运筹学教程(第三版)清华大学出版社出版 郭耀煌 胡远权编著 习题答案习题答案(第七章)
运筹学第三版胡运权郭耀煌黄色封皮第九and十章排队论习题答案

运筹学第三版胡运权郭耀煌黄⾊封⽪第九and⼗章排队论习题答案9.1 有A,B,C,D,E,F 6项⼯作,关系分别如图9-38(a),(b),试画出⽹络图。
9.2 试画出下列各题的⽹络图(见表9-8,表9-9,表9-10),并为事项编号。
9.3 设有如图9-39,图9-40⽹络图,⽤图上计算法计算时间参数,并求出关键路线。
9.4 绘制表9-11,表9-12所⽰的⽹络图,并⽤表上计算法计算⼯作的各项时间参数、确定关键路线。
9.5 某⼯程资料如表9-13所⽰。
要求:(1)画出⽹络图。
(2)求出每件⼯作⼯时的期望值和⽅差。
(3)求出⼯程完⼯期的期望值和⽅差。
(4)计算⼯程期望完⼯期提前3天的概率和推迟5天的概率。
解:每件⼯作的期望⼯时和⽅差见表9-13的左部。
⼯程完⼯期的期望值为32个⽉,⽅差为5(1+1+1+1+1)。
⼯程期望完⼯期提前3天的概率为0.09,推迟5天的概率为0.987。
9.6 对图9-41所⽰⽹络,各项⼯作旁边的3个数分别为⼯作的最乐观时间、最可能时间和最悲观时间,确定其关键路线和最早完⼯时间的概率。
根据关键线路,再考虑到其他线路上的时差很多,可知最早完⼯时间应该等于关键线路上各个⼯作最早完⼯时间之和:4+2+6+2+3=2=19 。
概率为0.005 。
9.7 某项⼯程各道⼯序时间及每天需要的⼈⼒资源如图9-42所⽰。
图中,箭线上的英⽂字母表⽰⼯序代号,括号内数值是该⼯序总时差,箭线下左边数为⼯序⼯时,括号内为该⼯序每天需要的⼈⼒数。
若⼈⼒资源限制每天只有15⼈,求此条件下⼯期最短的施⼯⽅案。
解:最短⼯期还是15天。
各个⼯作的开始时间如下图所⽰:9.8 已知下列⽹络图有关数据如表9-14,设间接费⽤为15元/天,求最低成本⽇程。
解:将①→②缩短两天,总⼯期为25天,直接费⽤7420元,间接费⽤375元,最⼩总费⽤为7795元。
⽹络图和关键线路如下:9.9 ⼀项⼩修计划包括的⼯作如表9-15所⽰。
运筹学教程第三版清华大学出版社出版郭耀煌胡远权编著习题答案习题答案

运筹学教程(第二版)习题解答8.1 证明在9座工厂之间,不可能每座工厂只与其他3座工厂有业务联系,也不可能只有4座工厂与偶数个工厂有业务联系。
解:将有联系的工厂做一条连线。
如果仅有9座工厂只与其他3座工厂有业务联系,说明顶点次数之和为27,矛盾如果只有4座工厂与偶数个工厂有业务联系,其他5个工厂一定与奇数个工厂有业务联系,说明顶点次数之和还是奇数,矛盾。
8.2 有八种化学药品A、B、C、D、E、F、G、H 要放进贮藏室。
从安全角度考虑,下列各组药品不能贮存在同一室内:A—C,A—F,A—H,B—D,B—F,B—H,C—D,C—G,D—E,D—G,E—G,E—F,F—G,G—H,问至少需要几间贮藏室存放这些药品。
解:能贮存在同一室内的两种药品之间作一条连线。
贮存在同一室内的药品应该构成一个完全图。
ABG,CFH ,DE构成完全图。
故,存放这些药品最少需要 3 间储藏室。
8.36个人围成圆圈就座,每个人恰好只与相邻者不相识,是否可以重新就座,使每个人都与邻座认识?解:两个人认识作一条连线。
8.4判定图8-50中的两个图能否一笔画出,若能,则用图形表示其画法。
解:(a)图都是偶点,可以一笔画出。
(b)图只有两个奇点,一个奇点为起点,另一个奇点为终点。
8.5求解如图8-51所示的中国邮路问题,A点是邮局8.6分别用深探法、广探法、破圈法找出图8-52所示图的一个生成树。
8.7设计如图5-53所示的锅炉房到各座楼铺设暖气管道的路线,使管道总长度最(单位:m)。
8.8分别用避圈法和破圈法求图8-54所示各图的最小树8.9 给定权数1,4,9,16,25,36,49,64,81,构造—棵霍夫曼树。
8.10 如图8-55,v0是一仓库,v9是商店,求一条从v0到v9的最短路。
8.11 求图8-56中v1到各点的最短路8.12 求图8-57网络中各顶点间的最短路8.13 某设备今后五年的价格预测分别是(5,5,6,7,8),若该设备连续使用,其第j 年的维修费分别为(1,2,3,5,6),某单位今年购进一台,问如何确定更新方案可使5年里总支出最小(不管设备使用了多少年,其残值为0)解:最优解为:先使用两年,更新后再使用三年。
清华大学《运筹学教程》胡运权主编课后习题答案

3 x1 x2 x5 3
st
4 x1 3 x2 x3 x6
x1
2 x2
x4
4
6
x j 0(, j 1,,4)
cj
CB
xB
b
-M x5 3
-M
x6
6
0
x4
4
cj zj
-4 x1 1
-M x6 2
0
x4
3
cj zj
-4
-1 0
x1
x2
x3
3
1
0
4
3 -1
1
20
7M-4 4M-1 -M
小于0 ,因此已经得到唯一最优解,最优解为:
X * 2 5 ,9 / 5,1,0T
max Z 10x1 15x2 12x3
5x1 3x2 x3 9
(4)
st
5x1 2x1
6x2 x2 x3
15x3 5
15
x j 0(, j 1,,3)
39
1.8 已知某线性规划问题的初始单纯形
表和用单纯形法迭代后得到下面表格,试求括
弧中未知数a∼l值。
项目
X1 X2 X3 X4 X5
X4 6 (b) (c) (d) 1 0
X5 1 -1 3 (e) 0 1
Cj-Zj
a -1 2 0 0
X1 (f) (g) 2 -1 1/2 0
X5 4 (h) (i) 1 1/2 1
Cj-Zj
0 -7 (j) (k) (l)
6 4
x1 , x2 0
无穷多最优解
(蓝 色 线 段 上 的 点 都 是 最优 解 )
x1
6 5
,
x2
运筹学第三版课后习题答案 (2)

