一元一次不等式组的竞赛题巧解举例
初中数学 文档:一元一次不等式问题解题技巧五则 省赛一等奖

一元一次不等式问题解题技巧五则一、巧用不等式性质解题:例1、已知a b a ->,a b b +>,求、的取值范围.解:由a b a ->两边同减去得0b ->,∴;由a b b +>两边同减去得; ∴、的取值范围为,.例2、已知0ax a -的解集是,求的取值范围. 解:移项得ax a ,∵当时,原不等式的解集为1a xa =,∴满足条件的的取值范围为.评注:不等式的性质有——①、若,则a c b c ±>±;②、若,且,则ac bc >,a b c c >;③、若,且,则ac bc <,a b c c <.以上不等式的三个性质是解不等式的重要依据,其中性质③涉及到不等号方向的改变,解题时尤需注意.二、巧用有理数符号法则解题:例3、求不等式301x ->-的解集. 解:由30-<且301x ->-可知,代数式10x -<,即,∴原不等式的解集为. 例4、求不等式21021a x +>+的解集. 解:由20a 可得2110a +>,∵21021ax +>+,∴代数式210x +>,即12x >-,∴原不等式的解集为12x >-.评注:有理数的符号法则包括——①、有理数积的符号法则:两数相乘,同号得正,异号得负;②、有理数商的符号法则:两数相除,同号得正,异号得负.熟练掌握以上两个法则特别是商的符号法则是解决特殊类型不等式(如上例中的分式不等式等)问题的重要手段.三、巧用绝对值相关知识解题:例5、已知2112x x -=-,求的取值范围.解:∵12(21)x x -=--,即21(21)x x -=--;∴由绝对值的性质可知210x -,解之有12x ;∴满足条件的的取值范围为12x . 例6、求下列不等式的解集:⑴、3x <;⑵、5x ;⑶、13x -. 解:⑴、原不等式即03x -<,由绝对值的几何意义可知,所求的取值范围是距离原点不足3个单位长度的所有点的集合,∴原不等式的解集为33x -<<;⑵、原不等式即05x -,由绝对值的几何意义可知,所求的取值范围是距离原点不小于5个单位长度的所有点的集合,∴原不等式的解集为5x或5x -;⑶、由绝对值的几何意义可知,所求的取值范围是距离“+1”不超过3个单位长度的所有点的集合,∴原不等式的解集为24x -. 评注:绝对值知识点包含两个方面——①、绝对值的性质:(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩;②、绝对值的几何意义:从数轴上看,即表示到原点的距离.以上两方面知识既是进行绝对值化简运算的依据,也是解决绝对值方程及绝对值不等式问题的重要思想方法.四、巧用等式变形思想解题:例7、已知、满足方程230x y --=,试求:⑴、当为何值时,?⑵、当为何值时,12x <? 解:⑴、由方程230x y --=移项得23y x =-.令得230x ->,解之得32x >,∴当32x >时,; ⑵、由方程230x y --=移项得23x y =+,∴32y x +=.令12x <得3122y +<,∴31y +<,解之得2y <-,∴当2y <-时,12x <.例8、已知方程3(2)21x a x a -+=-+的解适合不等式2(5)8x a ->,求的取值范围.解:由方程3(2)21x a x a -+=-+去括号得3621x a x a -+=-+,移项得3612x x a a -=-+-,∴512a x -=.解不等式2(5)8x a ->得54x a >+,由题意有51542a a ->+,解之得113a <-. 评注:等式的变形包括——移项、合并同类项、化系数为1等步骤,等式变形的依据是等式的两个基本性质.在方程与不等式组合型问题中,通过对方程进行合理变形,从而建立不等式进行求解是解决此类问题的一种常用思想方法.五、巧用分类讨论思想解题:例9、试判断下列代数式的大小:⑴、与x ;⑵、37x y +与28x y +. 解:⑴、x y x y +-=,①、当时,0x y x +->,∴x y x +>;②、当时,0x y x +-=,∴x y x +=;③、当时,0x y x +-<,∴x y x +<.⑵、37(28)x y x y x y +-+=-,①、当0x y ->即x y >时,37(28)0x y x y +-+>,∴3728x y x y +>+; ②、当0x y -=即x y =时,37(28)0x y x y +-+=,∴3728x y x y +=+; ③、当0x y -<即x y <时,37(28)0x y x y +-+<,∴3728x y x y +<+. 例10、解关于x 的不等式:⑴、20ax a -;⑵、1()122a x a ->-. 解:⑴、原不等式可化为2ax a , ①、当时,原式即00x ⋅,此时可取任何有理数.②、当时,原式两边同除以得2x ;③、当时,原式两边同除以得2x.⑵、原不等式可化为11()2()22a x a ->--,易知12a ≠, ①、当即102a ->时,原不等式两边同除以1()2a -得2x >-; ②、当12a <即102a -<时,原不等式两边同除以1()2a -得2x <-. 评注:在用作差法比较代数式的大小及求解含有未知字母不等式问题的过程中,若题中涉及到的未知字母的取值范围不明确,则解决的办法通常是对其进行分类讨论.。
