高中数学必修一1.2函数及其表示练习题

合集下载

高中数学必修一1.2函数及其表示练习题及答案

高中数学必修一1.2函数及其表示练习题及答案

高中数学必修一1.2函数及其表示练习题及答案一:单项选择题: (共10题,每小题5分,共50分)1. 函数()y f x =的图象与直线1x =的公共点数目是( )A 1B 0C 0或1D 1或22. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A 沿x 轴向右平移1个单位B 沿x 轴向右平移12个单位C 沿x 轴向左平移1个单位D 沿x 轴向左平移12个单位3. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A 2,3 B 3,4 C 3,5 D 2,54. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x fA ⑴、⑵B ⑵、⑶C ⑷D ⑶、⑸5. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A 10 B 11 C 12 D 13 6. 函数f (x )=的定义域是( )A .-∞,0]B .[0,+∞C .(-∞,0)D .(-∞,+∞)7. 若函数f(x) = + 2x+ log 2x 的值域是 {3, -1, 5 + , 20},则其定义域是( ) (A) {0,1,2,4} (B) {,1,2,4} (C) {,2,4} (D) {,1,2,4,8}8.反函数是( ) A. B.C. D.9. 若任取x 1,x 2∈[a ,b ],且x 1≠x 2,都有成立,则称f (x ) 是[a ,b ]上的凸函数。

人教A版数学必修一高中数学1.2函数及其表示同步练测.docx

人教A版数学必修一高中数学1.2函数及其表示同步练测.docx

1.2.1 函数的概念 1.2.2函数的表示法建议用时 实际用时满分实际得分45分钟100分一、选择题(本大题共6小题,每小题6分,共36分)1. 设集合,,则在下面四个图形中,能表示集合到集合的函数关系的有( )A .①②③④B .①②③C .②③D .② 2.已知函数()11f x x =+,则函数()()f f x 的定义域是( ) A. }1|{-≠x x B. }2|{-≠x x C.}21|{-≠-≠x x x 且D. }21|{-≠-≠x x x 或3.定义域为R 的函数的值域为[],则函数) 的值域为 ( ) A.[2, B.[0, C.[D.[4.下列各组函数中,表示同一函数的是( )A .2|,|x y x y== B .C .33,1xx y y ==D .2)(|,|x y x y ==5.已知A 、B 两地相距150千米,某人开汽车以4 , 2 2 2 - = +- = x y x x y60千米/时的速度从地到达地,在地停留 1小时后再以50千米/时的速度返回A 地,把汽车离开A 地的距离(千米)表示为时间(时)的函数表达式是( ) A . B .C .D . 6. 下列对应关系:①{1,4,9},{-3,-2,-1,1,2,3},→的算术平方根; ②,,的倒数; ③,,.其中是A 到B 的函数的是( ) A .①③ B .②③ C .①② D .①②③ 二、填空题(本大题共3小题,每小题6分,共18分)7.设函数()23,(2)()f x x g x f x =++=,则()g x . 8.已知函数则((6))f f9.已知且=4,则的值为 .三、解答题(本大题共3小题,共46分) 10.(14分)求下列函数的定义域: (1)xx x y -+=||)1(0;(2)xxx y 12132+--+=. 11.(16分)作出下列各函数的图象:(1)∈Z ; (20).12. (16分)求下列函数解析式.(1)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ); (2)已知f (x )满足2f (x )+f (1x)=3x ,求f (x )⎪⎩ ⎪ ⎨ ⎧ ≤ < - ≤ < ≤ ≤ = ) 5 . 6 5 . 3 ( 50 325 ) 5 . 3 5 . 2 (150)5 . 2 0 ( 60 t tt t t x ⎪ ⎩ ⎪⎨ ⎧ > - ≤ ≤ = ) 5 . 3 ( 50 150 ) 5 . 2 0 ( 60 t t t t x一、选择题1.C 解析:由函数的定义知①中的定义域不是,④中集合中有的元素在集合中对应两个函数值不符合函数定义,故不对,只有②③成立.故选C .2.C 解析:由()1f x ≠-,即111x ≠-+,得1x ≠-且2x ≠-. 3.C 解析:因为函数()f x 的定义域为R ,所以的取值范围也是R ,因此函数()()f x a f t +=的值域与函数()f x 的值域相同,是.4.A 解析:B 、C 、D 三个选项中的两个函数的定义域不相同,不表示同一个函数,A 选项中的两个函数的定义域与对应关系都相同,表示相同的函数.故选A.5.D 解析;从A地到B地用了1502.560=(时),因此当0 2.5t ≤≤时, t x 60=. 因为在B 地停留1小时,所以当2.5 3.5t <≤时, 150x =.经3.5小时开始返回,由B 地到A 地用了150350=(时),因此当3.5 6.5t <≤时, ()15050 3.532550.x t t =--=-综上所述,6.A 解析: 根据函数的概念,对于集合A 中的每一个元素在集合B 中都有唯一的元素与它对应. 对于①,集合中的1,4,9在集合B 中都有唯一的元素与它对应,故是函数; 对于②,集合A 中的元素0在集合B 中没有元素对应;对于③,集合A 中的元素x ∈在集合B 中都有唯一的元素x 22与它对应,故是函数. 故选A . 二、填空题7. 