运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。
它包括数学模型的建立、问题求解方法的设计等方面。
b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。
它可以帮助组织提高效率、降低成本、优化资源分配等。
c)运筹学主要包括线性规划、整数规划、指派问题等方法。
习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。
它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。
运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。
1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。
在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。
在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。
在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。
在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。
习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。
在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。
在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。
在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。
第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。
其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。
习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。
运筹学教程第三清华大学出社出郭耀煌胡远权编著习题答案习题答案第九章PPT课件

page 13 27.11.2020
School of Management
运筹学教程
第九章习题解答
Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Pro.
Copyright 2004-2011 Aspose Pty Ltd.
Copyright 2004-2011 Aspose Pty Ltd.
page 12 27.11.2020
School of Management
运筹学教程
第九章习题解答
Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Pro.
Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Pro.
Copyright 2004-2011 Aspose Pty Ltd.
page 1 27.11.2020
School of Management
运筹学教程(第二版)
Copyright 2004-2011 Aspose Pty Ltd.
page 11 27.11.2020
School of Management
运筹学教程
第九章习题解答
Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Pro.
CopAyright152004-2- 011 AFspose5 Pty LDtd,E.
运筹学教程第三清华大学出社出郭耀煌胡远权编著习题答案习题答案第九章-PPT文档资料

运筹学教程
第九章习题解答
9.1 有A,B,C,D,E,F 6项工作,关系分别 如图9-38(a),(b),试画出网络图。
Evaluation only. ted with Aspose.Slides for .NET 3.5 Client Profile 5.2 Copyright 2019-2019 Aspose Pty Ltd.
page 10 2019/3/28
School of Management
运筹学教程
第九章习题解答
9.3 设有如图9-39,图9-40网络图,用图上计算法 计算时间参数,并求出关键路线。
Evaluation only. ted with Aspose.Slides for .NET 3.5 Client Profile 5.2 Copyright 2019-2019 Aspose Pty Ltd.
page 13 2019/3/28
School of Management
运筹学教程
o 同样适合胡运权 黄皮版的课后习题
Evaluation only. ted with Aspose.Slides for .NET 3.5 Client Profile 5.2 Copyright 2019-2019 Aspose Pty Ltd.
page 1 2019/3/28
School of Management
page 12 2019/3/28
School of Management
运筹学教程
第九章习题解答
Evaluation only. ted with Aspose.Slides for .NET 3.5 Client Profile 5.2 Copyright 2019-2019 Aspose Pty Ltd.
