13.3.1等腰三角形的性质
13.3.1 第1课时 等腰三角形的性质

A.BD=CE C.DA=DE
图 13-3-8 B.AD=AE D.BE=CD
6.[2017·天津]如图 13-3-9,在△ABC 中,AB=AC,AD,CE 是△ABC 的两
条中线,P 是 AD 上的一个动点,则下列线段的长等于 BP+EP 最小值的是( B )
A.BCBΒιβλιοθήκη CEC.ADD.AC
图 13-3-9
类型之二 运用方程思想进行等腰三角形的角度计算 如图 13-3-1,在△ABC 中,D 是 BC 边上一点,AD=BD,AB=AC=
CD,求∠BAC 的度数.
图 13-3-1
解:∵AD=BD,∴设∠BAD=∠DBA=x°. ∵AB=AC=CD, ∴∠CAD=∠CDA=∠BAD+∠DBA=2x°, ∠C=∠DBA=x°,∴∠BAC=3x°. ∵∠ABC+∠BAC+∠C=180°,∴5x°=180°, 解得 x°=36°, ∴∠BAC=3x°=108°. 【点悟】 根据等腰三角形的性质与三角形内角和定理,得到各角之间的关 系式,再列方程求解,是解决等腰三角形的角度计算问题的基本方法.
2.运用等腰三角形的概念及性质解决相关问题.
如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开, 得到的△ABC 有什么特点?
1.等腰三角形的概念
知识管 理
定 义:有 两边相等的三角形叫做等腰三角形.
相关定义:(1)相等的两条边叫做等腰三角形的 腰 ,另一条边叫做 底边;
(2)两腰所夹的角叫做等腰三角形的 顶角 ,底边与腰的夹角叫做 底角 .
9.如图 13-3-12,在△ABC 中,AB=AC,AD 是 BC 边上的中线,BE⊥AC 于点 E.求证:∠CBE=∠BAD.
图 13-3-12
八年级数学《等腰三角形的性质》说课课件

说学法
三
实验法探究法讨论法
说教学过程
四
(一)回顾与引入(二)猜想与证明(三)应用与提高(四)心得与体会(五)作业与巩固
你们的三角形都是如何剪成的?
对折长方形纸片,剪下靠近对称轴一个角再展开。
先画一个等腰三角形,再剪下来。
教师提问
(一)回顾与引入
一学生回答
另一学生回答
1、回顾等腰三角形的定义
图1
图2
(三)应用与提高
例 : 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.求△ABC各角的度数
(三)应用与提高
练习2:如图,在△ABC中,AB=AC,D、E在AC、AB上,BC=BD,AD=DE=EB,求∠A的度数。
(三)应用与提高
练习3 填空:如图⑴∵AB=AC,AD⊥BC∴∠_=∠_,_=_; ⑵∵AB=AC,BD=DC∴∠_=∠_,_⊥_;⑶∵AB=AC,AD平分∠BAC∴_⊥_,_=_
重合的线段
重合的角
AB=AC
BD=CD
AD=AD
∠B = ∠C.
∠BAD = ∠CAD
∠ADB = ∠ADC
猜想2
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.
①已知:AB =AC,AD平分∠BAC 求证:②已知: AB =AC,AD平分BC 求证:③已知: AB =AC,AD⊥BC 求证:
WHAT MAKES USDIFFERENT?
85%
《等腰三角形的性质》是人教版数学的八年级上册第十三章第三节第一小节《等腰三角形》的第一课时,本节课的主要内容就是研究等腰三角形的两个性质。
1、教学内容
“
2、教材的地位和作用
第13章 13.3 13.3. 1 等腰三角形的性质

8. 如图,已知 AB=AC=AD,且 AD∥BC,求证: ∠C=2∠D.
证明:证∠C=∠ABC=∠CBD+∠D,又由 AD∥BC 得∠CBD=∠D,
∴∠C=2∠D.
