1.3.1二项式定理说课稿
《二项式定理》优秀教案

1.3.1 二项式定理【学习要求】1.能用计数原理证明二项式定理.2.掌握二项式定理及其展开式的通项公式.3.会用二项式定理解决与二项展开式有关的简单问题.【学法指导】 二项式定理是计数原理的一个应用,学习中要理解二项式中的有关元素,利用二项式系数及其性质解决有关问题1.二项式定理:公式 叫做二项式定理. 2.a +b n 展开式共有 项,其中 叫做二项式系数. 3.a +b n 展开式的第 项叫做二项展开式的通项,记作T r +1= 引入:2222)(b ab a b a ++=+3223333)(b ab b a a b a +++=+ =+4)(b a=+8)(b a =+n b a )(可以理解为:222221220222))(()(b ab a b C ab C a C b a b a b a ++=++=++=+3223333223213303333))()(()(b ab b a a b C ab C b a C a C b a b a b a b a +++=+++=+++=+ 3223333223213303333))()(()(b ab b a a b C ab C b a C a C b a b a b a b a +++=+++=+++=+44433422243144044)()()(b C ab C b a C b a C a C b a b a b a ++++=++=+一般地,对于任意正整数n ,有nn n k k n k n n n n n n n n n n b C b a C b a C b a C b a C a C b a +++++++=+---- 333222110)( 二项式定理: 一般地,对于 *N n ∈有nn n k k n k n n n n n n n n n n b C b a C b a C b a C b a C a C b a +++++++=+---- 333222110)( 这个公式表示的定理叫做二项式定理,公式右边的多项式叫做 二项式n b a )(+ 的 ,其中 kn C (∈{0,1,2,……,n})叫做 ,叫做二项展开式的通项,用 k k n k n k b a C T -+=1 表示,该项是展开式的第 项,展开式共有_____项想一想二项展开式有何特点? 1二项式系数规律:2指数规律:⑴各项的次数均为n, 即各项具有 形式。
《二项式定理 》优质课比赛说课稿

二项式定理(一)(说课稿)一、教材分析1.教材的地位和作用:本节课的教学内容是人教版《高中数学》系列2-3第一章1.3节(大约需要2课时,本次只说第一课时).在此之前,学生已经学习了两个计数原理以及排列、组合的有关知识,将本小节内容安排在计数原理之后学习,一方面是因为二项式定理的证明用到计数原理,可以把它作为计数原理的一个应用;另一方面也为学习随机变量及其分布做准备;另外,由二项式定理导出的一些组合数恒等式,对深化组合数的认识也有好处. 总之,二项式定理是综合性较强的、具有联系不同内容作用的知识,也是高考必考内容之一.2.教学重点:用计数原理分析()2a b+的展开式,归纳得出二项+、()3a b式定理及二项展开式的通项公式.3.教学难点:用计数原理分析二项式的展开过程,发现二项展开式各项系数的规律.二、目标分析根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节教学目标如下:知识目标:使学生经历定理的发现过程,直观了解二项式定理的内容,并且在此基础上进行简单应用;能力目标:通过观察二项展开式,掌握其基本特征,培养学生观察、分析、概括的能力;情感目标;A.揭示寻求二项式定理的方法,激发学生的求知欲;B.体会“由特殊到一般”这一重要的数学思想;C.感受二项展开式各项系数的规律,发现数学中的对称美.三、学法和教法分析1. 学法分析学法要突出自主学习、研讨发现.知识是通过学生自己积极思考、主动探索获得的,学生在教师引导下,通过观察、讨论、合作探究等活动来对知识、方法和规律进行总结,在课堂活动中注重引导学生,并让学生体会从局部到整体、从特殊到一般的方法获取知识的过程,让学生体验发现的喜悦,培养学生学习的主动性.2. 教法分析素质教育理论明确要求,教师是主导,学生是主体,只有教师在教学过程中注重引导,才能充分发挥学生的主观能动性,有利于学生创造性思维的培养和能力的提高.根据本节的教学内容、教学目标和学生的认知规律,我采用类比、引导、探索式相结合的方法,启发、引导学生积极思考本节所遇到的问题,引导学生归纳、猜想、探索新知识,从而使学生产生浓厚的学习兴趣和求知欲,体现学生的主体地位.四、教学程序设计分析五、板书设计附: 达标检测题1.()8x y +的展开式中,必不存在的项为( )(A )26x y (B )35x y (C )27x y (D )44x y2.()101x -的展开式中,第6项的系数是( )(A )610C (B )610C - (C )510C (D )510C - 3.()9m n +的展开式中,54m n 项的系数为_____________.4. 用二项式定理展开4⎫-⎝.。
1.3.1二项式定理(教案)

1. 3.1二项式定理教学目标:知识与技能:进一步掌握二项式定理和二项展开式的通项公式 过程与方法:能解决二项展开式有关的简单问题情感、态度与价值观:教学过程中,要让学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。
教学重点:二项式定理及通项公式的掌握及运用 教学难点:二项式定理及通项公式的掌握及运用 授课类型:新授课教 具:多媒体、实物投影仪第一课时一、复习引入:⑴22202122222()2a b a ab b C a C ab C b +=++=++;⑵3322303122233333()33a b a a b ab b C a C a b C ab C b +=+++=+++⑶4()()()()()a b a b a b a b a b +=++++的各项都是4次式, 即展开式应有下面形式的各项:4a ,3a b ,22a b ,3ab ,4b ,展开式各项的系数:上面4个括号中,每个都不取b 的情况有1种,即04C 种,4a 的系数是04C ;恰有1个取b 的情况有14C 种,3a b 的系数是14C ,恰有2个取b 的情况有24C 种,22a b 的系数是24C ,恰有3个取b 的情况有34C 种,3ab 的系数是34C ,有4都取b 的情况有44C 种,4b 的系数是44C ,∴4413222334444444()a b C a C a b C a b C a b C b +=++++. 