胡运权《运筹学教程》习题答案(第一章)[1]
![胡运权《运筹学教程》习题答案(第一章)[1]](https://img.taocdn.com/s3/m/5266ca4b767f5acfa1c7cd73.png)
第一章习题解答1.1 用图解法求解下列线性规划问题。
并指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解。
+=32min 21x x Z +=23max 21x x Z ⎪⎩⎪⎨⎧≥≥+≥+0,422664.)1(212121x x x x x x st ⎪⎩⎪⎨⎧≥≥+≤+0,124322.)2(212121x x x x x x st ⎪⎩⎪⎨⎧≤≤≤≤≤++=85105120106.max )3(212121x x x x st x x Z ⎪⎩⎪⎨⎧≥≤+−≥−+=0,23222.65max )4(21212121x x x x x x st x x Z 第一章习题解答无穷多最优解,,422664.32min )1(21212121⎪⎩⎪⎨⎧≥≥+≥++=x x x x x x st x x Z 是一个最优解3,31,121===Z x x 该问题无解⎪⎩⎪⎨⎧≥≥+≤++=0,124322.23max )2(21212121x x x x x x st x x Z 第一章习题解答85105120106.max )3(212121⎪⎩⎪⎨⎧≤≤≤≤≤++=x x x x st x x Z 唯最优解16,6,1021===Z x x 唯一最优解,该问题有无界解⎪⎩⎪⎨⎧≥≤+−≥−+=0,23222.65max )4(21212121x x x x x x st x x Z 第一章习题解答1.2 将下述线性规划问题化成标准形式。
1422245243min )1(432143214321⎪⎪⎧≤+−+−=−+−+−+−=x x x x x x x x x x x x Z .,0,,23243214321⎪⎪⎩⎨≥≥−++−无约束x x x x x x x x st ⎪⎩⎪⎨⎧≥≤≤−+−=++−+−=无约束321321321321,0,0624322min )2(x x x x x x x x x st x x x Z 第一章习题解答.2321422245243min )1(4321432143214321⎪⎪⎪⎨⎧≥−++−≤+−+−=−+−+−+−=x x x x x x x x x x x x st x x x x Z ,0,,4321⎪⎩≥无约束x x x x ⎪⎪⎩⎪⎪⎨⎧≥=−+−++−=+−+−+=−+−+−+−+−=0,,,,,232142222455243max 64241321642413215424132142413214241321x x x x x x x x x x x x x x x x x x x x x x x st x x x x x Z 第一章习题解答⎪⎪⎨⎧≥≤≤−+−=++−+−=无约束321321321321,0,0624322min)2(x x x x x x x x x st x x x Z ⎩⎪⎩⎪⎨⎧≥=++−+=−++−+−+=0,,,,6243322max 43231214323121323121323121x x x x x x x x x x x x x x st x x x x Z第一章习题解答634334max )3(3212121⎪⎪⎧=−+=++=x x x x x st x x Z 517,0,1,59,524,,1,0424321421=====⎪⎪⎩⎨=≥=++Z x x x x j x x x x j 该题是唯一最优解:)("第一章习题解答⎪⎧≤++−≤++++=151565935121510max 321321x x x x x x x x x Z 该题无可行解。
清华版《运筹学》(第三版)课后习题详解、...