用一元一次不等式(组)解决生活中的实际问题

用一元一次不等式(组)解决生活中的实际问题用一元一次不等式(组)解决生活中的实际问题,其主要步骤为:1、审题,设未知数;2、抓关键词,找不等关系;3、构建不等式(组)4、解不等式(组);5、根据题意,写出合理答案。
一、打折问题:例1,一双运动鞋的进价是200元,标价400元,商场要获得不低于120元的利润,问:最低可以打几折?解析:利润 = 售价-进价。
设可以打x折,则:400×0.1x-200≥120解之得,x≥8答:最低可以打8折。
二、赛球问题:例2,甲、乙两队进行足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了12场,甲队保持不败,总得分超过26分,问:甲队至少胜了多少场?解析:甲队总得分= 甲队胜场的得分+甲队平场的得分。
设甲队胜了x场,则:3x+1×(12-x)>26解之得,x>7∴x的最小整数值是8 。
答:甲队至少胜了8场。
三、购买问题:例3,某种肥皂零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。
第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。
在购买的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买几块肥皂?解析:设需要买x块肥皂,第一种方法的购价为:2+2×0.7×(x-1)元,第二种方法的购价为:2×0.8 = 1.6元。
则:2+2×0.7×(x-1)<1.6解之得,x>3∴x的最小整数值是4 。
答:最少需要买4块肥皂。
四、分苹果问题:例4,把44个苹果分给若干名学生,若每人分苹果7个,则最后1名学生分得的苹果不足3个,求学生人数。
解析:最后1名学生分得的苹果数= 苹果总数-7(学生数-1),设学生人数为x 名,则:44-(x-1)×7>0 ①44-(x-1)×7<3 ②解之得,<x<∵x是整数,∴x=7答:学生人数是7人。
一元一次不等式(组)的竞赛题巧解举例知识讲解

一元一次不等式(组)的竞赛题巧解举例 一元一次不等式(组)是初中数学竞赛试题中经常出现的重点内容。
根据不等式的基本性质和一元一次不等式(组)的解的概念,适当地进行变换,可以巧妙解决一些关于不等式(组)的竞赛题。
一、 巧用不等式的性质例1 要使a 5<a 3<a <a 2<a 4成立,则a 的取值范围是( )A.0<a <1B. a >1C.-1<a <0D. a <-1分析:由a 3<a 到a 2<a 4,是在a 3<a 的两边都乘以a ,且a <0来实现的;在a 3<a 两边都除以a ,得a 2>1,显然有a <-1。
故选D点评:本题应用不等式的性质,抓住题目给出的一个不等式作为基础进行变形,确定 a 的取值范围。
例2 已知6<a <10,2a ≤b ≤a 2,b ac +=,则c 的取值范围是 。
分析:在2a ≤b ≤a 2的两边都加上a ,可得23a ≤b a +≤a 3,再由6<a <10可得9<b a +<30,即9<c <30 点评:本题应用不等式的基本性质,在2a ≤b ≤a 2的两边都加上a 后,直接用关于a 的不等式表示c ,再根据6<a <10求出c 的取值范围。
二、 由不等式的解集确定不等式中系数的取值范围例3 若关于x 的不等式组⎪⎩⎪⎨⎧+++②m <x ①x >x 01456 的解集为4x <,则m 的取值范围是 。
分析:由①得 205244++x >x ,解之得4x <。
由②得 m x <-。
因为原不等式组的解集为4x <,所以4≥-m ,所以4-≤m 。
点评:本题直接解两个不等式得到4x <且m x <-。
若m -≤4,则其解集为4x <,若m >-4,则其解集为m x <-,而原不等式的解集为4x <,所以4≥-m ,即4-≤m 。
对此理解有困难的学生,可以通过在数轴上表示不等式的解集来帮助理解。
例4 若不等式0432b <a x b a -+-)(的解集是49x >,则不等式 的解集是0324b >a x b a -+-)( 。
浙教版八年级竞赛培优训练第9讲 一元一次不等式组

第9讲 一元一次不等式组【思维入门】1.把不等式组⎩⎨⎧x +2>1,3-x ≥0的解集表示在数轴上,正确的是( )A BC D2.不等式组⎩⎪⎨⎪⎧x -4≤8-2x ,x >-23的最小整数解是 ( )A .-1B .0C .1D .43.不等式组⎩⎪⎨⎪⎧12x +2≥13x +1,3x <x +2的解是 ( )A .-6<x ≤1B .-6<x <1C .-6≤x <1D .-6≤x ≤14.已知点P (3-m ,m -1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A BC D5.求不等式组⎩⎨⎧7(x -1)<4x -3,6(0.5x +1)≥2x +5的整数解.6.解不等式组⎩⎪⎨⎪⎧23x +5>1-x ,x -1<34x -18,并写出它的非负整数解.