二、讲解新课:二项式定理:01()()n n nr n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈⑴()n a b +的展开式的各项都是n 次式,即展开式应有下面形式的各项:n a ,n a b ,…,n r r a b -,…,n b ,⑵展开式各项的系数:每个都不取b 的情况有1种,即0n C 种,na 的系数是0n C ; 恰有1个取b 的情况有1n C 种,na b 的系数是1n C ,……,恰有r 个取b 的情况有rn C 种,n rr ab -的系数是rn C ,……,有n 都取b 的情况有n n C 种,nb 的系数是nn C , ∴01()()n n n r n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈,这个公式所表示的定理叫二项式定理,右边的多项式叫()n a b +的二项展开式,⑶它有1n +项,各项的系数(0,1,)rn C r n =叫二项式系数,⑷r n r r n C a b -叫二项展开式的通项,用1r T +表示,即通项1r n r r r n T C a b -+=. ⑸二项式定理中,设1,a b x ==,则1(1)1n r rn n x C x C x x +=+++++三、讲解范例:例1.展开41(1)x+.解一: 411233444411111(1)1()()()()C C C x x x x x +=++++23446411x x x x=++++. 解二:4444413123444111(1)()(1)()1x x C x C x C x x x x⎡⎤+=+=++++⎣⎦ 23446411x x x x=++++.例2.展开6.解:6631(21)x x =-61524332216666631[(2)(2)(2)(2)(2)(2)1]x C x C x C x C x C x x=-+-+-+ 32236012164192240160x x x x x x=-+-+-+.例3.求12()x a +的展开式中的倒数第4项解:12()x a +的展开式中共13项,它的倒数第4项是第10项,9129933939911212220T C x a C x a x a -+===.例4.求(1)6(23)a b +,(2)6(32)b a +的展开式中的第3项.解:(1)24242216(2)(3)2160T C a b a b +==, (2)24242216(3)(2)4860T C b a b a +==.点评:6(23)a b +,6(32)b a +的展开后结果相同,但展开式中的第r 项不相同例5.(1)求9(3x+的展开式常数项; (2)求9(3x +的展开式的中间两项 解:∵399292199()33r r r r r r r x T C C x ---+==⋅,∴(1)当390,62r r -==时展开式是常数项,即常数项为637932268T C =⋅=; (2)9(3x +的展开式共10项,它的中间两项分别是第5项、第6项,489912593423T C xx--=⋅=,15951092693T C x --=⋅=例6.(1)求7(12)x +的展开式的第4项的系数;(2)求91()x x-的展开式中3x 的系数及二项式系数解:7(12)x +的展开式的第四项是333317(2)280T C x x +==,∴7(12)x +的展开式的第四项的系数是280. (2)∵91()x x-的展开式的通项是9921991()(1)r rr r r r r T C xC x x--+=-=-, ∴923r -=,3r =,∴3x 的系数339(1)84C -=-,3x 的二项式系数3984C =.例7.求42)43(-+x x 的展开式中x 的系数分析:要把上式展开,必须先把三项中的某两项结合起来,看成一项,才可以用二项式定理展开,然后再用一次二项式定理,,也可以先把三项式分解成两个二项式的积,再用二项式定理展开解:(法一)42)43(-+x x 42]4)3[(-+=x x02412344(3)(3)4C x x C x x =+-+⋅22224(3)4C x x ++⋅3234444(3)44C x x C -+⋅+⋅,显然,上式中只有第四项中含x 的项,∴展开式中含x 的项的系数是76843334-=⋅⋅-C(法二):42)43(-+x x 4)]4)(1[(+-=x x 44)4()1(+-=x x)(4434224314404C x C x C x C x C +-+-=0413222334444444(4444)C x C x C x C x C +⋅+⋅+⋅+⋅ ∴展开式中含x 的项的系数是34C -334444C +768-=.例8.已知()()nmx x x f 4121)(+++= *(,)m n N ∈的展开式中含x 项的系数为36,求展开式中含2x 项的系数最小值分析:展开式中含2x 项的系数是关于n m ,的关系式,由展开式中含x 项的系数为36,可得3642=+n m ,从而转化为关于m 或n 的二次函数求解解:()()1214m nx x +++展开式中含x 的项为1124m n C x C x ⋅+⋅=11(24)m n C C x +∴11(24)36m n C C +=,即218m n +=,()()1214mnx x +++展开式中含2x 的项的系数为t =222224mn C C +222288m m n n =-+-, ∵218m n +=, ∴182m n =-,∴222(182)2(182)88t n n n n =---+-216148612n n =-+23715316()44n n =-+,∴当378n =时,t 取最小值,但*n N ∈, ∴ 5n =时,t 即2x 项的系数最小,最小值为272,此时5,8n m ==.第四课时例9.已知n 的展开式中,前三项系数的绝对值依次成等差数列,(1)证明展开式中没有常数项;(2)求展开式中所有的有理项 解:由题意:1221121()22n n C C ⋅=+⋅,即0892=+-n n ,∴8(1n n ==舍去)∴818(rrrr T C-+=⋅82481()2r r r r C x x --=-⋅⋅()1638412r rr r C x -=-⋅08r r Z ≤≤⎛⎫⎪∈⎝⎭①若1+r T 是常数项,则04316=-r,即0316=-r , ∵r Z ∈,这不可能,∴展开式中没有常数项; ②若1+r T 是有理项,当且仅当4316r-为整数, ∴08,r r Z ≤≤∈,∴ 0,4,8r =,即 展开式中有三项有理项,分别是:41x T =,x T 8355=,292561-=x T 例10.求60.998的近似值,使误差小于0.001.