12-x 解析:()()()223221g x f x x x +==+=+-,所以()2 1.g x x =-8.25-解析:((6))f f =()225f -=-. 9.5 解析:∵f (2x +1)=3x -2=32(2x +1)-72,∴ f (x )=32x -72.∵ f (a )=4,∴ 32a -72=4,∴ a =5.三、解答题10.解 :(1)由⎩⎨⎧>-≠+,0||,01x x x 得⎩⎨⎧<-≠,0,1x x 故函数x x x y -+=||)1(0的定义域是{x |x <0,且x ≠1-}.(2)由⎪⎩⎪⎨⎧≠>-≥+,0,02,032x x x 得32,2,0.x x x ⎧-⎪<⎨⎪≠⎩≥ ∴23-≤x <2,且x ≠0.故函数的定义域是{x |23-≤<2,且x ≠0}. 11.解:(1)因为x ∈Z ,所以函数的图象是由一些点组成的,这些点都在直线y =1-x 上.(如图①)(2)所给函数可化简为y =⎩⎪⎨⎪⎧x -1 (x ≥1),1-x (0<x <1),图象是一条折线.(如图②)12.解:(1)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,∴a =2,b =7,∴f (x )=2x +7. (2)2f (x )+1f x ⎛⎫⎪⎝⎭=3x ,① 把①中的x 换成1x ,得21f x ⎛⎫⎪⎝⎭+f (x )=3x ,②①×2-②得3f (x )=6x -3x,∴f (x )=2x -1x图① 图②1。

高中数学人教版A版必修一课时作业及解析:第一章1-2函数及其表示

高中数学人教版A版必修一课时作业及解析:第一章1-2函数及其表示

高中数学人教版A版必修一第一章集合与函数概念§1.2函数及其表示1.2.1 函数的概念课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.函数(1)设A、B是非空的数集,如果按照某种确定的__________,使对于集合A中的____________,在集合B中都有________________和它对应,那么就称f:________为从集合A到集合B的一个函数,记作__________________.其中x 叫做________,x的取值范围A叫做函数的________,与x的值相对应的y值叫做________,函数值的集合{f(x)|x∈A}叫做函数的________.(2)值域是集合B的________.2.区间(1)设a,b是两个实数,且a<b,规定:①满足不等式__________的实数x的集合叫做闭区间,表示为________;②满足不等式__________的实数x的集合叫做开区间,表示为________;③满足不等式________或________的实数x的集合叫做半开半闭区间,分别表示为______________.(2)实数集R可以用区间表示为__________,“∞”读作“无穷大”,“+∞”读作“__________”,“-∞”读作“________”.我们把满足x≥a,x>a,x≤b,x<b的实数x的集合分别表示为________,________,________,______.一、选择题1.对于函数y=f(x),以下说法正确的有()①y 是x 的函数②对于不同的x ,y 的值也不同③f (a )表示当x =a 时函数f (x )的值,是一个常量 ④f (x )一定可以用一个具体的式子表示出来 A .1个B .2个 C .3个D .4个2.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( )A .①②③④B .①②③C .②③D .②3.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )24.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有( )A .10个B .9个C .8个D .4个 5.函数y =1-x +x 的定义域为( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1} 6.函数y =x +1的值域为( ) A .[-1,+∞) B .[0,+∞) C .(-∞,0] D .(-∞,-1]二、填空题7.已知两个函数f (x )和g (x )的定义域和值域都是{1,2,3},其定义如下表:8.如果函数f (x )满足:对任意实数a ,b 都有f (a +b )=f (a )f (b ),且f (1)=1,则f (2)f (1)+f (3)f (2)+f (4)f (3)+f (5)f (4)+…+f (2011)f (2010)=________. 9.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为______________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________. 三、解答题11.已知函数f (1-x1+x )=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时间?(3)第一次休息时,离家多远?(4)11∶00到12∶00他骑了多少千米?(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分别是多少?(6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2m,渠深为1.8m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应关系是否为函数,关键是看对于数集A 中的任一个值,按照对应关系所对应数集B 中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x ,只要认清楚对应关系,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f (x )以表格形式给出时,其定义域指表格中的x 的集合;②当f (x )以图象形式给出时,由图象范围决定;③当f (x )以解析式给出时,其定义域由使解析式有意义的x 的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.