【思维拓展】7.若关于x 的不等式组⎩⎨⎧5-2x >-1,x -a >0无实数解,则a 的取值范围是____.8.对非负数x 四舍五入到个位的值记为〈x 〉,即当n 为非负整数时,若n -12≤x <n +12,则〈x 〉=n .如〈0.46〉=0,〈3.67〉=4. 给出下列关于〈x 〉的结论: ①〈1.493〉=1; ②〈2x 〉=2〈x 〉;③若〈12x -1〉=4,则实数x 的取值范围是9≤x <11;④当x ≥0,m 为非负整数时,有〈m +2 013x 〉=m +〈2 013x 〉; ⑤〈x +y 〉=〈x 〉+〈y 〉.其中,正确的结论有____(填写所有正确的序号).9.定义新运算:对于任意实数a ,b 都有a △b =ab -a -b +1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4-2-4+1=8-6+1=3,请根据上述知识解决问题:若3△x 的值大于5而小于9,求x 的取值范围.10.已知实数a 是不等于3的常数,解不等式组⎩⎪⎨⎪⎧-2x +3≥-3,12(x -2a )+12x <0,并依据a 的取值情况写出其解集.11.已知关于x ,y 的方程组⎩⎨⎧5x +2y =11a +18,2x -3y =12a -8的解满足x >0,y >0,求实数a 的取值范围.【思维升华】12.若关于x 的不等式组⎩⎨⎧2-3x ≥0,2x +m >0没有实数解,则实数m 的取值范围是( )A .m <-43B .m ≤-43C .m >-43D .m ≥-4313.已知a 是实数,关于x ,y 的二元一次方程组⎩⎨⎧2x -3y =5a ,x +2y =1-2a 的解不可能出现的情况是( )A .x ,y 都是正数B .x ,y 都是负数C .x 是正数,y 是负数D .x 是负数,y 是正数14.已知方程组⎩⎨⎧x +my =11,x +3=2y 的解都是正整数,则整数m 的值为____.15.已知a +b +c =0,a ≥b ≥c ,a ≠0,则ca 的最大值是 ____,最小值是____. 16.已知关于x 的不等式组⎩⎨⎧x <a +1,2x -2>a 的解集中的整数恰好有2个,求实数a 的取值范围.第9讲 一元一次不等式组【思维入门】1.把不等式组⎩⎨⎧x +2>1,3-x ≥0的解集表示在数轴上,正确的是( D )A BC D2.不等式组⎩⎪⎨⎪⎧x -4≤8-2x ,x >-23的最小整数解是 ( B )A .-1B .0C .1D .43.不等式组⎩⎪⎨⎪⎧12x +2≥13x +1,3x <x +2的解是 ( C )A .-6<x ≤1B .-6<x <1C .-6≤x <1D .-6≤x ≤14.已知点P (3-m ,m -1)在第二象限,则m 的取值范围在数轴上表示正确的是( A )A BC D5.求不等式组⎩⎨⎧7(x -1)<4x -3,6(0.5x +1)≥2x +5的整数解.解:⎩⎪⎨⎪⎧7(x -1)<4x -3,①6(0.5x +1)≥2x +5,②解不等式①,得x <43,解不等式②,得x ≥-1, ∴不等式组的解集为-1≤x <43, ∴不等式组的整数解为-1,0,1.6.解不等式组⎩⎪⎨⎪⎧23x +5>1-x ,x -1<34x -18,并写出它的非负整数解.解:⎩⎪⎨⎪⎧23x +5>1-x ,①x -1<34x -18,②解不等式①,得x >-125, 解不等式②,得x <72, ∴不等式组的解集为-125<x <72. ∴它的非负整数解为0,1,2,3.【思维拓展】7.若关于x 的不等式组⎩⎨⎧5-2x >-1,x -a >0无实数解,则a 的取值范围是__a ≥3__.【解析】 解关于x 的不等式组⎩⎪⎨⎪⎧5-2x >-1,x -a >0,得⎩⎪⎨⎪⎧x <3,x >a , ∵不等式组无解,∴a ≥3.8.对非负数x 四舍五入到个位的值记为〈x 〉,即当n 为非负整数时,若n -12≤x <n +12,则〈x 〉=n .如〈0.46〉=0,〈3.67〉=4. 给出下列关于〈x 〉的结论: ①〈1.493〉=1; ②〈2x 〉=2〈x 〉;③若〈12x -1〉=4,则实数x 的取值范围是9≤x <11;④当x ≥0,m 为非负整数时,有〈m +2 013x 〉=m +〈2 013x 〉; ⑤〈x +y 〉=〈x 〉+〈y 〉.其中,正确的结论有__①③④__(填写所有正确的序号). 【解析】 ①〈1.493〉=1,正确;②〈2x 〉≠2〈x 〉,例如当x =0.3时,〈2x 〉=1,2〈x 〉=0,故②错误; ③若〈12x -1〉=4,则4-12≤12x -1<4+12,解得9≤x <11,故③正确; ④m 为整数,不影响四舍五入,故〈m +2 013x 〉=m +〈2 013x 〉,④正确; ⑤〈x +y 〉≠〈x 〉+〈y 〉,例如x =0.3,y =0.4时,〈x +y 〉=1,〈x 〉+〈y 〉=0,故⑤错误. 综上可得①③④正确.9.定义新运算:对于任意实数a ,b 都有a △b =ab -a -b +1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4-2-4+1=8-6+1=3,请根据上述知识解决问题:若3△x 的值大于5而小于9,求x 的取值范围.