解:66011666660.998(10.002)(0.002)(0.002)C C C =-=+-++-,展开式中第三项为2260.0020.00006C =,小于0.001,以后各项的绝对值更小,可忽略不计,∴66011660.998(10.002)(0.002)0.998C C =-≈+-=,一般地当a 较小时(1)1na na +≈+四、课堂练习:1.求()623a b +的展开式的第3项. 2.求()632b a +的展开式的第3项. 3.写出n 33)x21x (-的展开式的第r+1项.4.求()732x x+的展开式的第4项的二项式系数,并求第4项的系数.5.用二项式定理展开:(1)5(a ;(2)5.6.化简:(1)55)x 1()x 1(-++;(2)4212142121)x 3x 2()x 3x 2(----+7.()5lg xx x +展开式中的第3项为610,求x .8.求nx x 21⎪⎭⎫ ⎝⎛-展开式的中间项答案:1. 262242216(2)(3)2160T C a b a b -+==2. 262224216(3)(2)4860T C b a a b -+==3.2311(2rn rr n rrr r nn T C C x--+⎛⎫==- ⎪⎝⎭4.展开式的第4项的二项式系数3735C =,第4项的系数3372280C = 5. (1)552(510105a a a a a b =++; (2)52315(2040322328x x x x =+-. 6. (1)552(1(122010x x +=++; (2)1111442222432(23)(23)192x x x x x x--+--=+ 7. ()5lg xx x +展开式中的第3项为232lg 632lg 551010x x C xx ++=⇒=22lg 3lg 50x x ⇒+-=5lg 1,lg 2x x ⇒==-10,1000x x ⇒== 8. nx x 21⎪⎭⎫ ⎝⎛-展开式的中间项为2(1)n nn C -五、小结 :二项式定理的探索思路:观察——归纳——猜想——证明;二项式定理及通项公式的特点六、课后作业: P36 习题1.3A 组1. 2. 3.4 七、板书设计(略)八、教学反思:(a+b) n=这个公式表示的定理叫做二项式定理,公式右边的多项式叫做 (a+b)n的 ,其中rn C (r=0,1,2,……,n )叫做 , 叫做二项展开式的通项,它是展开式的第 项,展开式共有 个项.掌握二项式定理和二项展开式的通项公式,并能用它们解决与二项展开式有关的简单问题。
高中数学 1.3.1二项式定理教学案 新人教a版选修2-3

§1.3.1 二项式定理【教学目标】1.理解二项式定理及推导方法,识记二项展开式的有关特征,能对二项式定理进行简单应用;2.通过对二项式定理内容的研究,体验特殊到一般的发现规律,一般到特殊指导实践的认识事物过程。
【教学重难点】教学重点:二项式定理的内容及归纳过程;教学难点:在二项式展开的过程中,发现各项及各项系数的规律。
【教学过程】一、设置情景,引入课题引入:二项式定理研究的是(a+b)n的展开式。
如(a+b)2=a2+2ab+b2, (a+b)3=?,(a+b)4=?,那么(a+b)n的展开式是什么呢?二、引导探究,发现规律1、多项式乘法的再认识问题1:(a1+ b1)(a2+b2) (a3+ b3)展开式中每一项是怎样构成的?展开式有几项?2、(a+b)3展开式的再认识问题2:将上式中,若令a1=a2=a3=a, b1=b2= b3=b,则展开式又是什么?合作探究1:合并同类项后,为什么a2b的系数是3?教师引导:可以发现a2b是从(a+b)(a+b)(a+b)这三个括号中的任意两个中选a,剩下的一个括号中选b;利用组合知识可以得到a2b应该出现了C23· C11=3次,所以a2b的系数是3。
问题3:(a+b)4的展开式又是什么呢?可以对(a+b)4按a或按b进行分类:(1)四个括号中全都取a,得:C44a4(2)四个括号中有3个取a,剩下的1个取b,得:C34 a3· C11b(3)四个括号中有2个取a,剩下的2个取b,得:C24 a2· C22b2(4)四个括号中有1个取a,剩下的3个取b,得:C14 a· C33b3(5)四个括号中全都取b,得:C44b4小结:对于展开式,只要按一个字母分类就可以了,可以按a分类,也可以按b分类,再如:(1)不取b:C04 a4;(2)取1个b:C14a3b;(3)取2个b:C24a2b2;(4)取3个b:C34a b3;(5)取4个b:C44b4,然后将上面各式相加得到展开式。
高中数学1.3.1二项式定理(第一课时)教案新人教A版选修2-3.doc

课题1.3. 1 二项式定理(第一课时) 总课时数 53课型 新授课 编定人马克锋审核人马克锋执教时间2010 年 4 月 29 日学 知识 1.掌握二项式定理及其展开式的通项公式;习 目标 2.能运用二项式定理展开某些二项式,会求某些特定项.目 能力 通过探索二项式定理,培养学生观察问题发现问题, 归纳推理问题的能力.标 目标情感 激发学生学习兴趣、培养学生不断发现,探索新知的精神,并通过数学的对称美,培养学生的目标审美意识,通过展示、交流养成良好的学习品质,增强合作意识. 重点 二项定理的推导及其展开式的应用.难点 知识的发生过程,用计数原理证明二项式定理.教学方法自主探究、学案导学教学手段彩笔教学 过程师 生 活 动一、创设情境问题1:今天星期五,再过810 天的那一天是星期几?给 学 生 创 造 一 个 问题 2:因为 8=7+1,那么 810=( 7+1) 10 又如何展开呢?更一般的( a+b )10、 (a+b) n 如 “愤”和“悱”的何展开?这将是本节课要研究和学习的问题。