解:用决策变量 x1, x2 , x3 , x4 , x5 , x6 分别表示 2:00~6:00, 6:00~10:00 ,10:00~14:
00 ,14:00~18:00,18:00~22:00, 22:00~ 2:00 时间段的服务员人数。
其数学模型可以表述为: min Z = x1 + x2 + x3 + x4 + x5 + x6
x1 + x6 >= 3 x1 + x2 >= 9 x2 + x3 >= 12 x3 + x4 >= 5 x4 + x5 >= 18 x5 + x6 >= 4 x1, x2 , x3, x4 , x5 , x6 ≥ 0
3、现要截取 2.9 米、2.1 米和 1.5 米的元钢各 100 根,已知原材料的长度是 7.4 米,问应如 何下料,才能使所消耗的原材料最省。试构造此问题的数学模型。
(0, 0, 0, 5, 2, 6)T ,Z=5。
初始单纯行表为:
cj
2
-1
1
1
CB
XB
x1
x2
x3
x4
1
x4
-1
1
1
1
0
x5
1
1
0
0
0
0
b
x5
x6
0
0
5
1
0
2
0
x6
2
1
1
0
0
1
6
σj
3
-2
0
0
0
0 z=0
(2)非基变量 x2 , x3 仍然取零, x1 由 0 变为 1,即 x1 =1, x2 =0, x3 =0,代入约束条件得一个可 行解 X= (1, 0, 0, 6,1, 4)T 。其目标函数值为 Z=8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
决策(分配资金) 决策(分配资金) 0 0 0 0 0 0 1 64 64 64 64 2 68 68 68 3 78 78 4 76
最优 决策 0 1 2 3 3
最优决策 的效益值 0 64 68 78 78
School of Management
运筹学教程
第七章习题解答
表7-20 项目 A B C 投资额 0 0 0 0 1 41 42 64 2 48 50 68 3 60 60 78 4 66 66 76 单位:万元 单位:
page 8 3 May 2011
School of Management
运筹学教程
第七章习题解答
工厂3 工厂 状态( 状态(可能的 投资数) 投资数) 0 1 2 3 4
运筹学教程
第七章习题解答
最优解: 购买1, 购买1, 购买3。 最优解: Al购买 , A2购买 , A3购买 。可靠性 为0.042。 。
page 13 3 May 2011
School of Management
运筹学教程
第七章习题解答
7.6 某工厂有 000台机器,可以在高、低两种不 某工厂有l 台机器, 台机器 可以在高、 同负荷下进行生产,假没在高负荷下生产时, 同负荷下进行生产 , 假没在高负荷下生产时 , 产品的 年产量s1和投入的机器数量y1的关系为s1=8y1, 机器的 年产量 和投入的机器数量 的关系为 完好率为0.7;在低负荷下生产时,产品的年产量s 完好率为 ; 在低负荷下生产时 , 产品的年产量 2 和 投入的机器数量y 的关系为s 投入的机器数量 2 的关系为 2=5y2 , 机器的完好率为 0.9。 现在要求制定一个 年生产计划 , 问应如何安排 年生产计划, 。 现在要求制定一个5年生产计划 使在5年内的产品总产量最高 年内的产品总产量最高。 使在 年内的产品总产量最高。 表示低负荷, 解:y=0表示低负荷,y=1表示高负荷 表示低负荷 表示高负荷 Y(1)=0 Y(2)=0 Y(3)=1 Y(4)=1 Y(5)=1 各月的产量如下: 各月的产量如下: X(1)=5000,X(2)=4500,X(3)=64800, , , , X(4)=4536,X(5)=3175.2 ,
page 6 3 May 2011
表7-19 1 5
2 3
3 2
4 1
School of Management
运筹学教程
第七章习题解答
表示生产量, 表示存储量, 解:xi表示生产量,Ii表示存储量,yi表示控制变 表示该月进行生产。 量, yi=1表示该月进行生产。 表示该月进行生产 该问题的模型如下: 该问题的模型如下: min=5*(x1+x2+x3+x4) +(I0+I1+I2+I3+I4) +4*(Y1+Y2+Y3+Y4); I0=0;I4=0; I0+x1-I1=5; I1+x2-I2=3; I2+x3-I3=2; I3+x4-I4=1; x1<6*Y1;x2<6*Y2;x3<6*Y3;x4<6*Y4; @bin(Y1);@bin(Y2);@bin(Y3);@bin(Y4); 运行模型后, 月生产 月生产5, 月生产 月生产6,最小费用为67。 运行模型后,1月生产 ,2月生产 ,最小费用为 。
page 7 3 May 2011
School of Management
运筹学教程
第七章习题解答
7.4 某公司有资金 万元,可向 ,B,C三个项目 某公司有资金4万元 可向A, , 三个项目 万元, 投资,已知各项目不同投资额的相应效益值如表7-20 投资,已知各项目不同投资额的相应效益值如表 所示,问如何分配资金可使总效益最大。 所示,问如何分配资金可使总效益最大。
运筹学教程(第二版) 运筹学教程(第二版) 习题解答
安徽大学管理学院
洪 文
电话: 电话:5108157(H),5107443(O) , E-mail: Hongwen9509_cn@
运筹学教程
第七章习题解答