解:∵3△x =3x -3-x +1=2x -2,且3△x 的值大于5而小于9, ∴5<2x -2<9,即72<x <112.10.已知实数a 是不等于3的常数,解不等式组⎩⎪⎨⎪⎧-2x +3≥-3,12(x -2a )+12x <0,并依据a 的取值情况写出其解集.解:⎩⎨⎧-2x +3≥-3,①12(x -2a )+12x <0,②解①得x ≤3,解②得x <a , ∵ a 是不等于3的常数,∴ 当a >3时,不等式组的解集为x ≤3; 当a <3时,不等式组的解集为x <a .11.已知关于x ,y 的方程组⎩⎨⎧5x +2y =11a +18,2x -3y =12a -8的解满足x >0,y >0,求实数a 的取值范围.解:解方程组⎩⎪⎨⎪⎧5x +2y =11a +18,①2x -3y =12a -8,②①×3得15x +6y =33a +54③, ②×2得4x -6y =24a -16④,③+④得19x =57a +38,解得x =3a +2, 把x =3a +2代入①,得5(3a +2)+2y =11a +18, 解得y =-2a +4,∴方程组的解是⎩⎪⎨⎪⎧x =3a +2,y =-2a +4,∵x >0,y >0,∴⎩⎪⎨⎪⎧3a +2>0,-2a +4>0,解得⎩⎨⎧a >-23,a <2, ∴a 的取值范围是-23<a <2.【思维升华】12.若关于x 的不等式组⎩⎨⎧2-3x ≥0,2x +m >0没有实数解,则实数m 的取值范围是( B )A .m <-43 B .m ≤-43 C .m >-43D .m ≥-4313.已知a 是实数,关于x ,y 的二元一次方程组⎩⎨⎧2x -3y =5a ,x +2y =1-2a 的解不可能出现的情况是( B )A .x ,y 都是正数B .x ,y 都是负数C .x 是正数,y 是负数D .x 是负数,y 是正数【解析】 ⎩⎪⎨⎪⎧2x -3y =5a ,①x +2y =1-2a ,②②×2-①得7y =2-9a ,y =2-9a7③,③代入②,得x =1-2a -2y =1-2a -2×2-9a 7=4a +37.A.⎩⎨⎧2-9a7>0,4a +37>0,解得-34<a <29;B.⎩⎨⎧2-9a 7<0,4a +37<0,解得a >29,a <-34,无解;C.⎩⎨⎧2-9a7>0,4a +37<0,解得a <-34;D.⎩⎨⎧2-9a7<0,4a +37>0,解得a >29,故选B.14.已知方程组⎩⎨⎧x +my =11,x +3=2y 的解都是正整数,则整数m 的值为__-1,0或5__.【解析】 方程组⎩⎪⎨⎪⎧x +my =11,x +3=2y ,∴x +my -x -3=11-2y , 解得(m +2)y =14,y =14m +2.∵方程组有正整数解,∴m +2>0,m >-2,又x =22-3mm +2,故22-3m >0,解得m <223,故-2<m <223,整数m 只能取-1,0,1,2,3,4,5,6,7. 又x ,y 均为正整数,∴只有m =-1或0或5符合题意.15.已知a +b +c =0,a ≥b ≥c ,a ≠0,则c a 的最大值是 __-12__,最小值是__-2__. 【解析】 已知a +b +c =0,即c =-a -b , 因为a ≥b ≥c ,必有a >0,c <0,c a =-a -b a =-1-b a , 可知当b 与a 同号时,即b >0. 式子-1-ba 才可能取最小值.因为a ≥b ,故ba ≤1,故当b a =1时,式子-1-ba 取最小值为-2. 同理:当b 与a 异号时,即b <0, 式子-1-ba 才可能取最大值, a +b +c =0,a =-(b +c ). 因为0≥b ≥c ,即|b |≤|c |.式子-1-b a =-1+b b +c =-1+|b ||b |+|c |,当|b ||b |+|c |取最大值时,整个式子有最大值,|b ||b |+|c |≤|b ||b |+|b |=12. 故式子-1-b a ≤-1+12=-12,此为最大值.16.已知关于x 的不等式组⎩⎨⎧x <a +1,2x -2>a 的解集中的整数恰好有2个,求实数a 的取值范围.解:原不等式组可化为⎩⎪⎨⎪⎧x <a +1,x >a +22,根据题意,有a +22<x <a +1.满足原不等式组解集中的整数恰好有2个,只需 ⎩⎪⎨⎪⎧k ≤a +22<k +1,k +2<a +1≤k +3,(k 为整数) 即⎩⎪⎨⎪⎧2k -2≤a <2k ,k +1<a ≤k +2.(k 为整数)(*) 关于整数k 的不等式组⎩⎪⎨⎪⎧k +1<2k ,2k -2≤k +2有解.解得1<k ≤4,得k 可以取2,3,4.当k =2时,代入(*)式,有⎩⎪⎨⎪⎧2≤a <4,3<a ≤4,解得3<a <4;当k =3时,代入(*)式,有⎩⎪⎨⎪⎧4≤a <6,4<a ≤5,解得4<a ≤5;当k =4时,代入(*)式,有⎩⎪⎨⎪⎧6≤a <8,5<a ≤6,解得a =6.所以,3<a <4或4<a ≤5或a =6即为所求.。