情境,激发学生的 二、新知探究求知欲望 . (一)预习提纲 ( 根据以下提纲,预习教材第 29-30 页,找出疑惑之处 )2 分钟1.运用多项式乘法法则写出( a+b )2、( a+b ) 3、(a+b ) 4 的展开式,并探究:①项数; ②各项次数;③字母 a 、 b 指数的变化规律,按 a 降幂 b 升幂填写 .( 1)(a+b) 2= (a+b)(a+b)=,合并同类项后展开式共 项,各项是的,它们分别为,每一项都是 a ____ b ___ (k ________) 的形式 .次学 生 小 组 讨 论 交流,对三个展开式 的进行探讨 .5 分钟( 2) (a+b) 3=(a+b)(a+b) (a+b)=,合 并同类 项后 展开 式共项 ,各 项 是 次 的 , 它们 分别 为,每一项都是 a ____ b ___ (k ________) 的形式 .( 3) (a+b) 4=(a+b)(a+b)(a+b)(a+b)=, 合 并同 类 项 后展 开 式 共 项 , 各 项 是 次 的 , 它 们 分 别 为,每一项都是a ____b ___ (k________) 的形式 .2.如何利用计数原理得到 (a+b) 2 ,(a+b) 3 , (a+b)4的展开式各项的系数呢?( 1)对于 (a+b) 2 : a 2 是从 __个( a+b )中取 __相乘而得到,相当于从 __个( a+b )中取 __个 b 的组合数 C__,因此 a 2 的系数是 C__.ab 是从 __个( a+b )中取 __,__个( a+b )中取 __相乘而得到,相当于从 __个( a+b )中鼓励学生亲身体验如何解决新问题,培养探究能力和合作精神.学生分组讨论6 分钟取 __个 b 的 合数 C__,因此 ab 的系数是 C__.b 2 是从 __个(a+b )中取 __相乘而得到, 相当于从 __个( a+b )中取 __个 b 的 合数 C__,因此 b 2的系数是 C__. (a+b) 2的展开式可用 合数表示 :(a+b) 2=(a+b) (a+b)=( 2) 于 (a+b)3:利用同 的 法探究得到含 a 3、 a 2b 、 ab 2、b 3 些 的系数分C__, C__, C__,C__,( a+b ) 3 的展开式可用 合数表示 :(a+b) 3=(a+b)(a+b)(a+b)=( 3) 于 (a+b)4:利用同 的 法探究得到含a 4、 a 3b 、a 2b 2、 ab 3、 b 4些 的系数分 C__、 C__、 C__、 C__、C__,( a+b ) 4 的展开式可用 合数表示 :(a+b) 4=(a+b)(a+b)(a+b)(a+b)=学生在探究 程中通 察、 , 比从而是 行必要的 和合理的猜想得出 .3. 根据以上 ,猜想 (a+b) n 的 展开式合 并同 后展开 式共 ,各是次的, 它 分,每一 都是 a ____b ___ (k ________) 5分的形式 . a n k b k (k 0,1,2,..., n) 从 __个( a+b )中取 __, __个( a+b )中取 __相乘而得到,相当于从 __个( a+b )中取 __个 b 的 合数 C__,因此 a n k b k ( k0,1,2,..., n) 的系数是 C__. 猜想 (a+b) n由特殊到一般,由 的展开式可用 合数表示 :感性到理性.(a+b)n=(n∈ N + )(二)二 式定理n(n∈ N )概念。
教学设计4:1.3.1 二项式定理

1.3.1 二项式定理教材分析《二项式定理》是多项式运算的推广.在多项式的运算中,把二项式展开成单项式之和的形式,即二项式定理有着非常重要的地位,它是带领我们进入微分学领域大门的一把金钥匙,只是在中学阶段还没有显示的机会.将本小节内容安排在计数原理之后来学习,一方面是因为二项式定理的证明要用到计数原理,可以把它作为计数原理的一个应用,另一方面也为学习随机变量及其分布做准备.另外,由于二项式系数是一些特殊的组合数,由二项式定理可导出一些组合数的恒等式,这对深化组合数的性质有很大好处.总之,二项式定理是综合性较强的、具有联系不同内容作用的知识.二项式定理的学习过程是应用两个计数原理解决问题的典型过程,其基本思想是“先猜后证”.与以往教科书比较,猜想不是通过对n取1、2、3、4的展开式的形式特征的分析而归纳得出,而是直接应用两个计数原理对(a+b)2展开式的项的特征进行分析.这个分析过程不仅使学生对二项式的展开式与两个计数原理之间的内在联系获得认识的基础,而且也是为证明猜想提供了基本思路.知识与技能1.能用计数原理证明二项式定理;2.会用二项式定理解决与二项展开式有关的简单问题.过程与方法1.运用归纳的方法,经历多项式的展开由2到n的过程;2.引导学生借助计数原理与组合知识证明二项式定理.情感、态度与价值观1.培养学生的归纳思想、化归思想,培养探究、研讨、综合自学应用能力;2.培养学生观察、归纳、发现的能力以及分析问题与解决问题的能力;3.培养学生的自主探究意识、合作精神,体验二项式定理的发现和创造历程,体会数学语言的简洁和严谨.培养学生从特殊到一般、从一般到特殊的认知能力.重点难点教学重点:用计数原理分析(a+b)2的展开式,得到二项式定理.教学难点:用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律.教学过程引入新课提出问题1:我们已学过计数原理、排列、组合的有关概念和公式,请同学们回顾:(1)两个计数原理的内容是什么?(2)排列的定义与排列数公式是什么?(3)组合的定义与组合数公式是什么?活动设计:学生先独立回忆,必要时可以看书,也可以求助同学.活动结果:(板书)(1)分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法;分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.(2)一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!. (3)一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.C m n=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!.设计意图:复习已经学过的计数原理、排列、组合的有关知识,让学生回顾认知基础,形成认知环境,为二项式定理的引入打下基础.提出问题2:如何利用两个计数原理得到(a+b)1,(a+b)2,(a+b)3的展开式?活动设计:教师提出问题,引导学生关注展开的两个步骤:(1)用乘法法则展开;(2)合并同类项.学生先独立思考,允许小组合作.活动成果:(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3设计意图:引导学生将(a+b)2与(a+b)3的展开式与两个计数原理联系起来,教师提醒学生,用计数原理分析展开式的项数,应当分析项中的字母是如何选取的,并引导学生分析同类项的个数,得到展开式的系数.提出问题3:(1)以a2b2项为例,有几种情况相乘均可得到a2b2项?这里的字母a,b各来自哪个括号?(2)既然以上字母a,b分别来自4个不同的括号,a2b2项的系数你能用组合数来表示吗?(3)你能将问题(2)所述的意思改编成一个排列组合的命题吗?活动设计:学生自由发言.活动成果:有4个括号,每个括号中有两个字母,一个是a、一个是b.每个括号只能取一个字母,任取两个a、两个b,然后相乘.设计意图:帮助学生找到求出展开式系数的基本方法.