金属玻璃及其研究新进展
金属玻璃及其研究新进展

韧性
金属玻璃具有较好的韧性 和延展性,可以在低温或 冲击环境下保持较好的机 械性能。
强度
金属玻璃具有较高的强度 和抗拉性能,可以用于制 造需要承受较大载荷的零 件。
物理性能
导电性
01
金属玻璃具有较好的导电性,可以用于制造导电材料和电子元
件。
热稳定性
02
金属玻璃具有较好的热稳定性,可以在高温环境下保持较好的
金属玻璃的塑性与形变研究
塑性行为
研究金属玻璃在受到外力作用时的塑性行为,包括屈服强度、应变硬化、断裂韧性等,以揭示其塑性变形的微观 机制。
形变机理
通过实验和模拟手段,深入探究金属玻璃在形变过程中的原子结构变化、应力场分布和能量耗散机制,为优化金 属玻璃的力学性能提供理论支持。
金属玻璃中的原子结构与动力学研究
机械合金化是通过球磨等机械手段将金属粉末混合并研磨,使其在剧烈的机械力作用下 形成非晶态结构。化学气相沉积是通过化学反应的方式在金属表面形成非晶态薄膜。这
些方法在某些特殊情况下具有应用价值,但制备出的金属玻璃性能和规模相对有限。
03
金属玻璃的性能研究
力学性能
硬度
金属玻璃具有较高的硬度 和耐磨性,使其在制造耐 磨和耐腐蚀的零件方面具 有广泛应用。
04
金属玻璃研究的新进展
高性能金属玻璃的研发
高强度金属玻璃
通过优化成分和制备工艺,开发出具 有高强度、高韧性和优异耐腐蚀性能 的新型金属玻璃材料,用于航空航天、 汽车和石油化工等领域。
高导电金属玻璃
通过引入特定元素,提高金属玻璃的 导电性能,使其在电子器件、电磁屏 蔽和传感器等领域具有广阔的应用前 景。
汽车工业
金属玻璃在汽车制造中用 于制造高性能的发动机部 件和车身结构。
金属玻璃断裂韧性的研究进展

76魁科■技2019年•第4期金属玻璃断裂韧性的研究进展◊长江大学机械工程学院江李瑞■金属玻璃由于有特殊的结构,它和传统的晶体材料相比较而言,具有不一样的变形和断裂的方式,它的发明和研究历史悠久,是研究材料科学和凝聚态物理问题方面中重要的模型,具有比较广泛的应用前景。
本文通过制备出Zr^Tig Ni10Cu12.5Be a5,Ce68Al10Cu?0Co2和Fe^Co^r^MOj^C^B^三种金属玻璃,利用大量的压缩实验及其测试,从而描绘出应力应变曲线,说明不同种类的金属玻璃的断裂韧性特征,同时也对材料力学的有关知识进行归纳总结。
金属玻璃是有比较高的强度和硬度,耐腐蚀性能和耐磨性能特别优异,在结构材料的领域中具有非常广泛的应用前景,但是金属玻璃的结构非常接近液态,它是一种短程有序、长程无序的均匀结构%1金属玻璃的断裂行为1.1韧性金属玻璃的断裂行为错基、钛基、铜基、钳基、金基等是韧性金属玻璃的范轴,它们的断裂韧性值K*一般>30MPa.ni1™,有的还>150MPa.m U2B1o在压缩应力状态下,韧性金属玻璃的剪切带出现张开断裂的情况非常少,但是一定的宏观塑性变形有可能发1.2脆性金属玻璃的断裂行为脆性金属玻璃在一般条件下会在钻基、铁基、镁基、稀土基等体系中存在,一般%c<10MPa.m吨。
通过图2可以看出,脆性金属玻璃的断口上不容易看到脉络的花样,有跟氧化物玻璃类型等传统脆性原理断裂相似的断口形貌旳,也就是以下3个区,包括镜面区、模糊区和粗糙区。