§1.2 函数及其表示 1.2.1 函数的概念知识梳理1.(1)对应关系f 任意一个数x 唯一确定的数f (x ) A →B y =f (x ),x ∈A 自变量 定义域 函数值 值域 (2)子集2.(1)①a ≤x ≤b [a ,b ] ②a <x <b (a ,b ) ③a ≤x <b a <x ≤b [a ,b ),(a ,b ] (2)(-∞,+∞) 正无穷大 负无穷大 [a ,+∞) (a ,+∞) (-∞,b ] (-∞,b ) 作业设计1.B [①、③正确;②不对,如f (x )=x 2,当x =±1时y =1;④不对,f (x )不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示.]2.C [①的定义域不是集合M ;②能;③能;④与函数的定义矛盾.故选C.] 3.D [A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.]4.B [由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”.]5.D [由题意可知⎩⎨⎧1-x ≥0,x ≥0,解得0≤x ≤1.]6.B 7.3 2 1解析 g [f (1)]=g (2)=3,g [f (2)]=g (3)=2, g [f (3)]=g (1)=1. 8.2010解析 由f (a +b )=f (a )f (b ),令b =1,∵f (1)=1, ∴f (a +1)=f (a ),即f (a +1)f (a )=1,由a 是任意实数,所以当a 取1,2,3,…,2010时,得f (2)f (1)=f (3)f (2)=…=f (2011)f (2010)=1.故答案为2010. 9.{-1,1,3,5,7}解析 ∵x =1,2,3,4,5,∴f (x )=2x -3=-1,1,3,5,7. 10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x ≤1,0≤x +23≤1,得⎩⎪⎨⎪⎧0≤x ≤12,-23≤x ≤13,即x ∈[0,13].11.解 由1-x 1+x=2,解得x =-13,所以f (2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10∶30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11∶00至12∶00他骑了13千米.(5)9∶00~10∶00的平均速度是10千米/时;10∶00~10∶30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2m ,上底为(2+2h )m ,高为h m ,∴水的面积A=[2+(2+2h)]h2=h2+2h(m2).(2)定义域为{h|0<h<1.8}.值域由二次函数A=h2+2h(0<h<1.8)求得.由函数A=h2+2h=(h+1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.(3)由于A=(h+1)2-1,对称轴为直线h=-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h<1.8,∴A=h2+2h的图象仅是抛物线的一部分,如下图所示.1.2.2 函数的表示法 第1课时 函数的表示法课时目标 1.掌握函数的三种表示方法——解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数.函数的三种表示法(1)解析法——用____________表示两个变量之间的对应关系; (2)图象法——用______表示两个变量之间的对应关系; (3)列表法——列出______来表示两个变量之间的对应关系.一、选择题1.一个面积为100cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( ) A .y =50x (x >0) B .y =100x (x >0)C .y =50x (x >0)D .y =100x (x >0)2.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是( ) A .0B .1C .2D .33.如果f (1x )=x1-x,则当x ≠0时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1 4.已知f (x )=2x +3,g (x +2)=f (x ),则g (x )等于( )A .2x +1B .2x -1C .2x -3D .2x +75.若g (x )=1-2x ,f [g (x )]=1-x 2x 2,则f (12)的值为( ) A .1B .15C .4D .306.在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),此函数与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )二、填空题7.一个弹簧不挂物体时长12cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3kg 物体后弹簧总长是13.5cm ,则弹簧总长y (cm)与所挂物体质量x (kg)之间的函数关系式为________________________________________________________________________.8.