9. 如图,E、F 分别是等边三角形 ABC 的边 AB、AC 上的点,且 BE=AF,CE、BF 交于点 P.
(1)求证:CE=BF; (2)求∠BPC 的度数.
为( B )
A.6
B.8
C.10
D.12
第 4 题图
5. 如图,△ ABC 是等边三角形,AD⊥BC,点 E 在
AC 上,且 AE=AD,则∠EDC=( B )
A.10°
B.15°
C.20°
D.25°
第 5 题图
6. 如图,△ ABC 是等边三角形,D 是 AC 的中点, 延长 BC 至点 E,使 CE=CD,则∠BDE= 120°.
则下列结论一定正确的是( C )
A.AE=EC
B.AE=BE
C.∠EBC=∠BAC D.∠EBC=∠ABE
第 3 题图
9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/12021/9/1Wednesday, September 01, 2021 10、阅读一切好书如同和过去最杰出的人谈话。2021/9/12021/9/12021/9/19/1/2021 2:12:57 PM 11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/12021/9/12021/9/1Sep-211-Sep-21 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/12021/9/12021/9/1Wednesday, September 01, 2021
03-第十三章13.3.1等腰三角形

例3 如图13-3-1-2,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接 AD.若∠BAD=45°,求证:△ACD为等腰三角形.
图13-3-1-2 证明 ∵AB=AC,∠B=30°, ∴∠B=∠C=30°,∴∠BAC=180°-30°-30°=120°, ∵∠BAD=45°,∴∠CAD=∠BAC-∠BAD=120°-45°=75°,∠ADC=∠B+ ∠BAD=75°,∴∠ADC=∠CAD,∴AC=CD, 即△ACD为等腰三角形.
∵EF∥BC, ∴∠EOB=∠OBC,∠FOC=∠OCD, ∴∠EBO=∠EOB,∠FOC=∠FCO, ∴BE=OE,CF=OF, ∴EF=OE-OF=BE-CF. 点拨 本题运用平行线性质以及角平分线的定义证明角之间的关系,进 而运用等腰三角形的判定定理(等角对等边)得出线段之间的关系,这是 证几何题中常用的方法.
9.(2018广西桂林中考)如图13-3-1-8,在△ABC中,∠A=36°,AB=AC,BD平
分∠ABC,则图中等腰三角形的个数是
.
答案 3
图13-3-1-8
解析 因为AB=AC,所以△ABC为等腰三角形;因为∠A=36°,所以∠ABC =∠C=72°,因为BD平分∠ABC,所以∠ABD=∠DBC=36°,因为∠DBA=∠A =36°,所以△ABD为等腰三角形;又因为∠BDC=∠A+∠ABD=72°,所以 ∠BDC=∠C,所以△BDC为等腰三角形,故答案为3.
题型三 等腰三角形判定与性质的综合应用 例3 如图13-3-1-5所示,已知△ABC中,AB=AC,BD和CE分别是∠ABC和 ∠ACB的平分线,且相交于O点.
图13-3-1-5 (1)试说明△OBC是等腰三角形; (2)连接OA,试判断直线OA与线段BC的关系,并说明理由.
人教版八年级数学上册第十三章 1 13. 第1课时 等腰三角形的性质

1
2
2.等腰三角形的性质及其应用 【例2如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点 E,DF⊥AC于点F.求证:DE=DF.
分析:利用等腰三角形三线合一的性质及角平分线的性质进行证 明.
1
2
证明:连接AD(图略). ∵D为BC的中点,AB=AC, ∴AD平分∠BAC. 又DE⊥AB,DF⊥AC, ∴DE=DF. 点拨:此题解法灵活,也可以直接利用等腰三角形的性质证明 △BDE≌△CDF.另外,作底边上的中线(或顶角的平分线、底边上的 高)是解决与等腰三角形有关问题时常用的辅助线.