2金属玻璃的强度理论2.1Mohr—Coulomb准则Mohr-Coulomb准则给出的屈服条件可用以下表达式:T+fJL<T=T (1)通过图3a可以看出,在正-切应力空间,Mohr-Coulomb准则给出的临界失效线是直线;通过图3b可以看出,内摩擦系数在拉伸和压缩时可能不同,即ji TM jl C;通过图3c可以看出,T。
材料学课程论文:Al基金属玻璃的研究

本科课程论文题目Al基金属玻璃的研究发展院(系)专业课程学生姓名学号指导教师二○一二年十月摘要:铝基非晶态合金及其非晶相复合材料均具有优异的特性,是一种具有广阔应用前景的新型结构材料。
Al基非晶态合金的发展历程、玻璃形成能力、Al基金属玻璃的制备方法、研究现状、发展动向在本文中将分别介绍。
关键词:Al基金属玻璃形成能力制备展望0 引言自美国弗吉尼亚大学Poon研究组和日本东北大学Inoue研究组分别发现Al基合金可通过快速凝固技术形成非晶态结构[1]。
Al基非晶态合金及其部分结晶后形成的纳米复合薄带材料表现出超高的比强度(5.2×105Nmkg-1)及良好的塑性,被认为是极具应用前景的新一代超高强度轻质合金。
然而,与Pd、Mg、Zr、Fe等合金相比,Al基合金的玻璃形成能力较低,很难通过熔体浇铸直接形成尺度大于1mm的块体材料。
Al基金属玻璃块体材料的获得主要依赖于粉末固结的途径。
探索具有高玻璃形成能力、可通过熔体直接浇铸形成块体材料的合金体系始终是人们追求的目标。
1 发展历程历史上有关非晶合金研究的最早报道 ,是在1934年 Kramer利用蒸发沉积法发现了附着在玻璃冷基底上的非晶态金属薄膜[2]。
1960 年 ,Duwez 等人采用液态金属快速冷却的方法 ,从工艺上突破了制备非晶态金属和合金的关键,引起了金属材料发展史上的一场革命[3]。
1965 年,Predecki,Giessen等人首次通过熔体急冷的方法得到铝基非晶合金(Al—Si)。
1981年 Inoue 等人开发出含铝量较高的TM(过渡金属)-Al-B 系列非晶合金[4].1984 年Shechman 等人在快凝Al—Mn 合金中发现具有五重对称的二十面体准晶相( Icosahedral quasicrystals phase) 。
此后 ,相继在多种铝与其它过渡金属(Fe ,Cr ,Ni)的快凝合金中发现准晶相[5]。
1988 年 Y. He[6]和 A.Inoue 等人分别独立地制备了含铝量高达90%(原子分数)的轻质高强 Al- TM- Re (TM = 过渡金属 ,RE=稀土元素)非晶合金。
金属玻璃纳米晶化机制研究进展

表明金属玻璃发生 纳 米 晶 化 时 , 具 有 非 常 大 的 形 核 率 和低的生长速率 。 图 1 显 示 了 金 属 玻 璃 发 生 纳 米 晶 化 后的典型组织形貌
[8]
。 金属 玻 璃 纳 米 晶 化 属 于 热 力 学
固态相变的一种 , 纳 米 晶 化 形 成 的 晶 体 相 的 种 类 和 组 织结构 , 主要与合金成分和结晶相的热力学性质相关 ; 而形成纳米晶的大小和形貌则与晶化动力学密切相关 。 早在 20 世纪 70 年代末 , Kster 等 转变 。
[7] [5] [6]
则 、 尺寸细 小 , 为 随 后 的 共 晶 晶 化 起 到 异 质 形 核 的 作 用 ,有利于细化晶粒 。 过共晶玻璃中 , 晶化初生相为化 合物 , 随后剩余的非晶相晶化成共晶组织 。 从热力学角度来说 , 所有金属玻璃均按上述晶化方 式的其中一种进行结晶 。 对具体的金属玻璃而言 , 在给 定的条件下按哪一种方式发生晶化 , 不仅取决于热力学 的驱动力 , 同时也取决于反应的动力学 。