已知函数y =f (x )满足f (x )=2f (1x )+x ,则f (x )的解析式为____________. 9.已知f (x )是一次函数,若f (f (x ))=4x +8,则f (x )的解析式为__________________.三、解答题10.已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根平方和为10,图象过(0,3)点,求f (x )的解析式.11.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0)、f (1)、f (3)的大小;(2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.能力提升12.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6·时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10] B .y =[x +310]C .y =[x +410]D .y =[x +510]13.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.1.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式(可能有的要表示为分段函数),再列表描出图象,并在画图象的同时注意一些关键点,如与坐标轴的交点、分段函数的区间端点等. 2.如何求函数的解析式求函数的解析式的关键是理解对应关系f 的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法).1.2.2 函数的表示法 第1课时 函数的表示法知识梳理(1)数学表达式 (2)图象 (3)表格 作业设计1.C [由x +3x2·y =100,得2xy =100.∴y =50x (x >0).]2.B [由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.]3.B [令1x =t ,则x =1t ,代入f (1x )=x1-x,则有f (t )=1t 1-1t=1t -1,故选B.] 4.B [由已知得:g (x +2)=2x +3,令t =x +2,则x =t -2,代入g (x +2)=2x +3,则有g (t )=2(t -2)+3=2t -1,故选B.]5.B [令1-2x =12,则x =14,∴f (12)=1-(14)2(14)2=15.] 6.B [当t <0时,S =12-t 22,所以图象是开口向下的抛物线,顶点坐标是(0,12);当t >0时,S =12+t 22,开口是向上的抛物线,顶点坐标是(0,12).所以B 满足要求.]7.y =12x +12解析 设所求函数解析式为y =kx +12,把x =3,y =13.5代入,得13.5=3k+12,k =12.所以所求的函数解析式为y =12x +12.8.f (x )=-x 2+23x (x ≠0)解析 ∵f (x )=2f (1x )+x ,①∴将x 换成1x ,得f (1x )=2f (x )+1x .②由①②消去f (1x ),得f (x )=-23x -x3,即f (x )=-x 2+23x (x ≠0).9.f (x )=2x +83或f (x )=-2x -8 解析 设f (x )=ax +b (a ≠0), 则f (f (x ))=f (ax +b )=a 2x +ab +b .∴⎩⎨⎧a 2=4ab +b =8,解得⎩⎪⎨⎪⎧a =2b =83或⎩⎨⎧a =-2b =-8.10.解 设f (x )=ax 2+bx +c (a ≠0).由f (0)=f (4)知⎩⎨⎧f (0)=c ,f (4)=16a +4b +c ,f (0)=f (4),得4a +b =0.① 又图象过(0,3)点, 所以c =3.②设f (x )=0的两实根为x 1,x 2,则x 1+x 2=-b a ,x 1·x 2=ca . 所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a)2-2·c a=10.即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3.所以f (x )=x 2-4x +3.11.解 因为函数f (x )=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 … y … -5 0 3 4 3 0 -5 …连线,描点,得函数图象如图:(1)根据图象,容易发现f (0)=3,f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2). (3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].12.B [方法一 特殊取值法,若x =56,y =5,排除C 、D ,若x =57,y =6,排除A ,所以选B.方法二 设x =10m +α(0≤α≤9),0≤α≤6时, [x +310]=[m +α+310]=m =[x 10],当6<α≤9时,[x +310]=[m +α+310]=m +1=[x10]+1, 所以选B.]13.解 因为对任意实数x ,y ,有 f (x -y )=f (x )-y (2x -y +1), 所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1).又f (0)=1, ∴f (x )=x (x +1)+1=x 2+x +1.第2课时分段函数及映射课时目标 1.了解分段函数的概念,会画分段函数的图象,并能解决相关问题.2.