7.1 现有天然气站 ,需铺设管道到用气单位 , 现有天然气站A,需铺设管道到用气单位E, 可以选择的设计路线如下图所示, 可以选择的设计路线如下图所示,Bl,…,D2各点是 中间加压站,各线路的费用已标在线段旁(单位:万 中间加压站,各线路的费用已标在线段旁 单位: 单位 元),试设计费用低的路线。 ,试设计费用低的路线。
工厂2 工厂 状态( 状态(可能的 投资数) 投资数) 0 1 2 3 4
page 10 3 May 2011
决策(分配资金) 决策(分配资金) 0 0 64 68 78 78 1 42 108 110 120 2 50 114 118 3 60 124 4 66
最优 决策 0 0 1 2 3
最优决策 的效益值 0 64 108 114 124
2 2 max F = x1 + 2 x 2 + x 3 ⋅ x3 − 4 x 2 − 2 x3 ( 2 ) x1 + x 2 + x3 = 3 xi ≥ 0, (i = 1, 2,3) 解: x1 = 1, x 2 = 1, x3 = 1, F = − 4
page 17 3 May 2011
page 11 3 May 2011
School of Management
运筹学教程
第七章习题解答
7.5 为保证某设备正常运转,需对串联工作的三 为保证某设备正常运转, 种不同零件A 分别确定备件数量。 种不同零件 l , A2 , A3 , 分别确定备件数量 。 若增加 备用零件的数量,可提高设备正常运转的可靠性, 备用零件的数量 , 可提高设备正常运转的可靠性 , 但 费用要增加,而总投资额为8千元。已知备用零件数与 费用要增加,而总投资额为 千元。 千元 它的可靠性和费用关系如表7-2l所示,求Al,A2,A3的 所示, 它的可靠性和费用关系如表 所示 备用零件数量各为多少时, 备用零件数量各为多少时 , 可使设备运转的可靠性最 高。
page 4 3 May 2011
School of Management
运筹学教程
第七章习题解答
page 5 3 May 2011
School of Management
运筹学教程
第七章习题解答
7.3 某厂每月生产某种产品最多 某厂每月生产某种产品最多600件,当月生产 件 的产品若未销出,就需存贮(刚入库的产品 刚入库的产品, 的产品若未销出,就需存贮 刚入库的产品,该月不付 存贮费)。月初就已存的产品需支付存储费, 存贮费 。月初就已存的产品需支付存储费,每100件 件 每月1千元 已知每100件产品的生产费为 千元。在进 千元。 件产品的生产费为5千元 每月 千元。已知每 件产品的生产费为 千元。 行生产的月份工厂要支出经营费4千元.市场需求如表 行生产的月份工厂要支出经营费 千元. 千元 7-19所示,假定 月初及 月底库存量为零,试问每月 所示, 月初及4月底库存量为零 所示 假定1月初及 月底库存量为零, 应生产多少产品,才能在满足需求条件下, 应生产多少产品,才能在满足需求条件下,使总生产 及存贮费用之和最小。 及存贮费用之和最小。 月份 产品(100件 产品(100件)
School of Management
运筹学教程
第七章习题解答
工厂1 工厂 状态( 状态(可 能的投资 数) 4 决策(分配资金) 决策(分配资金) 0 124 1 155 2 154 3 124 4 66 最优 决策 1 最优决 策的效 益值 155
最优解是:工厂 追加投资 百万,年利润41万 追加投资1百万 最优解是:工厂1追加投资 百万,年利润 万; 工厂2追加投资 百万,利润50万 工厂3追加投资 追加投资2百万 追加投资1百 工厂 追加投资 百万,利润 万;工厂 追加投资 百 利润64万 总利润是155万元。 万元。 万,利润 万。总利润是 万元
page 18 3 May 2011
School of Management
运筹学教程
第七章习题解答
7.10 用顺序解法计算 题,7.4题。 用顺序解法计算7.1题 题 解:略。
page 19 3 May 2011
School of Management
运筹学教程
第七章习题解答
7.11 某工厂生产三种产品,各种产品重量与利润 某工厂生产三种产品, 关系如表7-22所示,现将此三种产品运往市场出售, 所示, 关系如表 所示 现将此三种产品运往市场出售, 运输能力总重量不超过6t, 运输能力总重量不超过 ,问应运输每种产品各多少 件可使总利润最大。 件可使总利润最大。 只运产品2两件 最大总利润260(千元)。 两件, 解:只运产品 两件,最大总利润 (千元)。 产品 1 2 3
School解答
2 max F = 4 x1 + 9 x 2 + 2 x3 (3) 2 x1 + 4 x 2 + 3 x3 ≤ 10 xi ≥ 0, (i = 1, 2,3) 解: x1 = 0, x 2 = 2 .5, x3 = 0, F = 22 .5
page 16 3 May 2011
School of Management
运筹学教程
第七章习题解答
7.9 用动态规划方法求解: 用动态规划方法求解:
2 max F = x1 ⋅ x 2 ⋅ x3 (1) x1 + x 2 + x3 = 4 xi ≥ 0, (i = 1, 2,3) 解 : x1 = 1, x 2 = 2, x3 = 1, F = 4
表7-21 A3 0.1 0.2 0.7 备件数 1 2 3
page 12 3 May 2011