处于热力学亚稳态 , 金属玻璃在合适的外界条件下会自发地向相应的晶态相发生转变 , 导致晶化事件的发生 。 研究金属玻璃 的纳米晶化不仅有重要的科学意义 , 同时也可对金属玻璃的应用提供理论指导 。 简要介绍了目前几种代表性的金属玻璃纳米 晶化微观机制 : 经典形核理论 、 基于耦合通量模型的 形 核机制 、 基于 相 分 离的 纳 米 晶 形核长 大机制 、 有序原 子集团 沉积机 制 、 非经典形核理论 、 大过冷度条件下纳米晶化的微观机制等 , 同时结合作者课题组近年来在这方面的研究进展 , 对各种机 制进行了评述 , 最后对未来金属玻璃纳米晶化机制研究中需要重视的几个问题进行了简单展望 。
大块金属玻璃形成能力的研究进展

金属玻 璃 由于 具 有高 的强 度 、 性 、 韧 耐磨 性 和耐
腐 蚀性 及 较 好 的 软 磁 性 而 成 为 极 具 潜 力 的 新 材
但运 用 到具体 的金 属 玻 璃 合 金 设 计 时 , 预 见 性较 其
蔡安 辉 等人I - 用加 和性 原 理计 算 了大 块金 属 玻 璃 ( MG) B 合金 的摩 尔 熔 化 热 △ H . 依据 动力 学 理 论 用 △H 对 合 金 系的 金属 玻 璃 形 成 能力 ( A) GF 及
璃 , o e 出 了 3 经 验规 律[ : 1合 金 体系 的组 I u提 n 个 1 () ] 元 多于 3种 ;2 合 金体 系 主要元 素 的原 子尺 寸差 大 () 于 l ;3 体 系中 的主要 元 素 间具 有 负 的混 合 热. 2 ()
虽然国内外学者从多方面进行了研究但只是通过实验的方法从热力学物理化学以及微观结构等方面来分析金属玻璃的形成能力及形成动力学总结出了一些经验规律目前还没有严格的数学和物理模型来表征金属玻璃的形成能力
维普资讯
第 l卷 第 4 期
2007年 l2月
和 抗 晶化 能 力 、 理 结 构 参 数 、 相 稳 定 性 和 原子 尺 寸 结 构 、 电子 浓 度 和 有 序 相 与 无 序 相 的 竞 争. 出 物 液 价 指 了大 块 金 属 玻 璃 形 成 能 力 研 究 的复 杂 性 。 以及 理 论 基 础 的重 要 性 . 关 键 词 :大 块 金 属 玻 璃 ;非 晶 形 成 能 力 ;研究 进 展
指导下 , hn和 Sh rE对 上 述经 验 规律 做 了 修 Se cwaz]
块状金属玻璃研究进展与应用

I 一( I G )一( ,C r e A, a P ,B, i e S ,G ) F 一( b o e N ,M )一( 1 a 一( B,s) A ,G ) P, i C 一( 1 a 一( B,S) o A ,G ) P, i F 一( r f b e Z ,H ,N )一B
璃。
F —G 一( , e a P B)
Nj —Z r—T — S i n—S j
N 一( b T ) r i i N , 丑 一Z —T
F e—S —B —Nb j C o— I r e—S —B —Nb i Ni S —B —Ta — i
1 块 状 金 属玻 璃 的 研 究 进 展
1 1 块 体 金属玻 璃 的研 究历史 .