了解映射的概念.1.分段函数(1)分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的____________的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的______;各段函数的定义域的交集是空集.(3)作分段函数图象时,应_____________________________________.2.映射的概念设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A 中的任意一个元素x,在集合B中____________确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的__________.一、选择题1.已知,则f(3)为()A.2B.3C.4D.52.下列集合A到集合B的对应中,构成映射的是()3.一旅社有100间相同的客房,经过一段时间的经营实践,发现每间客房每天的定价与住房率有如下关系:A.100元B.90元C.80元D.60元4.已知函数,使函数值为5的x的值是()A.-2B.2或-5 2C.2或-2D.2或-2或-5 25.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m元收费;用水超过10立方米的,超过部分按每立方米2m元收费.某职工某月缴水费16m元,则该职工这个月实际用水为() A.13立方米B.14立方米C.18立方米D.26立方米6.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列不能表示从P到Q的映射的是()A.f:x→y=12x B.f:x→y=13xC.f:x→y=23x D.f:x→y=x二、填空题7.已知,则f(7)=____________.8.设则f {f [f (-34)]}的值为________,f (x )的定义域是______________.9.已知函数f (x )的图象如下图所示,则f (x )的解析式是__________________.三、解答题 10.已知,(1)画出f (x )的图象; (2)求f (x )的定义域和值域.11.如图,动点P从边长为4的正方形ABCD的顶点B开始,顺次经C、D、A绕周界运动,用x表示点P的行程,y表示△APB的面积,求函数y=f(x)的解析式.能力提升12.设f:x→x2是集合A到集合B的映射,如果B={1,2},则A∩B一定是() A.∅B.∅或{1}C.{1}D.∅13.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d是车速v(公里/小时)的平方与车身长S(米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d关于v的函数关系式(其中S为常数).1.全方位认识分段函数(1)分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集.(2)分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况.2.对映射认识的拓展映射f:A→B,可理解为以下三点:(1)A中每个元素在B中必有唯一的元素与之对应;(2)对A中不同的元素,在B中可以有相同的元素与之对应;(3)A中元素与B中元素的对应关系,可以是:一对一、多对一,但不能一对多.3.函数与映射的关系映射f:A→B,其中A、B是两个“非空集合”;而函数y=f(x),x∈A为“非空的实数集”,其值域也是实数集,于是,函数是数集到数集的映射.由此可知,映射是函数的推广,函数是一种特殊的映射.第2课时 分段函数及映射知识梳理1.(1)对应关系 (2)并集 (3)分别作出每一段的图象 2.都有唯一 一个映射 作业设计 1.A [∵3<6,∴f (3)=f (3+2)=f (5)=f (5+2)=f (7)=7-5=2.] 2.D3.C [不同的房价对应着不同的住房率,也对应着不同的收入,因此求出4个不同房价对应的收入,然后找出最大值对应的房价即可.] 4.A [若x 2+1=5,则x 2=4,又∵x ≤0,∴x =-2, 若-2x =5,则x =-52,与x >0矛盾,故选A.]5.A [该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =⎩⎨⎧mx , 0≤x ≤10,2mx -10m ,x >10. 由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13(立方米).]6.C [如果从P 到Q 能表示一个映射,根据映射的定义,对P 中的任一元素,按照对应关系f 在Q 中有唯一元素和它对应,选项C 中,当x =4时,y =23×4=83∉Q ,故选C.] 7.6解析 ∵7<9,∴f (7)=f [f (7+4)]=f [f (11)]=f (11-3)=f (8). 又∵8<9,∴f (8)=f [f (12)]=f (9)=9-3=6. 即f (7)=6.8.32 {x |x ≥-1且x ≠0}解析 ∵-1<-34<0,∴f (-34)=2×(-34)+2=12.而0<12<2,∴f (12)=-12×12=-14.∵-1<-14<0,∴f (-14)=2×(-14)+2=32.因此f {f [f (-34)]}=32.函数f (x )的定义域为{x |-1≤x <0}∪{x |0<x <2}∪{x |x ≥2}={x |x ≥-1且x ≠0}.9.f (x )=⎩⎨⎧ x +1, -1≤x <0,-x ,0≤x ≤1解析 由图可知,图象是由两条线段组成,当-1≤x <0时,设f (x )=ax +b ,将(-1,0),(0,1)代入解析式,则⎩⎨⎧ -a +b =0,b =1.