时,t=-1,不合题意,舍去.②有一正一负根,,a>1. ③有两根相等,a=-2(+1).解:(1)∵f(x)为偶函数,∴f(-x)=f(x),即log4(4-x+1)-kx=log4(4x+1)+kx,即(2k+1)x=0,∴k=-. 6分(2)依题意令log4(4x+1)-x=log4 (a·2x-a),即 8分令t=2x,则(1-a)t2+at+1=0,只需其有一正根即可满足题意.①当a=1时,t=-1,不合题意,舍去. 9分②上式有一正一负根t1,t2,即,得a>1.此时,a·2x-a=>0,∴a>1. ------11分③上式有两根相等,即Δ=0⇒a=±2-2,此时t=,若a=2(-1),则有t=<0,此时方程(1-a)t2+at+1=0无正根,故a=2(-1)舍去; 13分若a=-2(+1),则有t=>0,且a· 2x-a=a(t-1)=a=>0,因此a=-2(+1). 15分综上所述,a的取值范围为{a|a>1或a=-2-2}. 16分【考点】偶函数,二次方程根与系数关系13.已知函数(为实常数).(1)若函数在区间上是增函数,试用函数单调性的定义求实数的取值范围;(2)设,若不等式在有解,求的取值范围.【答案】(1);(2)当时,;当时,.【解析】(1)任取x1、x2∈[2,+∞),且x1<x2,利用函数单调性的定义可知f(x2)-f(x1)>0在区间[2,+∞)上恒成立,从而求出实数m的取值范围;(2)将不等式f(x)≤kx中的k分离出来,然后利用二次函数的性质研究不等式另一侧函数在[,1]上的最小值,从而求出k的取值范围.(1)由题意,任取、,且,则, 2分因为,,所以,即, 4分由,得,所以.所以,的取值范围是. 6分(2)由,得,因为,所以, 7分令,则,所以,令,,于是,要使原不等式在有解,当且仅当(). 9分因为,所以图像开口向下,对称轴为直线,因为,故当,即时,;当,即时,. 13分综上,当时,;当时,. 14分.【考点】1.不等式的解法;2.奇偶性与单调性的综合;3.两点间的距离公式..14.函数,若数列满足,则A.B.C.D.【答案】C【解析】由题意可知,从第三项开始是以3为周期的数列,∴.【考点】分段函数、周期性、数列递推公式.15.设为实数,函数。

(1)若,求的取值范围;(2)求的最小值;(3)设函数,直接写出(不需给出演算步骤)不等式的解集.【答案】(1);(2);(3)当时,解集为;当时,解集为;当时,解集为【解析】(1)由,结合解析式得,分和两种情况即可求;(2)由已知函数解析式可分和两种情况分别得和结合二次函数的图像和单调性可得和,从而有;(3)结合二次函数的图像和一元二次不等式解集直接写出即可.试题解析:(1)若,则 1分或 2分 3分(2)当时, 5分当时, 7分综上 8分(3)时,得,当时,; 10分当时,△>0,得: 11分讨论得:当时,解集为; 12分当时,解集为; 13分当时,解集为. 14分【考点】1.考查函数的概念、性质、图象;2.解一元二次不等式;3.运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力16.已知函数的定义域为,(1)求;(2)当时,求函数的最大值。

相关文档
最新文档