电子技术的发展与应用综述
电气工程及其自动化毕业论文文献综述

电气工程及其自动化毕业论文文献综述引言:电气工程及其自动化作为一门广泛应用于各个领域的学科,在当代社会中扮演着重要的角色。
本文旨在通过对电气工程及其自动化领域的相关文献进行综述,探讨该领域的前沿研究进展、主要应用领域以及未来发展方向,为电气工程及其自动化领域的研究、应用和教学提供参考。
一、智能电网技术的发展及应用智能电网(Smart Grid)是当前电气工程及其自动化领域的研究热点之一。
智能电网通过引入信息技术和通信技术,实现对能源的高效管理和优化利用。
在智能电网技术的发展中,例如智能电表、分布式能源管理系统和电网保护自动化装置等方面取得了重要进展,并在能源领域的供电、调度、储能等方面发挥着重要作用。
二、电力系统稳定性研究电力系统稳定性是电气工程及其自动化领域中关于电力系统安全运行的关键问题之一。
通过分析电力系统中的发电机、变电站、输电线路等关键设备的可靠性和稳定性,可以保障电力系统的供电可靠性和安全性。
针对电力系统稳定性问题,研究者通过模型建立和分析,提出了一系列可行的解决方案,如控制设计、优化算法和故障检测技术等。
三、电力系统保护技术研究电力系统保护技术是电气工程及其自动化领域中非常重要的研究方向。
电力系统保护技术主要涉及到电力系统中各类故障的检测与定位、故障信息处理以及保护设备的选型等问题。
通过对电力系统保护技术的研究,可以提高电力系统的安全性、稳定性和可靠性,为电力系统的正常运行提供有力的保障。
四、电力电子技术的应用电力电子技术是电气工程及其自动化领域中的重要分支,涉及DC/AC变换器、交流电机驱动、逆变器等技术。
近年来,电力电子技术在可再生能源发电系统、电动汽车充电技术、高压直流输电系统等领域得到了广泛应用。
通过电力电子技术的发展和应用,可以提高电力系统的能量转换效率和控制精度。
五、人工智能技术在电气工程中的应用人工智能技术在电气工程及其自动化领域中的应用日益广泛。
例如,基于人工智能技术的电力系统故障诊断、电力系统优化调度、电力负荷预测等领域取得了显著的成果。
综述现代电力电子技术在电力系统中的发展现状

综述现代电力电子技术在电力系统中的发展现状1. 引言1.1 电力电子技术在电力系统中的重要性电力电子技术在电力系统中的重要性体现在多个方面。
电力电子技术可以实现电力系统的高效能转换。
传统的电力系统中,能源的传输和转换过程存在能量损耗和效率低下的问题。
而通过应用先进的电力电子技术,可以实现电能的高效转换,提高系统的能源利用率。
电力电子技术还可以提高电力系统的稳定性和可靠性。
在传统电力系统中,电网的运行容易受到外部因素的影响,导致电能供给不稳定,造成供电问题。
通过引入电力电子技术,可以实现电力系统的智能化控制和优化管理,提高系统的稳定性和可靠性。
电力电子技术在电力系统中的应用具有重要意义,不仅可以提高系统的效率和稳定性,还可以推动电力系统向智能化、可持续发展的方向迈进。
1.2 电力电子技术发展的背景电力电子技术是指利用电子器件和电子电路来控制和转换电力的技术。
在电力系统中,电力电子技术的应用越来越广泛,其发展已经成为电力系统发展的重要驱动力。
电力电子技术的背景可以追溯到20世纪60年代,当时电力系统开始面临一系列新的挑战,如电力负载的快速增长、电力系统的不稳定性、传统直流和交流系统的柔性度不足等问题。
为了应对这些挑战,研究者们开始积极探索新的电力转换技术,逐渐形成了现代电力电子技术。
现代电力电子技术主要包括功率半导体器件、PWM调制技术、微电网技术、智能电网技术等。
这些技术的发展为电力系统的稳定运行、高效能利用、智能化管理提供了重要支持。
随着可再生能源的快速发展和成熟,电力电子技术在可再生能源集成和智能电网建设中也扮演着至关重要的角色。
电力电子技术的背景是电力系统发展的需要,是科技进步和市场需求的结果,是实现清洁、可靠、高效能源供应的必然选择。