一元一次不等式(组)特殊解法压轴题六种模型全攻略(解析版)

专题15一元一次不等式(组)特殊解法压轴题六种模型全攻略【考点导航】目录【典型例题】 (1)【考点一含字母的不等式基本性质】 (1)【考点二解含分母的一元一次不等式(组)】 (3)【考点三分式化解与不等式结合考查】 (6)【考点四解|x|≥a型的不等式】 (9)【考点五求一元一次不等式解的最值】 (13)【考点六解特殊不等式组】 (14)【过关检测】 (18)【典型例题】【考点一含字母的不等式基本性质】【点睛】本题考查了不等式的性质.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.【变式训练】【考点二解含分母的一元一次不等式(组)】2【答案】3x>-,数轴上表示见解析.【点睛】本题考查了一元一次不等式的解法,其中去分母时,各项都要乘以分母的最小公倍数是解题的关键.【变式训练】【点睛】本题考查解一元一次不等式组,用数轴表示不等式组的解集,解题的关键是注意数轴上空心点与(2)解:332x x-⎧+≥+⎪⎨由②得,2x >-,∴不等式组的解集为21x -<≤,把解集在数轴上表示如图,【点睛】本题考查解一元一次不等式(组)、不等式的解集在数轴上表示,熟练掌握解一元一次不等式的步骤是解题的关键.【考点三分式化解与不等式结合考查】∴=,x∴原式20022=--+=.【点睛】本题考查分式的化简求值,解一元一次不等式,理解分式有意义的条件,掌握分式混合运算的运算顺序(先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的)和计算法则是解题关键.【变式训练】【考点四解|x|≥a型的不等式】参考阅读材料,解答下列问题:【变式训练】(1)不等式()0x a a <>的解集为______;【考点五求一元一次不等式解的最值】【变式训练】【考点六解特殊不等式组】例题:(2022春·陕西安康·七年级统考期末)阅读下列关于不等式()()120x x -+>的解题思路:【变式训练】1.(2023春·江苏南京·七年级南京市竹山中学校考阶段练习)先阅读理解下面例题,再按要求解答下列问题:例:解不等式290x -<,解:因为29(3)(3)x x x -=+-,所以原不等式可化为(3)(3)0x x +-<由有理数乘法法则“两数相乘,异号得负”,得:①3030x x +>⎧⎨+<⎩,或②3030x x -<⎧⎨->⎩,解不等式组①得33x -<<,【过关检测】一、单选题....【答案】A【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式8113x--≥,得:8x-在数轴上表示为:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.河北保定·八年级校考阶段练习)不等式B.0x<C二、填空题故答案为:5-.【点睛】此题考查了一元一次不等式含参数问题,解题的关键是根据题意表示出一元一次不等式的解.三、解答题(2)2192136x x -+-≤,去分母得,()()221926--+≤x x ,【点睛】本题主要考查了解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号的方向要改变.【答案】见详解【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,熟练掌握解一元一次不等式组是解题的关键.∴不等式组的解集为21-<≤x【点睛】本题考查的是解一元一次不等式组,在数轴上表示不等式组的解集,掌握解不等式组的方法与步骤是解本题的关键.12.(2023秋·四川达州·九年级校考开学考试)先化简,再求值:参考阅读材料,解答下列问题:x-=的解为______(1)方程53x++<;(2)解不等式2219(2)2219x ++<228x +<(3)123x x -++=,表示到1的点与到-2的点距离和为3 -2与1之间的距离为3,(4)12y x x =--+,1x -表示数x 到1的距离,【点睛】本条考查含有绝对值的方程和不等式的解法,正确对关键.。
优质课比赛:用一元一次不等式解决问题(1)ppt课件

按上图的搭法,用4根火柴棒可以搭1 个正方形,用7根火柴棒可以搭2个正方形, 用10根火柴棒可以搭3个正方形。照此搭 法,用少于50根火柴棒最多可以搭出多少 个正方形?
按上图的搭法,用4根火柴棒可以搭1
个正方形,用7根火柴棒可以搭2个正方形, 用10根火柴棒可以搭3个正方形。照此搭
法,用少于50根火柴棒最多可以搭出多少
题目中的不等关系是什么?
纸箱的质量+苹果的总质量≤ 10kg
一只纸箱质量为1kg,当放入一些苹
果后,箱子和苹果的总质量不超过10kg.
假设每个苹果的质量为0.25kg,这只纸
箱内最多能装多少个苹果?
解:设这只纸箱内装了x只苹果, 根据题意,得: 0.25x+1≤10
解这个不等式,得: x≤ 36
答:这只纸箱最多能装36的 条数
火柴棒 根数
1 2 3 4 5 67 8…n 8 14 20 26 32 38 44 50 … 6n+2
像这样的搭法,用少于50根的火柴棒, 最多可以搭多少条小鱼?你能从表格中看 出来吗?