相等
(简写成“等边对等角”);
性质2:等腰三角形的顶角平分线、 底边上的中线 、底边
上的高相互重合(简写成“三线合一”).
2.等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上
的高)所在的 直线 就是它的对称轴.
知识梳理 预习自测
1.下列说法正确的是( ). A.等腰三角形的高、中线、角平分线互相重合 B.顶角相等的两个等腰三角形全等 C.等腰三角形的一边不可以是另一边的2倍 D.等腰三角形的两个底角相等
.
66°
关闭
答案
1
2
1.等腰三角形的边、角的计算 【例1】 已知一个等腰三角形的两角分别为(2x-2)°,(3x-5)°,求这 个等腰三角形各角的度数. 分析:应考虑3种情况,即(2x-2)°作顶角或(3x-5)°作顶角或(2x-2)° 和(3x-5)°均不是顶角. 解:若2x-2=3x-5,得x=3. 故三角形的三个内角分别为4°,4°,172°; 若2(2x-2)=180-(3x-5),得x=27. 故三角形的三个内角分别为52°,52°,76°; 若2(3x-5)=180-(2x-2),得x=24. 故三角形的三个内角分别为46°,67°,67°.
13.3.1等腰三角形(第1课时)课件

作底边的高线 证明:等腰三角形的两个底角相等
A
已知: △ ABC中,AB=AC. 求证: ∠B= ∠C.
证明:作底边高线AD. B 在Rt△BAD和△RtCAD中, D C
AB=AC ( 已知 ),
AD=AD (公共边) , ∴ Rt △BAD ≌ Rt △CAD (HL). ∴ ∠ B= ∠C (全等三角形的对应角相等).
A
小结归纳
1
等腰三角形的性质定理
等腰三角形的两个底角相等
(简写成“等边对等角”)
等腰三角形顶角的平分线平分底边并且垂 直于底边. 等腰三角形的顶角平分线、底边上的中 线、底边上的高互相重合. “三线合一”
布置作业
练习册P76 第11、12题(作业本上交) 练习册本课时其余做在书上
随堂练习
当堂测试
4. 根据等腰三角形的性质,在△ABC中, AB=AC时,
BAD = ∠CAD CD (1) ∵AD⊥BC,∴∠_____ _____,BD ____= ____. AD BC ,∠_____ BAD =∠_____. CAD (2) ∵AD是中线,∴____⊥____ AD ⊥____ BC ,_____ CD BD =_____. (3) ∵AD是角平分线,∴____
等腰三角形的性质
1 等腰三角形的两 个底角相等(等边 对等角)
例1 在三角形ABC中,已知AB=AC, 且∠B=80° ,则∠C= ___度, ∠A=____度?
∵AB=AC(已知)
2等腰三角形顶角的 平分线,底边上的 ∴∠B=∠C(等边对等角) 中线和底边上的高 ∵∠B=80° (已知) 互相重合(等腰三 ∴∠C=80° 角形三线合一) 又∵∠A+∠B+∠C=180° (三角形内角和为180° ) ∴∠A=180°- ∠B-∠C ∠A=20° B
人教版八年级上册13.3.1等腰三角形等腰三角形的性质(教案)

一、教学内容
人教版八年级上册13.3.1等腰三角形等腰三角形的性质:
1.等腰三角形的定义:两边相等的三角形。
2.等腰三角形的性质:
a.两腰相等;
b.两底角相等;
c.底边上的中线、高和角平分线重合。
3.等腰三角形的判定:
a.两边相等的三角形是等腰三角形;
2.提升学生的逻辑推理和问题解决能力,通过等腰三角形的判定和性质的应用,引导学生运用逻辑思维解决几何问题。
3.增强学生的数学抽象和数学建模素养,让学生掌握等腰三角形面积的计算方法,并能将其应用于解决实际生活中的问题。
4.培养学生的数学运算和数据分析能力,通过等腰三角形相关习题的练习,使学生能够准确、熟练地进行数学运算。