【字数:234】2. 正文2.1 传统电力系统存在的问题1. 能效低下:传统电力系统在能源传输和转换过程中存在能量损耗严重的问题,导致能效较低。
在电力系统中,直流到交流的转换、电压调节和功率转换都需要耗费大量能量。
综述现代电力电子技术在电力系统中的发展现状

综述现代电力电子技术在电力系统中的发展现状现代电力电子技术是指利用半导体器件和电子电路技术来实现对电能的控制、调节和变换的一种技术。
随着电力系统的不断发展和变化,电力电子技术逐渐成为电力系统的关键技术之一。
它在电力系统中的应用已经成为提高电力系统效率、稳定性和可靠性的重要手段之一。
本文将对现代电力电子技术在电力系统中的发展现状进行综述,以期为相关领域的研究和发展提供参考。
现代电力电子技术在电力系统中有着广泛的应用,主要包括以下几个方面:1. 柔性直流输电技术柔性直流输电技术利用了电力电子器件的优势,实现了电力系统的控制和灵活性,提高了系统的稳定性和可靠性。
通过柔性直流输电技术,可以实现电力系统的电能调度和电能优化,提高了电力系统的运行效率。
2. 智能电网技术智能电网技术是近年来电力系统中的热点研究领域之一。
电力电子技术在智能电网技术中发挥着重要作用,可以实现对电力系统的监测、控制和调节,提高了电网的稳定性和安全性。
智能电网技术还可以实现对分布式能源的集成和管理,促进新能源的大规模应用。
3. 高压直流输电技术高压直流输电技术是利用电力电子技术实现电能的长距离传输的一种技术。
由于高压直流输电技术具有输电损耗小、占地少、环保等优势,因此在远距离大容量输电方面具有得天独厚的优势。
4. 变频调速技术变频调速技术是利用电力电子技术实现对电机转速的调节和控制的一种技术。
变频调速技术在工业生产和交通运输等领域有着广泛的应用,可以提高设备的运行效率和节能减排的效果。
1. 电力电子器件的发展随着半导体器件技术的不断提高,各种电力电子器件的性能不断改善,功率密度不断提高,损耗不断降低。
目前,IGBT、GaN、SiC等新型器件已经在电力电子领域中得到广泛应用,为电力电子技术的发展提供了更为丰富和多样的选择。
2. 控制技术的发展电力电子技术的发展离不开控制技术的支撑。
随着数字信号处理技术、智能控制算法等方面的不断改进,电力电子技术的控制性能不断提高,控制精度不断提高,控制速度不断提高,控制可靠性不断提高。
电子信息工程研究热点及趋势综述

电子信息工程研究热点及趋势综述电子信息工程是现代科技的重要领域之一,涵盖了广泛的学科和研究方向。
随着科技的发展和创新的推动,电子信息工程领域的研究热点和趋势也在不断变化。
本文将对电子信息工程领域的研究热点及趋势进行综述,并探讨未来的发展方向。
1. 人工智能与机器学习人工智能和机器学习是当前研究的热点,也是电子信息工程领域的重点研究方向。
通过利用大数据和深度学习算法,人工智能在图像识别、语音识别、自然语言处理等方面取得了重要的突破。
未来,人工智能将在智能交通、智能制造、智能医疗等领域得到更广泛的应用。
2. 物联网技术物联网技术是将传感器、通信技术和互联网相结合的重要技术,已经渗透到了我们的生活中。
物联网技术的热点研究方向包括无线传感网络、数据安全与隐私保护、物联网系统架构等。
未来,物联网将深入到各个行业,实现万物互联,为人们提供更加智能、便利的生活方式。
3. 集成电路设计与制造集成电路是电子信息工程领域的核心技术之一,对于现代电子产品的发展起到了重要的推动作用。
集成电路设计与制造的研究热点主要集中在超大规模集成电路(VLSI)设计、射频集成电路设计等方面。
随着电子产品的日新月异,未来集成电路设计与制造将迎来更高的集成度、更低的功耗以及更高的可靠性要求。
4. 光通信与光电器件随着信息传输速度的不断提高,光通信作为一种高速、大容量传输方式备受关注。
光通信的研究热点主要包括高速光通信系统、光纤通信网络、光纤传感技术等方面。
光电器件作为光通信领域的重要组成部分,也在不断发展。