提出问题4:请用类比的方法,求出二项展开式中的其他各项系数,并将式子:(a+b)4=(a+b)(a+b)(a+b)(a+b)=()a4+()a3b+()a2b2+()ab3+()b4括号中的系数全部用组合数的形式进行填写.活动设计:先让学生独立思考,然后小组交流,教师巡视指导,并注意与学生交流.活动成果:展开式各项的系数:上面4个括号中,每个都不取b的情况有1种,即C04种,a4的系数是C04;恰有1个取b的情况有C14种,a3b的系数是C14,恰有2个取b的情况有C24种,a2b2的系数是C24,恰有3个取b的情况有C34种,ab3的系数是C34,有4个都取b的情况有C44种,b4的系数是C44,∴(a+b)4=C04a4+C14a3b+C24a2b2+C34a3b+C44b4.设计意图:巩固已有的思想方法,建立猜想与证明二项式定理的认知基础与理论依据.提出问题5:根据以上展开式,你能猜想一下(a+b)n的展开式是什么吗?活动设计:学生独立思考,自由发言,可以小组讨论.活动成果:学生可能猜出正确的展开式,但是不一定按照正确的顺序写出来,也不一定了解其中的规律,我们应该将问题进一步具体化,学生可能更容易发现新知.设计意图:通过学生对(a+b)n展开式的猜想,提高学生的归纳问题的能力,使学生体会新知,发现新知,理解新知,在获得新知的过程中体会数学的乐趣,从而提高学生学习数学的兴趣.提出问题6:请同学们根据猜想完成下式,并对所给答案给出说明:(a+b)n=(_)a n+(_)a n-1b+(_)a n-2b2+…+(_)a n-r b r+…+(_)b n(n∈N*)活动设计:先由学生独立完成,然后组织全班讨论,在讨论过程中要明确每一项的形式及其相应的个数,学生之间可以相互求助、辩论.活动成果:(1)(a+b)n的展开式的各项都是n次式,即展开式应有下面形式的各项:a n,a n-1b,…,a n-rb r,…,b n.(2)展开式各项的系数:每个都不取b的情况有1种,即C0n种,a n的系数是C0n;恰有1个取b 的情况有C 1n 种,a n -1b 的系数是C 1n ,…,恰有r 个取b 的情况有C r n 种,a n -r b r 的系数是C r n ,…,有n 个都取b 的情况有C n n 种,b n 的系数是C n n ,∴(a +b )n =C 0n a n +C 1n a n b +…+C r n a n -r b r +…+C n n b n (n ∈N ), 这个公式叫二项式定理,右边的多项式叫(a +b )n 的二项展开式.呈现二项式定理——(a +b )n =C 0n a n +C 1n a n -1b +C 2n a n -2b 2+…+C r n a n -r b r +…+C n n b n (n ∈N ) 设计意图:得出二项式定理,体会二项式定理的形成过程,理解二项式定理是由两个计数原理以及组合数公式得到的.由于这是本大节的起始课,按照学习从问题开始、从学生的原有知识结构开始,通过这样的原则与模式进行设计,而且这种意识要贯穿于整个课堂教学的始终,使学生从整体上把握本节要研究的主要问题、主要脉络是什么样的,这样就会使学生清楚本节的学习目标和路线图,是学有目标,研有方向,胸怀全局,先见森林再见树木的学习,其学习效果是不言而喻的.提出问题7:二项式定理展开式的系数、指数、项数的特点是什么?活动设计:学生自由发言,教师根据前面总结证明的二项展开式进行引导.活动成果:(1)它有n +1项,各项的系数C k n (k =0,1,…n )叫二项式系数;(2)各项的次数都等于二项式的次数n .设计意图:加深对二项式定理、二项展开式等概念、公式的理解.提出问题8:二项式定理展开式的结构特征是什么?哪一项最具有代表性?活动设计:学生自由发言,可以相互讨论,教师进行引导.活动成果:(板书)(1)字母a 按降幂排列,次数由n 递减到0,字母b 按升幂排列,次数由0递增到n ;(2)C k n a n -k b k 叫二项展开式的通项,用T k +1表示,即通项T k +1=C k n a n -k b k ; (3)字母a ,b 可以是数,式子或其他.设计意图:由此,学生得出二项式定理、二项展开式、二项式系数、项的系数、二项展开式的通项等概念,这是本课的重点.运用新知例1.展开(1+1x)4.解法一:(1+1x )4=1+C 14(1x )+C 24(1x )2+C 34(1x )3+(1x )4=1+4x +6x 2+4x 3+1x 4. 解法二:(1+1x )4=(1x )4(x +1)4=(1x )4[x 4+C 14x 3+C 24x 2+C 34x +1]=1+4x +6x 2+4x 3+1x 4. 点评:比较复杂的二项式,有时先化简,再展开会更方便.巩固练习1.求(2x -1x)6的展开式. 解:先将原式化简,再展开,得(2x -1x )6=(2x -1x)6=1x 3(2x -1)6=1x 3[(2x )6-C 16(2x )5+C 26(2x )4-C 36(2x )3+C 46(2x )2- C 56(2x )1+C 66]=64x 3-192x 2+240x -160+60x -12x 2+1x 3. 2.求(1+2x )7的展开式的第4项的二项式系数、项的系数.解:(1+2x )7的展开式的第4项是T 3+1=C 37×17-3×(2x )3=C 37×23×x 3=35×8x 3=280x 3. 所以展开式的第4项的二项式系数是35,系数是280.点评:①要注意展开式的第r +1项,对应于二项式系数C r n ;②要注意一个二项展开式的某一项的二项式系数与这一项的系数是两个不同的概念.有时相等,有时不相等,它们之间没什么必然的联系. 例2 求(x -1x)9的展开式中x 3的系数. 解:(x -1x)9的展开式的通项是 C r 9x 9-r (-1x)r =(-1)r C r 9x 9-2r . 根据题意,得9-2r =3,r =3.因此,x 3的系数是(-1)3C 39=-84.巩固练习1.(1+2x )7的展开式的第几项的二项式系数等于35?解:C 37=C 47=35,所以第4项与第5项的二项式系数等于35. 2.(x -1x)9的展开式中,含有x 6项吗?若有,系数为多少?含有x 5项吗?若有,系数为多少? 请将你所能想到的所有答案都一一列举出来.解:根据通项(-1)r C r 9x 9-2r ,当9-2r =6时,r 无整数解;当9-2r =5时,解得r =2,所以系数为36.所以展开式中,不含x 6项,含有x 5项,系数为36.设计意图:两个题的设计不仅是为了训练学生根据解题需要能熟练地将一个二项式展开,而且可以培养学生的发散性思维能力,并且可以考查学生对知识、问题理解的深刻性和思维的深刻性、全面性.题型的新颖性、开放性更是不言而喻,学生的兴趣会更浓,思维也会更积极.达标检测1.