用火柴棒 搭小鱼
小鱼的 条数
1 2 3 4 5 67 8…n
火柴棒 根数 8 14 20
高处不胜寒
600米 500米 400米 300米 200米 100米 0米
16.4℃ 17.0℃ 17.6℃ 18.2℃ 18.8℃ 19.4℃ 20℃
问题
某种杜鹃花适宜生长在平均气温为 17℃到20℃之间的山区,已知某山区山 脚下的平均气温为20℃ ,并且每上升 100米,气温下降0.6℃,求该山区适宜种 植这种杜鹃花的山坡的高度。
3n+1 <49
解这个不等式得:n <16 答:最多可以搭 15 个正方形。
一元一次不等式组的解法经典例题透析

经典例题透析类型一:解一元一次不等式组1、解不等式组,并把它的解集在数轴上表示出来。
思路点拨:先求出不等式①②的解集,然后在数轴上表示不等式①②的解集,求出它们的公共部分即不等式组的解集。
解析:解不等式①,得x≥-;解不等式②,得x<1。
所以不等式组的解集为-≤x<1在数轴上表示不等式①②的解集如图。
总结升华:用数轴表示不等式组的解集时,要切记:大于向右画,小于向左画。
有等号画实心圆点,无等号画空心圆圈。
举一反三:【变式1】解不等式组:解析:解不等式①,得:解不等式②,得:在数轴上表示这两个不等式的解集为:∴原不等式组的解集为:【变式2】解不等式组:思路点拨:在理解一元一次不等式组时要注意以下两点:(1)不等式组里不等式的个数并未规定;(2)在同一不等式组里的未知数必须是同一个.(3)注意在数轴表示解集时“空心点”与“实心点”的区别解法一:解不等式①,得:解不等式②,得:解不等式③,得:在数轴上表示这三个不等式的解集为:∴原不等式组的解集为:解法二:解不等式②,得:解不等式③,得:由与得:再与求公共解集得:.【变式3】解不等式组:解析:解不等式①得:x>-2解不等式②得:x<-7∴不等式组的解集为无解【变式4】解不等式:-1<≤5思路点拨:(1)把连写不等式转化为不等式组求解;(2)根据不等式的性质,直接求出连写不等式的解集。
解法1:原不等式可化为下面的不等式组解不等式①,得x>-1,解不等式②,得x≤8所以不等式组的解集为-1<x≤8。
即原不等式的解集为-1<x≤8解法2:-1<≤5,-3<2x-1≤15,-2<2x≤16,-1<x≤8。
所以原不等式的解集为-1<x≤8总结升华:对于连写形式的不等式可以化成不等式组来求解,而对于只有中间部分含有未知数的连写形式的不等式也可以按照解不等式的步骤求解,如解法2.【变式5】求不等式组的整数解。
思路点拨:按照不等式组的解法,先求出每个不等式的解集,在数轴上表示出各个不等式的解集,取其公共部分得到不等式的解集,再在不等式组的解集内求出符合要求的整数解。
一元一次不等式组的概念及例题(例题有解答过程)

一元一次不等式(组)●了解知识结构知识框图.●明确课标要求1.掌握不等式及其解(解集)的概念,理解不等式的意义;理解一元一次不等式组、不等式组的解集的概念.2.理解不等式的性质并会用不等式基本性质解简单的不等式.3.会用数轴表示出不等式(组)的解集.4.掌握一元一次不等式(组)的解法.5.体会运用不等式(组)解决简单实际问题的过程,渗透不等式模型思想.●把握重难点重点:一元一次不等式(组)的解法.难点:不等式组解集的几种情况,运用不等式(组)模型解决实际问题.●领悟思想方法1.类比的方法:在学习不等式的基本性质时,应将其与等式的基本性质进行类比,学习一元一次不等式的解法,应将其与一元一次方程的解法进行类比.2.数形结合的思想方法:(1)把不等式或不等式组的解集在数轴上表示出来体现了数形结合的方法;(2)利用函数图象确定不等式的解集也是数形结合思想的重要体现.3.分类讨论的思想方法:在用不等式解决一些方案决策的应用题时要经常分情况讨论.4.转化思想:有的方程组在求所含字母取值范围时,需要转化为不等式(组)进行求解.●精读知识要点一、一元一次不等式1.不等式的概念用不等号表示不等关系的式子,叫做不等式.如:x-1<2,3-4≠4-3,a>0,a2≥0等都是不等式.2.不等式的解集对于一个含有未知数的不等式,任何一个使这个不等式成立的数叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.3.用数轴表示不等式的方法一元一次不等式的解集用数轴表示有以下四种情况.用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号(≥ ,≤)画实心点,无等号(>,<)画空心圈.4.不等式的基本性质不等式的性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式的性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式的性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.5.一元一次不等式的概念及解法一般地,只含有一个未知数,未知数的次数是1的不等式叫做一元一次不等式.一元一次不等式的解法:解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将项的系数化为1.注意:解不等式时,上面的五个步骤不一定都能用到,并且不一定按照顺序解,要根据不等式的形式灵活安排求解步骤.6.一元一次不等式组的概念及解法一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集. 求不等式组的解集的过程,叫做解不等式组.当任何数都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.一元一次不等式组的解法:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.求不等式组公共解的一般规律:同大取大,同小取小,一大一小中间找.●掌握基本题型本部分内容的考查形式多样,中考中常常以不等式与方程、函数综合解答题型的命题形式进行考测,有时也出现于填空选择题中,考查对不等式解法的掌握情况,题量为2~3题,分值为5~10分左右.但贴近社会热点的不等式(组)应用题,一般很少以选择题、填空题出现,而以解答题出现,主要考查数形结合以及通过分析数量关系建立不等式(组)模型的解题思想.1.