未来,光通信与光电器件将继续研究新的材料和结构,以满足更高的传输速率和更广泛的应用需求。
5. 人机交互技术人机交互技术是研究人与计算机之间交互方式的领域,目前已经涌现出一些研究热点。
虚拟现实技术、增强现实技术以及自然用户界面等都是最近研究的热点方向。
在未来,人机交互技术将更加注重用户体验和智能化,为人们创造更加自然、便捷的交互方式。
6. 数据科学与大数据分析数据科学和大数据分析在电子信息工程领域也占据着重要地位。
电子信息工程中的网络与通信技术发展综述

电子信息工程中的网络与通信技术发展综述近年来,随着信息技术的快速发展,电子信息工程中的网络与通信技术也取得了长足的进步。
本文将对网络与通信技术的发展进行综述,以展示其在电子信息工程领域的重要性和应用前景。
一、网络技术的发展1. 互联网技术发展互联网技术是网络技术中最具影响力的一项,它的出现极大地改变了人们的生活方式和工作方式。
互联网的发展经历了从狭义的因特网到广义的互联网的演进过程,现如今已成为人们日常生活的重要组成部分。
互联网的快速发展,推动了电子商务、在线教育、社交媒体等相关产业的繁荣。
2. 无线通信技术的进步随着移动通信技术的不断发展,无线通信已经成为人们日常生活中不可或缺的一部分。
从2G、3G、4G到如今的5G,无线通信技术实现了高速度、低延迟和大容量的数据传输,极大地促进了信息传播和互联互通。
3. 物联网技术的崛起物联网技术是近年来网络技术领域的重要创新,它将各种物体与互联网进行连接,实现了智能化、自动化的管理和控制。
物联网的发展为各行各业带来了巨大的变革,包括智能家居、智慧城市、智能工厂等领域的发展。
二、通信技术的发展1. 光纤通信技术的进步光纤通信技术是目前最快、最可靠的通信传输方式之一。
光纤通信技术以其高带宽、低衰减、抗干扰等优势,广泛应用于电信、广播电视、数据传输等领域。
随着光纤通信技术的不断突破,更高速、更低成本的传输方式将进一步推动通信技术的发展。
2. 卫星通信技术的发展卫星通信技术作为一种远程通信方式,在信息传输、广播电视、天气预报等方面发挥着重要作用。
随着卫星通信技术的不断改进,卫星通信的带宽和数据传输速度逐渐提高,进一步促进了全球通信的无缝连接。
3. 5G通信技术的崛起5G通信技术是近年来通信技术领域的重要突破,具有较低的时延、较高的传输速度和大容量的特点。
5G通信技术的广泛应用将极大地改变人们的生活和工作方式,推动智能交通、远程医疗、虚拟现实等技术的快速发展。
三、网络与通信技术的应用前景1. 智能化生活随着物联网技术的发展和5G通信技术的普及,智能家居、智能交通等智能化生活方式将更加普及。
电力电子技术的发展与应用

电力电子技术的发展与应用作为电气自动化的学生,我们有必要对专业课程电力电子技术做个全面的了解。
我们先对电力电子的定义做了解,再对电子电力技术的发展做大致介绍,最后综述电力电子技术的应用。
电力电子技术,是使用电力电子器件对电能进行变换和控制的电子技术。
电力电子技术包括电力电子器件、电力电子设备和系统及其控制三个方面,涉及电力电子器件,电力电子设备和系统,电力电子技术在各个行业的应用。
与以信息处理为主的信息电子技术不同,电力电子技术主要用于功率(电力)变换,所变换“电力”功率的范围小到数瓦(W),大到数百兆瓦(MW)甚至吉瓦(GW)。
电力电子技术分为电力电子器件制造技术和变流技术,电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。
因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。
电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。
电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。