表 1 块 状 金属 玻 璃 系列 及 报 道 年 份
合 金 系
Mg n —L —M( n 镧 系 金 属 ; N 、 u Z ) L: M: iC 、 n L n—G —T T I 、 o N 、 u a M( M: e C 、 i C ) r
璃材 料 ,0世纪 7 2 0年代 , h nH S等人 口 系统 地 研 究 C e 了 P —T—P T=N , o r) 晶合金 , 制备 出 了毫 d ( i C ,i 非 e 并
C 一( r -) i u Z 。I 一T I f
C u一( r H ) i Y,B ) Z . f 一T 一( e
C —T o a— B
具有 较强 非 晶形成 能力 的多 组元 非 晶合 金 , 制 备 出 并
科学家开发出新型“金属玻璃”

金属玻璃及其研究新进展

高分辨透射电子显微镜拍摄得到的照片
.
主要物理特性
不象玻璃,一般不透明
机械性能(mechanical):高强度、高硬度、耐摩擦和高弹
性,不易破碎和不易变形 (deform)
软磁性(magnetic)
耐腐蚀性
广泛应用:
(a) Zr基块体金属玻璃制造的商 业化高尔夫球头;
(b) 用块体金属玻璃制备的手机 的外壳;
注:块体金属玻璃(bulkmetallicglass)通常是指3维尺寸都在毫米以上的金属 玻璃。
.
块体金属玻璃材料
我国在这方面处于领先地 位:
典型大块金属玻璃样品: (a)Mg-Cu-Y 金属玻璃; (b)直径超过 70 mm 的 金属玻璃棒;(c)公斤级 别的Zr-Ti-Cu-Ni-Be 金 属玻璃;(d)中国科学院 物理研究所制备的金属 玻璃。
中国科学院物理研究所研制的大块金属玻璃的照片
.
金属玻璃(metallic-glasses)
金属玻璃是金属吗?
大部分金属玻璃体系都是由100%金属组成的合金,比如Cu, Zr, Al, Fe, Co, Ni, Mg,Zn, Ca, Yb, Ce等。但是也有好多体系包含非金属(或类金属)元素,比 如Si,C, P,B等,含量可能达到20 at.%以上。但是金属玻璃都是导电的,电阻 率比普通金属高1~2个数量级,具体和成分以及制备条件相关。
.
1.甩带法
甩带法是制备金属玻璃条带最常用的方法之一 • 工艺流程
I. 首先将破碎并清洗后的母合金在高真空氩气保护 气氛下感应加热熔化。
II. 利用惰性气体将合金液体喷射到高速旋转的铜辊 上,合金液遇到铜辊将迅速凝固并借助离心力抛 离辊面,得到连续薄带。
.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无序材料中的待解之谜
对金属玻璃及其应用的探索 才刚刚开始—— 什么样的成分能够形成“大” 块金属玻璃? 金属玻璃如何形变? 玻璃形成的过程是怎样的? 无序还是有序,怎么表征?
左图为晶态物质与非晶态物质微观结构 的示意图以及日常生活中常见的晶态和 非晶态物质。
金属玻璃应用研究新进展
综上所述,通过电化学方法可以获得较大比表面
积的Pd。可以预见,而Pd作为一种催化剂,其较高的
比表面积,有助于提高其催化性能,例如用于燃料电 池中。
上述实验的金属玻璃用的是块体材料,如果
用尺寸更小的金属玻璃,那么通过电化学方法会不 会得到比表面积更高的Pd呢?
金属玻璃应用研究新进展
主要参考文献
[7] He Y, Schwarz R B, Archuleta J I. Bulk glass formation in the Pd–Ni–P system[J]. Applied physics letters, 1996, 69(13): 1861-1863. [8] Shen T D, Schwarz R B. Bulk ferromagnetic glasses prepared by flux melting and water quenching[J]. Applied Physics Letters, 1999, 75(1): 49-51. [9] 姜清奎. 新型金属玻璃及薄膜的制备及性能研究[D]. 浙江大学, 2012. [10] 郭贻诚,王震西.非晶态物理学.北京:科学出版社,1984 [11] 张扣山, 司乃潮, 陈振华, 等. 镁基块体金属玻璃基复合材料研究 [J][J]. 热加工 工艺, 2006, 35(20): 4-4. [12] 肖学山, 李维火, 王庆, 等. 水淬法制备 w 丝/Zr 基大块金属玻璃复合棒材研究 [J]. 兵器材料科学与工程, 2001, 24(6): 6-8. [13] 李林, 金作文, 王会生. 制备金属玻璃的新型甩带机[J]. 物理, 1987, 16(10): 00.