考查不等式的基本性质【例1】如果a >b ,那么下列结论中,错误的是 ( )A 、a-3>b-3B 、3a >3bC 、33b a D 、-a >-b 【分析】不等式的性质是解不等式的关键,只有理解了不等式的性质才能正确求出不等式(组)的解集和解决与不等式有关的一些问题.利用不等式的基本性质(1)可知A 正确;利用基本性质(2)可知B ,C 正确.解:D .【例2】已知a>b>0,则下列不等式不一定成立的是( ).A.ab>b 2 B.a+c>b+c C.611 a D.ac>b 【分析】 ∵ a>b>0,∴ 根据不等式的性质A 项一定成立,B 项一定成立,C 项也成立,而D 项当c>0时才成立. 解:D.【小结】 本题考查了不等式的三个性质,要求我们必须掌握.2.用数轴表示不等式的解集问题【例3】不等式2x+1≥3的解集在数轴上表示正确的是( )解: 移项,合并,得2x≥2,将x 的系数化为1,得x≥1.故选D. 3.根据不等式(组)的解集的情况,确定字母的取值【例4】若不等式组的解集是-1<x <1,则(a+b)2008=___.【分析】本题应先求出不等式组的解集,再与已知解集对照比较,从而确定a 、b 的值. 解:由不等式x -a >2得x >a +2;由不等式b -2x >0得 x <2b .对比题目给出的不等式组的解集为-1<x <1,得 a +2<x <2b ,所以a +2=-1,2b =1,所以a =-3,b =2. 所以(a+b)2008=(-1)2008=1.4.综合应用类 【例5】已知且-1<x -y <0,则k 的取值范围为( ) A.-1<k <-21 B.0<k <21 C.0<k <1 D.21<k <1 【分析】 解答本题只需要把不等式中的x -y 用含k 的代数式表示即可,可考虑整体思想. 解:把方程组中两方程相减得x -y =-2k +1,代入-1<x -y <0中有,-1<-2k +1<0,解得21<k <1,故本题应选D . 5.考查不等式(组)的解法 【例6】解不等式31 x ≤5-x ,并把解集表示在数轴上. 解:去分母,得 x-1≤3(5-x ).去括号,移项,得 4x≤16.系数化为1,得 x≤4.解集在数轴上表示如下:【小结】解一元一次不等式的步骤与解一元一次方程的步骤相同,只是在化系数为1这一步要注意系数的正负.【例7】解不等式组并写出不等式组的正整数解.【分析】 先求出不等式组的解集,然后在解集范围内找出所有的正整数,即其正整数解. 解:解不等式①,得 x≤3.解不等式②,得 x>-2.∴ 不等式组的解集为-2<x≤3.∴ 原不等式组的正整数解是:1,2,3.6.生活应用类【例8】双蓉服装店老板到厂家选购A 、B 两种型号的服装,若销售1件A 型服装可获利18元,销售一件B 型服装可获利30元,根据市场需求,服装店老板决定,购进A 型服装的数量要比购进B 型服装数量的2倍还多4件,且A 型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,问有几种进货方案?如何进货?【分析】 本题的题目较长,需要仔细的读题,找到题目中的不等关系,通过设适当的未知数求解. 解:设B型服装购进x件,则A型服装购进(2x+4)件,根据题意,得解这个不等式组,得921≤x≤12. 因为x为整数,所以x=10,11,12.所以2x+4=24,26,28.所以有三种进货方案:B型服装购进10件,A型服装购进24件;B型服装购进11件,A型服装购进26件;B型服装购进12件,A型服装购进28件.【例9】王女士看中的商品在甲、乙两商场以相同的价格销售,两商场采用促销方式不同.在甲商场一次性购物超过100元,超过部分八折优惠;在乙商场一次性购物超过50元,超过的部分九折优惠,那么她在甲商场购物超过多少元就比在乙商场购物优惠?【分析】题目中要求的“多少元”是指商场中商品的标价,而在算甲商场比乙商场优惠时计算的是王女士的实际花费,理清关系可列不等式进行计算.解:设她在甲商场购物x元(x>100)就比在乙商场购物优惠.根据题意,得 100+0.8(x-100)<50+0.9(x-50),解这个不等式,得x>150.答:她在甲商场购物超过150元就比在乙商场购物优惠.7.学科综合类【例10】某公司以每吨200元的价格购进某种矿石原料300吨,用于生产甲、乙两种产品,生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:煤的价格为400元/吨,生产1吨甲产品除原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元,现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x之间的关系式;(2)写出y与x的函数关系式(不要求写自变量的范围);(3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大?最大利润是多少?【分析】计算公司获得的总利润时先计算生产1吨甲产品和1吨乙产品获得的利润,其中“生产1吨甲产品获得的利润=甲产品每吨售价-生产1吨甲产品需要的矿石费用-生产1吨甲产品需要的煤的费用-其它费用”.解:(1)根据题意,得10x+4m=300,∴ m=410300x(x≤30).(2)生产1吨甲产品获利为:4600-10×200-4×400-400=600;生产1吨乙产品获利为:5500-4×200-8×400-500=1000;∴ y与x的函数关系式为:y=600x+1000×410300x-=-1900x+75000.(3)∵ 4x+8×410300x-≤200,∴25≤x≤30.∴当生产甲产品25吨时,公司获利最大.y最大=-1900×25+75000=27500(元).【小结】本题是运用不等式与一次函数关系解应用题,应用函数知识解答的关键是建立函数模型,运用不等式知识求解.●剖析应考策略1.对不等式的性质和解一元一次不等式内容的学习,应复习对比等式的性质和解一元一次方程的内容,以比较异同.2.在不等式两边同乘以(或除以)一个数时,一定要慎重,特别是该数是负数时,一定不要忘记改变不等号的方向,如果不对该数加以限制,可有三种可能.3.不等式的解集x<a与x≤a(x>a与x≥a)用数轴表示时,要注意空心圆圈与实心圆点的区别.4.如果一个一元一次不等式组的各个一元一次不等式的解集没有公共部分,则这个不等式组无解.5.近几年中考注重对“知识联系实际”的考查,实际问题中往往蕴含着方程与不等式,分析问题中的等量关系和不等关系,建立方程(组)模型和不等式(组)模型,从而把实际问题转化为数学模型,然后用数学知识来解决.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式(组)的竞赛题巧解举例 一元一次不等式(组)是初中数学竞赛试题中经常出现的重点内容。