近代新型电力电子器件中大量应用了微电子学的技术。
电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。
电力电子技术的发展史:一般认为,电力电子技术的诞生是以1957年美国通用电气公司研制出第一个晶闸管为标志的。
晶闸管出现前的时期可称为电力电子技术的史前期或黎明期。
1904年出现了电子管,它能在真空中对电子流进行控制,并应用于通信和无线电,从而开启了电子技术用于电力领域的先河。
20世纪30年代到50年代,水银整流器广泛用于电化学工业、电气铁道直流变电所以及轧钢用直流电动机的传动,甚至用于直流输电。
1947年美国著名的贝尔实验室发明了晶体管,引发了电子技术的一场革命。
晶闸管时代,晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组,并且其应用范围也迅速扩大。
综述现代电力电子技术在电力系统中的发展现状

综述现代电力电子技术在电力系统中的发展现状【摘要】现代电力电子技术在电力系统中扮演着重要的角色,其应用范围和深度不断扩大,对电力系统的稳定性、效率和可靠性产生了深远影响。
本文通过介绍现代电力电子技术的基本概念和电力系统的发展背景,探讨了电力电子技术在电力系统中的应用以及电力电子器件的发展现状。
分析了电力电子技术在电力系统中的优势和面临的挑战,展望了其未来的发展方向。
总结了电力电子技术对电力系统的影响和其发展前景。
随着科技的不断进步,电力电子技术将继续发挥着重要作用,推动电力系统的现代化和智能化发展。
【关键词】关键词:现代电力电子技术、电力系统、应用、器件、优势、挑战、发展方向、影响、发展前景1. 引言1.1 现代电力电子技术的基本概念现代电力电子技术是一种以电子器件和数字控制技术为基础,利用变流器、整流器、逆变器等设备实现电能转换和调节的技术。
在电力系统中,电力电子技术可以实现电能的高效转换、稳定控制和灵活调节,从而提高电力系统的运行效率和稳定性。
电力电子技术的基本概念包括以下几个方面:首先是功率器件,如晶闸管、场效应管、绝缘栅双极型晶体管等,这些器件可以实现电能的无级调节和快速开关;其次是控制技术,如PWM调制技术、谐波抑制技术、闭环控制技术等,这些技术可以实现对电能转换过程的精确控制;此外还包括电力电子拓扑结构设计、热管理技术等方面。
现代电力电子技术的发展使得电力系统具备了更高的智能化、灵活性和稳定性,为电力系统的高效运行和接入可再生能源提供了重要支撑。
随着电力需求的不断增加和新能源的大规模接入,电力电子技术在电力系统中的应用前景十分广阔。
1.2 电力系统的发展背景随着工业化和城市化的进程,电力需求逐渐增长,传统的电力系统已经不能满足日益增长的电力需求。
为了提高电力系统的效率和可靠性,同时减少对环境的影响,人们开始寻求新的技术手段来改善电力系统。
电力系统的发展背景可以追溯到19世纪末的工业革命时期,当时人们开始使用电力来驱动工厂和机器。
电子信息工程领域的最新技术与应用研究综述

电子信息工程领域的最新技术与应用研究综述概述:电子信息工程是现代工程技术的重要领域之一。
随着科技的不断进步和创新,电子信息工程领域的技术也在不断演进和应用。
本综述将介绍一些目前在电子信息工程领域中最新的技术和应用。
一、人工智能在电子信息工程中的应用1. 机器学习:机器学习是人工智能领域的重要分支,它通过让计算机学习和识别模式来提高性能。
在电子信息工程领域,机器学习可以应用于图像和语音识别、自然语言处理等方面,从而实现智能化的系统和设备。
2. 深度学习:深度学习是机器学习的一种进化形式,它模拟人脑神经元网络的结构,可以自动化提取特征并进行复杂的模式识别。
在电子信息工程领域,深度学习可以应用于图像识别、智能交通系统等领域。
3. 智能机器人:随着机器人技术的不断进步,智能机器人在电子信息工程领域的应用越来越广泛。