求(2a +3b )6的展开式中的第3项.解:T 2+1=C 26(2a )4(3b )2=2 160a 4b 2;2.求(3b +2a )6的展开式中的第3项的系数.2.解:T 2+1=C 26(3b )4(2a )2=4 860b 4a 2.所以,(3b +2a )6的展开式中的第3项的系数为4 860.3.求(1+2i)5的展开式.解:因为a =1,b =2i ,n =5,由二项式定理,得(1+2i)5=C 05+C 152i +C 25(2i)2+C 35(2i)3+C 45(2i)4+C 55(2i)5=1+10i -40-80i +80+32i=41-38i课堂小结1.知识收获:二项式定理;二项式定理的表达式以及展开式的通项、二项式系数与系数的概念.2.方法收获:正确区别“项的系数”和“二项式系数”.3.思维收获:类比思想、化归—归纳—猜想—证明思想.补充练习基础练习1.已知(1+x )n 的展开式中,x 3的系数是x 的系数的7倍,求n 的值.解:依题意C 3n =7C 1n ,即n (n -1)(n -2)6=7n , 由于n ∈N ,整理得n 2-3n -40=0,解得n =8.2.已知(ax +1)7(a ≠0)的展开式中,x 3的系数是x 2的系数与x 4的系数的等差中项,求a 的值.解:依题意C 57a 2+C 37a 4=2C 47a 3.由于a ≠0,整理得5a 2-10a +3=0,解得a =1±105.3.计算:(a+1)5-(a-1)5.解:(a+1)5-(a-1)5=[(a)5+C15(a)4+C25(a)3+C35(a)2+C45a+1]-[(a)5-C15(a)4+C25(a)3-C35(a)2+C45a-1]=2[C15(a)4+C35(a)2+2]=10a2+20a+4.·32+1=10n.4.求证:32n+C1n·32n-2+C2n·32n-4+…+C n-1n·32+1=32n+证明:右边=10n=(9+1)n=(32+1)n=32n+C1n·32(n-1)+C2n·32(n-2)+…+C n-1nC1n·32n-2+C2n·32n-4+…+C n-1·32+1=左边,故原式得证.n设计说明二项式定理是初中乘法公式的推广,是排列组合知识的具体运用,是学习概率的重要基础.本节课的教学重点是“使学生掌握二项式定理的形成过程”,在教学中,采用“问题——探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段.让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程.本节课的难点是用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律.在教学中,设置了对多项式乘法的再认识,引导学生运用计数原理来解决项数问题,明确每一项的特征,为后面二项展开式的推导作铺垫.再以(a+b)4为对象进行探究,引导学生用计数原理进行再思考,分析各项以及项的个数,这也为推导(a+b)n的展开式提供了一种方法,使学生在后续的学习过程中有“法”可依.总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯.备课资料二项式定理的妙用在数学中,有许多美妙的命名和定理.二项式定理就是其中之一.首先,看一看我们的二项式定理:(a+b)n=C0n a n+C1n a n-1b+C2n a n-2b2+…+C r n a n-r b r+…+C n n b n(n∈N*).这个公式所表示的定理就是二项式定理.T r+1=C r n a n-r b r叫做二项展开式的通项公式,在这里r+1才是项数,第一个位置的a按降幂排列,次数由n次降到0次,第二个位置的b按升幂排列,次数由0次升到n次,a、b可以是任意实数,也可以是任意式子,能深刻理解二项式定理的结构特征、通项公式,就有许多美妙的用处.其次,谈谈二项式定理的妙用:1)若在二项式定理中,令a =1、b =1,就能得到C 0n +C 1n +C 2n +…+C n n =2n ,即各二项式系数之和等于2n ,也是含n 个元素的集合的所有子集有2n 个,其中非空子集、真子集都有(2n -1)个,非空真子集有(2n -2)个.2)若令a =1、b =-1,则可得C 0n -C 1n +C 2n -C 3n +…+(-1)n C n n =(1-1)n =0,即C 0n +C 2n+…=C 1n +C 3n +…=2n -1,也就是在(a +b )n 的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和且等于2n -1.3)在二项式定理中,若令a =1、b =x ,则得到公式 (1+x )n =1+C 1n x +C 2n x 2+…+C r n xr +…+C n n x n ,其有鲜明的形式特征,可快速准确地展开类似的二项式. 4)充分利用二项式的通项公式可以求出我们所要的任意一项.5)在二项式定理中,若令未知数的系数等于1,就可以得到二项展开式中各项系数之和. f (x )=(px +q )n =a 0+a 1x +a 2x 2+a 3x 3+…+a n x n ,则有a 0+a 1+a 2+……+a n=f (1),a 0-a 1+a 2-a 3+……+(-1)n a n =f (-1),a 0+a 2+a 4+……=12[f (1)+f (-1)],a 1+a 3+a 5+……=12[f (1)-f (-1)]. 6)用二项式定理可以很好地解决整除问题.例如①求证32n +2-8n -9能被64整除.②求证5151-1能被7整除等.7)在二项式系数表中,淋漓尽致地体现了组合数的两个重要性质:①C r n =C n -r n ,②C r n +1=C r -1n +C r n . 8)在二项式定理中,使用递推法,即T r ,T r +1,T r +2系数间的关系可以解决系数最值问题.9)利用二项式定理可以解决近似计算问题.10)理解透彻二项式定理的结构关系,能应用它求解、证明许多式子.例如:1+2C 1n +4C 2n +…+2n -1C n -1n +2n C n n=3n ; 2n -C 1n 2n -1+C 2n 2n -2+…+(-1)n -1C n -1n 2+(-1)n =1; C 1n +2C 2n +4C 3n +…+2n -1C n n =? 在(2-x )n 中若x n 项的系数为a n (n =2,3,4,…)则22a 2+23a 3+24a 4+ (2)a n=? …总之,巧妙地应用二项式定理可以解决许多有趣实用的问题.希望大家都能喜欢数学,学习数学,应用数学.。
课件6:1.3.1 二项式定理

T2=-2C19x3=-18x3.