根据不等式的基本性质和一元一次不等式(组)的解的概念,适当地进行变换,可以巧妙解决一些关于不等式(组)的竞赛题。
一、 巧用不等式的性质
例1 要使a 5<a 3<a <a 2<a 4成立,则a 的取值范围是( )
A.0<a <1
B. a >1
C.-1<a <0
D. a <-1
分析:由a 3<a 到a 2<a 4,是在a 3<a 的两边都乘以a ,且a <0来实现的;在a 3<a 两边都除以a ,得a 2>1,显然有a <-1。
故选D
点评:本题应用不等式的性质,抓住题目给出的一个不等式作为基础进行变形,确定 a 的取值范围。
例2 已知6<a <10,2a ≤b ≤a 2,b a c +=,则c 的取值范围是 。
分析:在2a ≤b ≤a 2的两边都加上a ,可得2
3a ≤b a +≤a 3,再由6<a <10可得9<b a +<30,即9<c <30
点评:本题应用不等式的基本性质,在2
a ≤
b ≤a 2的两边都加上a 后,直接用关于a 的不等式表示
c ,再根据6<a <10求出c 的取值范围。
二、 由不等式的解集确定不等式中系数的取值范围
例3 若关于x 的不等式组
⎪⎩⎪⎨⎧+++②m <x ①x >x 0
1456 的解集为4x <,则m 的取值范围是 。
分析:由①得 205244++x >x ,解之得4x <。
由②得 m x <-。
因为原不等式组的解集为4x <,所以4≥-m ,所以4-≤m 。
点评:本题直接解两个不等式得到4x <且m x <-。
若m -≤4,则其解集为4x <,若m >-4,则其解集为m x <-,而原不等式的解集为4x <,所以4≥-m ,即4-≤m 。
对此理解有困难的学生,可以通过在数轴上表示不等式的解集来帮助理解。
例4 若不等式0432b <a x b a -+-)(的解集是49x >,则不等式 的解集是0324b >a x b a -+-)( 。
分析:原不等式可化为a b x <b a 342--)(。
因为4
9x >,所以 ⎪⎩⎪⎨⎧=---②b a a b ①b <a 49
23402
由②得 b a 7
8=,代入①得 b <0, 所以04784b >b a ⎪⎭
⎫ ⎝⎛-=-)(。
由a b x >b a 234--)( 得b a a b x >
423--。
把b a 78=代入b a a b x >423--得 4
1-x >。
点评:本题先由不等式解集的不等号方向判断b a -2<0,从数值上判断4
9234=--b a a b ,从而确定b a 与的关系及b 的符号。
不等式系数的符号决定了不等式解集中的不等号的方向,其数值决定了取值范围的边界,因此,反过来可以通过不等式的解集来确定不等式中系数的符号及参数的取值范围。
三、 利用不等式求代数式的最大值
例5 设7321x x x x ,,,,Λ均为自然数,且76321x x x x x <<<<<Λ,又
159721=+++x x x Λ,则321x x x ++的最大值是 。
分析:7321x x x x ,,,,Λ均为自然数,且76321x x x x x <<<<<Λ,
所以在7321x x x x ,,,,Λ这七个数中,后面的一个数比前面的数至少大1,
159=21762111111721+=+++++++
≥+++x x x x x x x x )()()(ΛΛ, 7
5191≤x ,所以1x 的最大值为19。
当1x 取最大值时,15919732=++++x x x Λ,
140≥1565212222+=+++++++x x x x x )()()(Λ, 65202≤x ,所以2x 的最大值为20。
当1x 、2x 都取最大值时,
120=10542133333743+=+++++++
≥+++x x x x x x x x )()()(ΛΛ, 所以223≤x , 所以3x 的最大值为22。
所以321x x x ++的最大值是19+20+22=61。
点评:本题根据已知条件先分别确定1x 、2x 、3x 的最大值,再求出321x x x ++的最大值。
其关键在于利用自然数的特征,用放缩法建立关于1x 、2x 、3x 的不等式。
例6 在满足32≤+y x ,00≥≥y x ,的条件下,y x +2 能达到的最大值是 。
分析:将y x 2+转化为只含有一个字母的代数式,再根据条件求解。
∵32≤+y x ,∴y x 23-≤,y x 462-≤。
∴632+-≤+y y x 。
∵,0≥y ∴03≤-y ,∴663≤+-y 。
即6632≤+-≤+y y x
故y x +2 能达到的最大值是6。
点评:由字母的取值范围可以确定含字母的代数式的取值范围,从而可以确定代数式的最大值或最小值。
例7 若整数c b a 、、满足不等式组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧+<+<<+<b c <a b a c <b a c
b a
c 4112
5352
32611 试确定c b a 、、的大小关系
分析:利用不等式的性质,原不等式组可化为
⎪⎪⎪⎩⎪⎪⎪⎨⎧++<++<<++<b c <b a b a c <b a a c
c b a c 4152
738253617, 所以c b c a 32
761738<>,, 即c c b c c a <<>>7
6,1617。
所以a c b <<。
点评:本题根据已知不等式组中各不等式的特点,对各不等式进行变形,使它们都含有c b a ++,利用不等式的传递性,得到c b a 、、的大小关系。