智能机器人可以通过视觉、声音和触觉等感知方式与人类进行交互,并完成一系列任务,如服务机器人、工业机器人等。
二、物联网技术在电子信息工程中的应用1. 传感器网络:传感器网络是物联网中的重要组成部分,通过将传感器连接到互联网上,可以实现对现实世界的监测和控制。
在电子信息工程领域,传感器网络可以用于环境监测、智能家居、智能交通等领域。
2. 无线通信技术:物联网中的设备需要能够进行互联和通信,无线通信技术在其中起到了重要的作用。
例如,蓝牙、Wi-Fi、NFC等技术可以实现设备之间的无线连接和数据交换。
3. 大数据分析:物联网中生成的数据量庞大且复杂,如何从数据中提取有用的信息和知识成为一个挑战。
大数据分析技术可以帮助电子信息工程领域的研究人员对物联网数据进行处理和分析,以便辅助决策和优化系统性能。
三、光电子技术在电子信息工程中的应用1. 光纤通信:光纤通信是近年来兴起的一种通信方式,其具有高速、长距离传输等优点。
在电子信息工程领域,光纤通信技术可以用于构建高速互联网络,满足大数据时代对传输带宽的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《模拟集成电路基础》研究性学习报告电子技术的发展与应用综述学院:组员:指导教师:电子技术的发展与应用综述摘要:现代电子技术作为工程研究的核心,基础,在仿真工业日趋成熟,科学技术日新月异的今天,极大地推动了自动化领域的控制技术的发展。
这种发展对各行各业产生的影响巨大。
本文简要介绍了电子技术的发展历程,并总结了电子技术在自动化领域中的典型应用、特点、调试手段、方法、工艺和功能电路实现手段,并对其今后的发展做一定的展望,有助于我们把握该领域的发展方向及新的技术信息。
关键词:电子技术;自动化;控制理论;制作工艺;应用与发展1.电子技术的含义与分支电子技术包括信息电子技术和电力电子技术两大分支。
通常所说的模拟电子技术和数字电子技术属于信息电子技术。
电力电子技术是应用于电力领域的电子技术。
模拟电子技术是整个电子技术的基础,在信号放大、功率放大、整流稳压、模拟量反馈、混频、调制解调电路领域具有无法替代的作用。
与模拟电路相比,数字电路具有精度高、稳定性好、抗干扰能力强、程序软件控制等一系列优点。
从目前的的发展趋势来看,除一些特殊领域外,以前一些模拟电路的应用场合,大有逐步被数字电路所取代的趋势,如数字滤波器等。
而电力电子技术的发展是以电力电子器件为核心,伴随变换技术和控制技术的发展而发展的。
2.电子技术的发展历史电子技术是在19世纪末叶无线电发明之后才发展起来的一门重要学科。
它的发展是与电子器件的发展紧密结合的。
随着电子器件的不断更新,电子技术的发展经过了以下几个阶段。
1.1分立元件阶段该阶段主要由1905年——1959年。
在这几十年中,真空三极管问世,且用它构成的电子电路能够产生从低频到微波范围的振荡,可以放大各种微弱的信号。
从而使电子技术进入了实际应用阶段。
时间推移至20世纪40年代末,出现了晶体三极管,由于晶体管具有体积小,轻重量,功耗低,工作可靠性高等一系列优点,使它在许多领域中取代了电子管。
其实,三极管的出现在一定程度上是由在导体物理的发展来奠基的。
因为构成晶体管的材料,大部分是硅——这种性能良好的半导体。
所以,现在也有人将晶体管的发明称作电子技术发展的里程碑,是有历史依据的。
自从晶体管出现,电子电路进入了晶体管电路阶段。
1.2集成电路阶段该阶段从1959开始,即集成电路的问世开始,强烈地推动了整个电子技术的历程。
所谓的集成电路,就是在一块小的基片上光刻出多个晶体管、电阻和电容器件,并将它们连接成完成一定功能的电子电路。
有这样的技术基础,集成电路由起初的小规模集成电路(SSI)发展到中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)。
形成了集成度逐渐提高,器件尺寸逐渐减小的格局。