1.[变问法]在本例条件下,求二项展开式的常数项.
解:因为 Tr+1=(-2)
r
9-3r
Cr9x 2
,若 Tr+1 为常数项,则 9-3r
=0,所以 r=3,因此常数项为第 4 项(-2)3C39=-672.
2.[变问法]在本例条件下,求二项展开式的所有有理项.
4 6 4 1
=1+ + 2+ 3+ 4.
x xபைடு நூலகம்x x
1
14 14
4
方法二:1+x =x (x+1) =x 4·(x4+C14x3+C42x2+C34x
4 6 4 1
+1)=1+ + 2+ 3+ 4.
x x x x
+(-1)k·Ckn·2n-k+…+(-1)n·Cnn=________.
-
解析:原式=C0n·2n·(-1)0+C1n2n 1·(-1)1+…+(-1)k·
Ckn2n-k+…+(-1)n·Cnn·20=(2-1)n=1.
答案:1
2.求(a+2b)4 的展开式.
解:(a+2b)4=C04a4+C14a3(2b)+C24a2(2b)2+C34a·(2b)3+C44(2b)4
项式系数为________.
答案:40 10
探究点 1
二项式定理的正用与逆用
14
(1)用二项式定理展开1+x ;
(2)化简:(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).
【解】
1.3.1二项式定理教案

公主岭第三高级中学数学组——张鹤一.三维目标1.知识与技能:了解二项式定理的形成和过程,掌握二项式定理,会用其展开式的通项求某一项。
2.过程与方法:了解二项式定理的推导过程进行类比,归纳推理推出二项式定理掌握二项式定理说明其应用。
3.情感态度与价值观:体会知识间的递进关系。
二.德育目标1.提高学生的归纳推理能力2.树立由特殊到一般的归纳知识。
三,教学重点与难点1.教学重点:二项式定理及通项公式的掌握及运用2.教学难点:运用多项式乘法及排列组合知识推导二项式定理的形成过程授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:二项式定理是初中乘法公式的推广,是排列组合知识的具体运用,是学习概率的重要基础.这部分知识具有较高应用价值和思维训练价值.中学教材中的二项式定理主要包括:定理本身,通项公式,杨辉三角,二项式系数的性质等.通过二项式定理的学习应该让学生掌握有关知识,同时在求展开式、其通项、证恒等式、近似计算等方面形成技能或技巧;进一步体会过程分析与特殊化方法等等的运用;重视学生正确情感、态度和世界观的培养和形成.二项式定理本身是教学重点,因为它是后面一切结果的基础.通项公式,杨辉三角,特殊化方法等意义重大而深远,所以也应该是重点.二项式定理的证明是一个教学难点.这是因为,证明中符号比较抽象、需要恰当地运用组合数的性质2、需要用到不太熟悉的数学归纳法.在教学中,努力把表现的机会让给学生,以发挥他们的自主精神;尽量创造让学生活动的机会,以让学生在直接体验中建构自己的知识体系;尽量引导学生的发展和创造意识,以使他们能在再创造的氛围中学习教学过程:一、复习引入:⑴22202122222()2a b a ab b C a C ab C b +=++=++;⑵33223031222333333()33a b a a b ab b C a C a b C ab C b +=+++=+++⑶4()()()()()a b a b a b a b a b +=++++的各项都是4次式,即展开式应有下面形式的各项:4a ,3a b ,22a b ,3ab ,4b , 展开式各项的系数:上面4个括号中,每个都不取b 的情况有1种,即04C 种,4a 的系数是04C ;恰有1个取b 的情况有14C 种,3a b 的系数是14C ,恰有2个取b 的情况有24C 种,22a b 的系数是24C ,恰有3个取b 的情况有34C 种,3ab 的系数是34C ,有4都取b 的情况有44C 种,4b 的系数是44C ,∴40413222334444444()a b C a C a b C a b C a b C b +=++++.二、讲解新课:二项式定理:01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈⑴()n a b +的展开式的各项都是n 次式,即展开式应有下面形式的各项:n a ,n a b ,…,n r r a b -,…,n b ,⑵展开式各项的系数:每个都不取b 的情况有1种,即0n C 种,n a 的系数是0n C ;恰有1个取b 的情况有1n C 种,n a b 的系数是1n C ,……,恰有r 个取b 的情况有r n C 种,n r r a b -的系数是r n C ,……,有n 都取b 的情况有n n C 种,n b 的系数是n n C ,∴01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈,这个公式所表示的定理叫二项式定理,右边的多项式叫()n a b +的二项展开式,⑶它有1n +项,各项的系数(0,1,)r n C r n =叫二项式系数,⑷r n r r n C a b -叫二项展开式的通项,用1r T +表示,即通项1r n r r r n T C a b -+=. ⑸二项式定理中,设1,a b x ==,则三、讲解范例:例1.(1)展开41(1)x +.(2)展开61(2)x x - 例2.(1)求7)21(x +的展开式的第四项的系数求9)1(xx -的展开式中3x 的系数 练习 (1)5)21(x -展开式的第三项是___________(2)第三项的二项式系数是___________(3) 第三项的系数是___________练习 (1)求6)32(y x +的展开式的第三项(2)求6)23(x y +的展开式的第三项五、小结 :二项式定理的探索思路:观察——归纳——猜想——证明;二项式定理及通项公式的特点六、课后作业:A 层次:习题1.3 T2 、T3 、B 层次 习题T4(1)(2) 若n x x )12(23+的展开式中,若常数项存在,则n 的最小值七、板书设计(1) 01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈(2)二项式系数 r n C (r=0,1,2........n)(3)1r n r r r n T C a b -+=(4)二项式定理中,1,a b x == 1(1)1n r r n n n x C x C x x +=+++++例1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.1二项式定理说课稿
执教人:罗杰
一、 说教材
二项式定理一节,分三个课时.这里讲的是第一课时,重点是公式的推导,其次是二项式定理及二项展开式通项公式的简单应用,至于二项式定理及二项展开式的通项公式的灵活运用和二项式系数的性质留在第二、三课时.