金属玻璃应用研究新进展
Pd Ni
当电势在EC1和EC2之间时,金属玻璃中的Ni原子 有选择性地脱离金属玻璃表面,而表面遗留下的 Pd原子则通过表面扩散聚集形成Pd原子簇,最 终使得金属玻璃形成了一种纳米多孔网络结构, 孔隙的大小在10~30纳米。
金属玻璃应用研究新进展
当电势在EC2之上时,金属玻璃中的Ni原子依旧脱离金 属玻璃表面,而Pd原子则通过溶解、再沉积,最终形 成具有多分支树枝晶的纳米结构(形状像树叶)。
无序结构
有序结构
主要制备方法
背景:大多数金属在冷却时会突然出现结晶现象,所以需 要非常快的冷却。——急冷
目前:生产的金属玻璃是比较薄或者比较细的。
难点:制造厚的、笨重形状的块体金属玻璃。 主要存在的问题:在基础研究方面,非晶的结构表征、玻璃 转变以及形变机制是金属玻璃中三大有挑战性的基本科学问 题,至今仍然是未解之谜,它们制约了块体金属玻璃材料研究的 进一步发展。
为进一步探讨,将块状金属玻璃 在100MPa下,加热到390℃,超过其 玻璃化转变温度,使得金属玻璃被软 化成为粘性液体,利用氧化铝模板制 备成直径大约为200nm的金属玻璃纳 米棒(氧化铝面板用KOH溶液腐蚀去 除)。
对纳米棒进行线扫描后,可以看到此时Ni的含量远大于Pd。
金属玻璃应用研究新进展
然而,通过电化学的方法进行腐蚀后,从TEM图可以看 到纳米棒原本致密的结构得疏松多孔,而通过线扫描可知, 金属玻璃中的Ni几乎已经消失不见,剩下的都是Pd,获得了 比表面积更大的Pd。
金属玻璃应用研究新进展——结论
可控的纳米 微结构
金属玻璃
获得具有较 大比表面积、 催化活性高 的Pd
主要参考文献
微观结构
在微观结构上,金属玻璃更像是非常黏稠的液体.金属玻璃 因此又被称作“被冻结的熔体”。 金属玻璃拥有无序的原子堆积结构,这和普通金属中的 原子晶格结构完全不同。
大部分的金属在冷却 时都会结晶,把它们的原 子排列成有规则的图案, 叫做格构 (lattice)。但如 果结晶不出现,原子便会 随机排列(random arrangement),成为金属 玻璃 (metallic glass)。普 通玻璃的原子也是随机排 列,但它不是金属。
水淬法制备
I.将高纯的镍、钯、磷、硼装入石英管,抽成高真空
后加热融化(用B2O3作助熔剂)
II.在熔融的样品达到1000℃后,采用水淬法迅速冷 却降温获得金属玻璃
金属玻璃应用研究新进展
首先,将该金属玻璃放 置在一个经典的电化学 测量三电极系统中,金 属玻璃作为工作电极, Hg/HgO电极作为辅助电 极,标准氢电极(SHE) 作为参比电极,用循环 伏安法进行充放电测试。
[1] Mukherjee S, Sekol R C, Carmo M, et al. Tunable Hierarchical Metallic‐Glass Nanostructures[J]. Advanced Functional Materials, 2013. [2] Wang J Q, Liu Y H, Chen M W, et al. Rapid Degradation of Azo Dye by Fe‐Based Metallic Glass Powder[J]. Advanced Functional Materials, 2013, 22(12): 2567-2570. [3] Yi J, Xia X X, Zhao D Q, et al. Micro‐and Nanoscale Metallic Glassy Fibers[J]. Advanced Engineering Materials, 2013, 12(11): 1117-1122. [4] Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method[J]. Journal of Materials Science, 2012, 41(3): 763-777. [5] Tamura T, Maki S, Kamikihara D, et al. Effect of purity and superheating on the glass-forming ability of Mg-Cu-Y alloys by an electromagnetic vibration method[J]. Materials transactions, 2007, 48(7): 1617-1620. [6] Madge S V, Greer A L. Effect of Ag addition on the glass-forming ability and thermal stability of Mg–Cu–Y alloys[J]. Materials Science and Engineering: A, 2004, 375: 759-762.