此外,我发现学生们在解决等腰三角形相关问题时,对于“三线合一”这一性质的理解和应用还不够熟练。在今后的教学中,我需要针对这一难点进行更有针对性的讲解和练习,帮助学生克服这一困难。
在总结回顾环节,我强调了等腰三角形知识在日常生活中的应用,希望学生们能够将所学知识运用到实际中。同时,我也鼓励学生们在课后遇到问题时,要勇于提问,我会尽力为他们解答。
-在判定方法的教学中,通过对比不同类型的三角形,引导学生发现角度信息与等腰三角形的关系,通过具体例题逐步引导学生进行逻辑推理。
-针对面积计算的难点,设计不同难度的习题,从简单到复杂,让学生逐步掌握选择正确信息进行计算的方法,并在解题过程中提供适当的提示和指导。
四、教学流程
(一)导入新课(用时5分钟)
1.讨论主题:学生将围绕“等腰三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
(说课稿)13.3.1等腰三角形的性质

(说课稿)13.一、教材分析1、教学内容:本节课是华师版八年级数学上册第十三章第三节《等腰三角形》的第一课时的内容——等腰三角形的性质,等腰三角形是一种专门的三角形,它除了具有一样三角形的性质以外,还具有一些专门的性质。
它是轴对称图形,具有对称性。
本节课确实是要利用对称的知识来研究等腰三角形的有关性质,并利用全等三角形的知识证明这些性质。
2、在教材中的地位与作用:本节课是在学生把握了一样三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的,担负着进一步训练学生学会分析、学会证明的任务,在培养学生的思维能力和推理能力等方面有重要的作用;而“等边对等角”和“三线合一”的性质是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,本节课是第三课时研究等边三角形的基础,是全章的重点之一。
3、教学重点与难点:重点:等腰三角形的性质的探究和应用。
难点:等腰三角形的性质的验证。
二、教学目标:知识技能:1、明白得把握等腰三角形的性质。
2、运用等腰三角形的性质进行证明和运算。
数学摸索:1、观看等腰三角形的对称性进展形象思维。
2、通过实践、观看、证明等腰三角形的性质,进展学生合情推理能力和演绎推理能力。
解决问题:1通过观看等腰三角形的对称性,培养学生观看、分析、归纳问题的能力。
2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,进展应用意识。
情感态度:通过引导学生对图形的观看、发觉激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中猎取成功的体验,建立学习的自信心。
教学预备:CAI课件,长方形的纸片,剪刀,常用画图工具。
三、教法及学法分析1、教法设想——让学生参与教学过程,注重培养学生的建构适应,提高学生的数学素养。
《新课程标准》要求课堂教学要充分表达以学生进展为本的精神,因此,在本节课的教学设计中,我采纳了“问题情境——建立模型——说明、应用与拓展”的教学模式,让学生经历知识的形成与应用的过程,从而更好地明白得数学知识的意义,把握必要的基础知识和差不多技能,进展应用数学知识的意识与能力,增强学好数学的愿望和信心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
⌒ H B D 1 E
∴∠1+∠C=∠2+∠C=90°∴ ∠1=∠2 在△AEH和△BEC中 ∠AEH=∠BEC AE=BE ∠1=∠2
你的细心加你的 耐心等于成功!
C
︸
∴△AEH≌△BEC(ASA) ∴AH=BC ∴AH=2BD
一次数学课上,老师布置了一道几何证明题, 通过大家的激烈讨论得到了许多种证明方法,聪 明的你们,能找出几种证明方法呢?试试看吧!