二项式定理是初中学习的多项式乘法的继续,它所研究的是一种特殊的多项式——二项式的乘法的展开式,这一小节与不少内容都有着密切联系,特别是它在本章学习中起着承上启下的作用.学习本小节的意义主要在于:
(1) 由于二项式定理与概率理论中的三大概率分布之一-----二项分布有内在联系,本小节是学习后面的概率知识以及进一步学习概率统计的准备知识.
(2) 由于二项式系数都是一些特殊的组合数,利用二项式定理可得到关于组合数的一些恒等式,从而深化对组合数的认识.
(3) 基于二项式展开式与多项式乘法的联系,本小节的学习可对初中学习的多项式的变形起到复习、深化的作用.
(4) 二项式定理是解决某些整除性、近似计算问题的一种方法. 因此,结合重点中学学生的实际情况,确定本节课的教学目标如下:
1、掌握二项式定理及二项展开式的通项公式,并能熟练地进行二项式的展开及求解某些指定的项.
2、通过探索二项式定理,培养学生观察问题发现问题,归纳推理问题的能力.
3、激发学生学习兴趣、培养学生不断发现,探索新知的精神,渗透事物相互转化和理论联系实际的辩证唯物主义观点,并通过数学的对称美,培养学生的审美意识. 重点:二项定理的推导及运用
难点:二项式定理及通项公式的运用 二 、说教法、学法:
新的数学课程标准提出:掌握数学知识只是结果,而掌握知识的活动过程才是途径,通过这个途径,来挖掘人的发展潜能才是目的,结果应让位于过程.没有途径,学生无法达到目的,因此,在教学中,必须贯彻好过程性原则,既要重视学生的参与过程,又要重视知识的重现过程.也就是说,在教学过程中,充分揭示每一个阶段的思维活动过程,通过思维活动过程的暴露和数学创新活动过程的演变,使教学活动成为思维活动的教学,由此来启发、引导学生直接或间接地感受和体验知识的产生、发展和演变过程.
变传统的“接受性、训练性学习”为新颖的“探究式、发现式的学习”,变教师是传授者为组织者、合作者、指导者,在学习过程中,教师想尽办法激发学生探究式、发现式学习的兴趣,并使其作为一种教学方式应用于概念、定理、公式和解题教学中,让学生在探究、发现中获取知识,发展能力.从而增强学生的主体意识,提高学生学习的效果. 三、 教学过程: (一)、复习引入:
⑴22202122
222()2a b a ab b C a C ab C b +=++=++;
⑵3322303122233333()33a b a a b ab b C a C a b C ab C b +=+++=+++
⑶4
()()()()()a b a b a b a b a b +=++++的各项都是4次式,
即展开式应有下面形式的各项:4a ,3a b ,22a b ,3ab ,4
b ,
展开式各项的系数:上面4个括号中,每个都不取b 的情况有1种,即0
4C 种,4
a 的系数是
04C ;恰有1个取b 的情况有14C 种,3a b 的系数是14C ,恰有2个取b 的情况有24C 种,22a b 的系数是24C ,恰有3个取b 的情况有34C 种,3ab 的系数是34C ,有4都取b 的情况有
44C 种,4b 的系数是44C ,
∴404132223344
44444()a b C a C a b C a b C a b C b +=++++. (二)、讲解新课:
二项式定理:01()()n n n
r n r r n n
n n n n a b C a C a b C a b C b n N -*+=++
++
+∈
⑴()n
a b +的展开式的各项都是n 次式,即展开式应有下面形式的各项:
n a ,n a b ,…,n r r a b -,…,n b ,
⑵展开式各项的系数:
每个都不取b 的情况有1种,即0
n C 种,n a 的系数是0
n C ; 恰有1个取b 的情况有1
n C 种,n a b 的系数是1
n C ,……, 恰有r 个取b 的情况有r n C 种,n r
r a
b -的系数是r n C ,……,
有n 都取b 的情况有n n C 种,n
b 的系数是n
n C ,
∴01()()n n n
r n r r n n
n n n n a b C a C a b C a b C b n N -*+=++
++
+∈,
这个公式所表示的定理叫二项式定理,右边的多项式叫()n
a b +的二项展开式,各项的系
数(0,1,
)r
n C r n =叫二项式系数,r n r r
n C a b -叫二项展开式的通项,用1r T +表示,即通项
1r n r r
r n T C a b -+=
注:1,二项展开式共有n+1项
2,各项中a 的指数从n 起依次减小1,到0为止,各项中b 的指数从0起依次增加1,到n 为止
二项式定理中,设1,a b x ==,则1
(1)1n r r n n n x C x C x x +=++
++
+
(三)、讲解范例:
3,二项式系数为C n 0,C n 1,C n 2 ,… C n k , … ,
C n n 是一组与二项式次数n 有关的组合数,与a ,b 无关
例1.展开4
1
(1)x
+.
解: 41123
3444411111(1)1()()()()C C C x x x x x +=++++23446411x x x x
=+
+++.
例2.展开6
. 分析:先化简再运用公式
解:66
31
(21)x x =-
6152433221
6666631[(2)(2)(2)(2)(2)(2)1]x C x C x C x C x C x x
=
-+-+-+
322360121
64192240160x x x x x x =-+-+-+.
练习:求12
()x a +的展开式中的倒数第4项
解:12
()x a +的展开式中共13项,它的倒数第4项是第10项,
91299339
39911212220T C x a C x a x a -+===.
例3.(1)求7
(12)x +的展开式的第4项的系数; (2)求91
()x x
-的展开式中3
x 的系数及二项式系数
解:7
(12)x +的展开式的第四项是333317(2)280T C x x +==,
∴7
(12)x +的展开式的第四项二项式系数是35,第四项的系数是280. (2)∵91()x x
-的展开式的通项是9921991
()(1)r r
r r r r r T C x
C x x
--+=-=-, ∴923r -=,3r =,
∴3x 的系数339(1)84C -=-,3
x 的二项式系数3984C =.
(四)、课堂练习:P31 练习
(五)、小结 :二项式定理的探索思路:观察——归纳——猜想——证明;二项式定理及通项公式的特点
(六)、课后作业: P36 -37习题1.3A 组1. 2. 3.4
总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,并采用尝试讨论、学习归纳、观察猜想的方法,展开教学活动,重在培养学生的观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯.。