目前,单片集成度已经能够达到数千万个元、器件,从而可将器件、电路与系统融合于一体,构成一个集成电子系统。
大规模和超大规模集成电路的出现,、使电子技术装置发生了根本变化。
电子设备的功能、速率、体积、功耗、可靠性诸方面都取得了惊人的成就。
一场电子技术的革命已经在当今科技的大环境中掀起,电子技术发展至今,已经进入了“微电子学”时代。
这是一个新纪元,也是新一代电子技术的起点!2.电子技术在自动化专业中的应用自动化专业主要研究的是自动控制的原理和方法,自动化单元技术和集成技术及其在各类控制系统中的应用。
它以自动控制理论为基础,以电子技术、电力电子技术、传感器技术、计算机技术、网络与通信技术为主要工具,面向工业生产过程自动控制及各行业、各部门的自动化。
在自动化领域,电子技术作为一项基本技能,是进行该专业研究的基础。
只有掌握电子技术,才能更好地进行控制系统的设计等。
现在,电子技术在自动化领域中的典型应用主要体现在控制理论中。
2.1 电子技术在自动化领域的基本发展20世纪40年代发明的电子数字计算机开创了数字程序控制的新纪元﹐虽然当时还局限于自动计算方面,但ENIAC和EDVAC的制造成功﹐开创了电子数字程序控制的新纪元,并为60~70年代在控制系统中广泛应用程序控制和逻辑控制以及广泛应用电子数字计算机直接控制生产过程奠定了基础。
20世纪50年代末微电子技术有了新的突破。
1958年出现晶体管计算机﹐1965年出现集成电路计算机﹐1971年出现单片微处理机。
微处理机的出现对控制技术产生了重大影响﹐控制工程师可以很方便地利用微处理机来实现各种复杂的控制﹐最终使综合自动化成为现实。
直到现在,即使自动化领域已有着突飞猛进的发展,但是却依然离不开电子技术的支持。
2.2 电子技术在自动化领域的制作工艺、特点、调试方法在自动化领域中,自动化的实现过程中最基本最重要的就是的自动控制电路。
自动控制电器是按照信号或某个物理量的变化自动动作的,常用的自动控制电路有无触点开关、电流继电器、速度继电器、压力式温度继电器和晶体管时间继电器等。
通过这些自动控制电路,可以在生活生产中真正的实现过程自动化,管理自动化等。
然而,这些看似深奥的自动控制电路,却是由最基本的电子元件——晶体管组成的。
以无触点式开关电路为例。
开关电路是最常用的自动控制电路之一,它所研究的问题,主要是用什么样的方法和电路来产生、变换、传递、放大和测量各种信号。
自动控制中大多数开关电路时用二极管或三极管制成的。
二极管具有单向导电性,即当二极管加正向电压时,二极管导通;加反向电压时,二极管截止,因此可以利用二极管做成无触点开关。
无解点开关相比于通常的刀开关、按钮开关、继电器开关等,动作速度快、消耗功率少、灵敏度高、体积小重量轻而且没有机械磨损。
而三极管有三种工作状态:饱和、截止和放大。
三极管应用于脉冲电路时,若三极管在饱和状态下工作,管压降很小,相当于开关接通;若三极管处于截止状态时,电源电压基本上降到集射极之间,阻抗很高,相当于开关断开;在由通到断的转换过程中管子工作于放大状态。
三管开关由通到断(或由断到通)的转换异常迅速,因此利用三极管作开关可以获得边沿很陡直的脉冲信号。
因此开关电路又叫脉冲电路,被广泛应用于生产过程的自动控制和遥测遥控等。
从某些方面讲,无触点式开关实际上是由晶体管等组成的继电器,这种继电器适用于微弱的控制电流或无触点控制。
但晶体管继电器也有它的缺点,即断通电阻比小(104-106),抗干扰能力差,易受温度变化的影响,参数稳定性较差等,而这些正是电磁继电器的优点。
因此,在实际使用中为了发挥各自的特长,弥补自身的不足,通常将它们结合使用,即用晶体管继电器作为感应元件,用有触点继电器作为执行元件,由此得到的继电器称为混合式继电器。
随着科技的发展,生产生活都逐步的趋向于自动化,而自动控制则趋向于小型化、集成化。
因此,作为实现自动控制元件小型化、集成化的最重要的基础,电子技术的发展水平,特别是基础元件三极管的发展水平,直接影响着自动控制的发展。