主要物理特性
金属玻璃的强度有多高呢?
金属玻璃家族的屈服强度分布于从0.5GPa到6GPa的范围,而已知的 铁基或钴基金属玻璃强度一般为3~6GPa。 也就是说, 假如拿一个重约 1.5吨的小汽车来说,如果用普通钢材支撑它,大概需要7~10根直径2毫
米的钢筋,而改用铁基金属玻璃我们只需要1根就够了。
1.甩带法
甩带法是制备金属玻璃条带最常用的方法之一 • 工艺流程
I. 首先将破碎并清洗后的母合金在高真空氩气保护
气氛下感应加热熔化。 II. 利用惰性气体将合金液体喷射到高速旋转的铜辊
上,合金液遇到铜辊将迅速凝固并借助离心力抛
离辊面,得到连续薄带。
甩带机 甩带法可以获得105~106K/s的高冷却速率,因此 能大大抑制晶体相析出,从而得到完全金属玻璃材料。
金属玻璃是玻璃吗?透明吗? 透明是玻璃的本质吗?
金属玻璃是玻璃态物质,一般是不透明的(块体、普通条带),但是当厚度 降到纳米级别后就变得透明了。是否透明(透射可见光)是由材料的电子结构决 定的,很多晶态的绝缘体(如NaCl,氧化物、聚合物)也都是透明的。所以透明 不是玻璃的本质;原子无序排列是玻璃的本质。
2.铜模吸铸法
• 工艺流程
I. 将合金放入磁悬浮电炉中, 通电 流加热 II. 待合金完全熔化均匀后将铜模向 下移动 III. 等石英管伸入到熔融合金中时打 开阀门, 利用压力罐和熔融合金 表面之间的压差把熔融合金快速 吸入铜模 IV. 熔体在铜模中快速激冷得到所需 试样.
制得样品示意图
优点:电弧熔炼合金无污染、均匀性好, 铜模冷却 速率较快, 制备效率高 缺点:制备的样品尺寸比较小
高分辨透射电子显微镜拍摄得到的照片
主要物理特性
不象玻璃,一般不透明 机械性能(mechanical):高强度、高硬度、耐摩擦和高弹 性,不易破碎和不易变形 (deform) 软磁性(magnetic) 耐腐蚀性 广泛应用:
(a) Zr基块体金属玻璃制造的商 业化高尔夫球头; (b) 用块体金属玻璃制备的手机 的外壳; (c) 放在手指上的由块体金属玻 璃制备的微小齿轮
25mmPd40Ni40P20非晶圆柱。
4.浇铸法
浇铸法一般用于对玻璃形成能力较强的合金体系。 • 工艺流程 I. 首先将母合金在高真空氩气保 护气氛下感应加热熔化。 II. 熔化均匀且具有一定过热度的 情况下直接将合金熔体浇注入 铜模中,冷却后形成柱状样品。
翻转浇铸炉
优点:制备过程简单,冷却速率较快,效率高,还可以浇注一 定形状的样品,可批量生产。 缺点:但易于形成气孔, 且样品的尺寸有限。