B D C
BD=CD
AD=AD
是真是假
性质2 等腰三角形的顶角平分线与底边上的中 线,底边上的高互相重合 A
(等腰三角形三线合一 )
B C D
A
1 2
(1) ∵AB=AC ∴ ∠ B= ∠ C (2) ∵AB=AC ∠ 1= ∠ 2 ∴ AD ⊥BC BD=CD (3) ∵AB=AC BD=CD
证明: 作△ABC 的中线AD
则有 BD=CD
在△ABD和△ACD中 AB=AC C B D BD=CD AD=AD (公共边) ∴ △ABD≌ △ACD (SSS) ∴ ∠B=∠C (全等三角形对应角相等)
A
证明: 作△ABC 的高线AD
则有 ∠ADB=∠ADC =90º 在Rt△ABD和Rt△ACD中 AB=AC (公共边)B AD=AD
E
A
如图,已知△ABC中,AB=AC,F在AC上,在 BA的延长线上截取AE=AF,求证:ED⊥BC
F
B
D
C
轴对称图形
两个底角相等,简称“等边对等角”
顶角平分线、底边上的中线、和底边上的高
互相重合,简称“三线合 一”
70°,40°或55°,55° 为___________________;
⒊等腰三角形一个角为110°,它的另外两个角为 ______35°,35° __。
想一想:
刚才的证明除了能得到∠B=∠C 你还能发现什么?
重合的线段 AB=AC 重合的角
A
∠B = ∠C.
∠BAD = ∠CAD
∠ADB =∠ADC =90°
C
B
D
∴ AD ⊥BC ∠ 1= ∠ 2 (4)∵AB=AC ∴ BD=CD AD ⊥BC ∠ 1= ∠ 2
如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD, (1)图中 共有几个等腰三角形?(2)你能求出△ABC各角的度数吗?
A
x
解:(1)图中共有3个等腰三角形分别是: △ABC、 △ABD 、△BDC (2)
10 cm
;
2、等腰三角形的一边长为3cm,另一边长为4cm, 则它的周长是 10 cm 或 11 cm ;
3、等腰三角形的一边长为3cm,另一边长为8cm, 19 cm 则它的周长是 。
等腰三角形是轴对称图形吗?
※等腰三角形是轴对称图形.
A
B
D
C
猜想与论证
猜想
等腰三角形的两个底角是否相等。 已知:△ABC中,AB=AC
A
求证:∠B=C 分析:1.如何证明两个角相等?
2.如何构造两个全等的三角形?
B
D
C
A
证明: 作顶角的平分线AD,
则有∠1=∠2
12
在△ABD和△ACD中 AB=AC C B D ∠1=∠2 AD=AD (公共边) ∴ △ABD≌ △ACD (SAS) ∴ ∠B=∠C (全等三角形对应角相等)
A
D
C
∴ Rt△ABD≌Rt△ACD (HL) ∴ ∠B=∠C (全等三角形对应角相等)
性质1
A
等腰三角形的两个底角相等。 (等边对等角)
∵AB=AC ∴ ∠ B= ∠ C
B
C
小试牛刀
⒈等腰三角形一个底角为75°,它的另外两个
75°, 30° 角为_____ __;
⒉等腰三角形一个角为70°,它的另外两个角
华东师大版版八年级(上册)
13.3.1等腰三角形的性质
动手做一做
△ABC有什么特点?
A C
B
有两条边相等的三角形叫做等腰三角形.
A
顶 角
腰
腰
等腰三角形中, 相等的两边都叫做腰, 另一边叫做底边, 两腰的夹角叫做顶角, 腰和底边的夹角叫做底 角.
底角
底角
B
底边
C
小试牛刀
1、等腰三角形一腰为3cm,底为4cm,则它的周长 是
D 2x
x+2x+2x=1800
解得x=360
C
x B
2x
2x
在△ABC中, ∠A=360, ∠ABC= ∠CD和BE是高,它们相 交于点H,且AE=BE。 求证:AH=2BD
证明:∵AB=AC,AD是高,∴BC=2BD 又∵BE是高,∴∠ADC=∠BEC=∠AEH=90°