2.3 前沿技术:电子技术在汽车工业自动化中的应用典例汽车电子化被认为是汽车技术发展进程中的一次革命,汽车电子化的程度被看作是衡量现代汽车水平的重要标志,是用来开发新车型。
改进汽车性能最重要的技术措施,就应该按照时代的趋势,将电子技术融入到汽车的各设备中,使汽车智能化。
目前,电子技术已经深入到汽车的所有系统,电子门窗,动力转向,更有当今技术先进的电子全球定位。
在此,着重介绍ABS防抱死系统。
ABS防抱死系统是一个全电子化自动控制系统,是针对车辆产生侧滑造成事故所研制的。
针对这种产生侧滑现象的根本原因,汽车专家就研制出车用ABS这样一套防滑制动装置。
该系统的问世!正是为了改变汽车因车轮抱死而引起的危害。
ABS是英文Anti-lock Brakes System的缩写,中文意思为防抱死制动装置。
顾名思义,就是制动时防止车轮抱死的装置。
它的工作原理是:当车轮制动时,安装在车轮上的传感器或者是测速雷达立即能感知车轮是否抱死,并将信号传给电脑。
对抱死的车轮,电脑马上相应降低该车轮的制动力!车轮又继续转动。
转动到一定程度,电脑又控制其施加制动,保证车轮既受到制动又不致抱死。
这样不断重复,直至汽车完全停下来。
在制动过程中,电子控制装置根据车轮转速传感器输入的车轮转速信号判定有车轮趋于抱死时,ABS才进入防抱死制动压力调节过程,电脑在一秒钟之间对车轮进行几百次的检测,并同时对制动系统进行数十次乃至数百次的制动操纵。
也就是不停的瞬间刹车,保证轮胎不抱死的情况下不停的操作。
在这里,电子设备充当着完全控制的角色。
例如在设计该系统时,电子技术的综合应用得到了体现,比如电源转换电路,应用了模拟电子技术:同时,也运用了数字电子技术,采用了芯片:从这个例子中,可以看到了电子技术的综合运用,其实我们生活中遇到的大多数电路是电子电路知识的综合应用。
分立运用在实际中不常见,就像在现实中很少见到电子电路中的分立元件一样,我们都是使用集成产品的。
同时,也可看出集成电路的高集成复杂性。
所以,电路的调试也是一项庞大的工程。
电子电路的设计需要扎实的基础,耐心的开发,以及对科研执着的求知精神。
3. 对电子技术的展望进入21世纪,电子技术进入了飞速发展的时代。
随着工艺技术的不断改进,使得器件的尺寸不断缩小,从而集成度不断提高,功耗降低,器件性能得到提高。
在电子技术在进入微电子时代的当下,其发展大致有一下几方面。
3.1 继续缩小器件的尺寸特征所谓的尺寸特征,就是指器件中最小线条宽度。
对MOS器件而言,通常指器件栅极所决定的沟道几何长度。
基于市场竞争,不断提高产品的性价比是微电子技术发展的动力。
缩小特征尺寸从而提高集成度是提高产品性价比的有效手段。
基于上述原因,在高新技术的推动下,集成电路自产生以来,以每3年提高4倍,加工尺寸1/2倍的速度生产。
这就是由Intel公司创始人之一的Gorden E.Moor博士总结的规律,被称作摩尔定律。
但是,随着器件尺寸缩小。
我们也面临着许多问题。
3.2 关键技术开发层次目前,集成器件的生产已经具备了大规模生产的条件,但是,仍然有许多开发与演剧要进一步完善。
关键的加工工艺——曝光技术还是一个大问题。
众所周知,器件特征尺寸之所以可以缩小,主要得益于曝光技术的进步。
但目前,曝光技术的方法仍然在研究之中。
在另一个关键技术——互连技术上,铜互连已在之前使用,但是在器件更小以后,同互连于低价常数绝缘材料共同使用的可靠性问题还有待研究。
3.3 基础研究层次未来的几十年间,面对电子电路高集成的特点,空间尺寸为纳米量级,时间尺度为飞秒量级的新器件将遇到其间结构,关键工艺,集成技术,散热问题,材料体系及理论基础方面的一系列问题。
具体的需要创新和重点的领域包括基于介观和量子物理基础的亚50纳米半导体器件的输运理论、器件模型、热障模型、模拟和仿真软件、新器件结构、高K栅介质材料和新栅结构、电子束步进光刻、超细线条刻蚀等工艺技术。