∴⎩⎨⎧a =1,b =1.当0<x <1时,设f (x )=kx ,将(1,-1)代入,则k =-1. 10.解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.解 当点P 在BC 上运动,即0≤x ≤4时,y =12×4x =2x ;当点P 在CD 上运动,即4<x ≤8时,y =12×4×4=8;当点P 在DA 上运动,即8<x ≤12时,y =12×4×(12-x )=24-2x .综上可知,f (x )=⎩⎨⎧ 2x , 0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12.12.B [由题意可知,集合A 中可能含有的元素为:当x 2=1时,x =1,-1;当x 2=2时,x =2,- 2. 所以集合A 可为含有一个、二个、三个、四个元素的集合.无论含有几个元素,A ∩B =∅或{1}.故选B.]13.解 根据题意可得d =k v 2S .∵v =50时,d =S ,代入d =k v 2S 中,解得k =12500.∴d =12500v 2S .当d =S 2时,可解得v =25 2.∴d =⎩⎪⎨⎪⎧ S 2 (0≤v <252)12500v 2S (v ≥252).§1.2习题课课时目标 1.加深对函数概念的理解,加深对映射概念的了解.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.通过具体实例,理解简单的分段函数,并能简单应用.1.下列图形中,不可能作为函数y=f(x)图象的是()2.已知函数f:A→B(A、B为非空数集),定义域为M,值域为N,则A、B、M、N的关系是()A.M=A,N=B B.M⊆A,N=BC.M=A,N⊆B D.M⊆A,N⊆B3.函数y=f(x)的图象与直线x=a的交点()A.必有一个B.一个或两个C.至多一个D.可能两个以上4.已知函数,若f(a)=3,则a的值为()A.3B.- 3C.±3D.以上均不对5.若f(x)的定义域为[-1,4],则f(x2)的定义域为()A.[-1,2]B.[-2,2]C.[0,2]D.[-2,0]6.函数y=xkx2+kx+1的定义域为R,则实数k的取值范围为() A.k<0或k>4B.0≤k<4C.0<k<4D.k≥4或k≤0一、选择题1.函数f (x )=xx 2+1,则f (1x )等于( )A .f (x )B .-f (x )C.1f (x )D.1f (-x )2.已知f (x 2-1)的定义域为[-3,3],则f (x )的定义域为( )A .[-2,2]B .[0,2]C .[-1,2]D .[-3,3]3.已知集合A ={a ,b },B ={0,1},则下列对应不是从A 到B 的映射的是()4.与y =|x |为相等函数的是( )A .y =(x )2B .y =x 2C .D .y =3x 35.函数y =2x +1x -3的值域为( )A .(-∞,43)∪(43,+∞)B .(-∞,2)∪(2,+∞)C .RD .(-∞,23)∪(43,+∞)6.若集合A ={x |y =x -1},B ={y |y =x 2+2},则A ∩B 等于( )A .[1,+∞)B .(1,+∞)C .[2,+∞)D .(0,+∞)二、填空题7.设集合A=B={(x,y)|x∈R,y∈R},点(x,y)在映射f:A→B的作用下对应的点是(x-y,x+y),则B中点(3,2)对应的A中点的坐标为____________.8.已知f(x+1)=x+2x,则f(x)的解析式为___________________________________.9.已知函数,则f(f(-2))=______________________________.三、解答题10.若3f(x-1)+2f(1-x)=2x,求f(x).11.已知,若f(1)+f(a+1)=5,求a的值.能力提升12.已知函数f(x)的定义域为[0,1],则函数f(x-a)+f(x+a)(0<a<12)的定义域为()A.∅B.[a,1-a] C.[-a,1+a]D.[0,1]13.已知函数(1)求f(-3),f[f(-3)];(2)画出y=f(x)的图象;(3)若f(a)=12,求a的值.1.函数的定义域、对应关系以及值域是构成函数的三个要素.事实上,如果函数的定义域和对应关系确定了,那么函数的值域也就确定了.两个函数是否相同,只与函数的定义域和对应关系有关,而与函数用什么字母表示无关.求函数定义域时,要注意分式的字母不能为零;偶次根式内的被开方式子必须大于或等于零.2.函数图象是描述函数两个变量之间关系的一种重要方法,它能够直观形象地表示自变量、函数值的变化趋势.函数的图象可以是直线、光滑的曲线,也可以是一些孤立的点、线段或几段曲线等.3.函数的表示方法有列举法、解析法、图象法三种.根据解析式画函数的图象时,要注意定义域对函数图象的制约作用.函数的图象既是研究函数性质的工具,又是数形结合方法的基础.§1.2习题课双基演练1.C[C选项中,当x取小于0的一个值时,有两个y值与之对应,不符合函数的定义.]2.C[值域N应为集合B的子集,即N⊆B,而不一定有N=B.]3.C[当a属于f(x)的定义域内时,有一个交点,否则无交点.]4.A[当a≤-1时,有a+2=3,即a=1,与a≤-1矛盾;当-1<a<2时,有a2=3,∴a=3,a=-3(舍去);当a≥2时,有2a=3,∴a=32与a≥2矛盾.综上可知a = 3.]5.B [由-1≤x 2≤4,得x 2≤4,∴-2≤x ≤2,故选B.]6.B [由题意,知kx 2+kx +1≠0对任意实数x 恒成立,当k =0时,1≠0恒成立,∴k =0符合题意.当k ≠0时,Δ=k 2-4k <0,解得0<k <4,综上,知0≤k <4.]作业设计1.A [f (1x )=1x 1x 2+1=x 1+x 2=f (x ).] 2.C [∵x ∈[-3,3],∴0≤x 2≤3,∴-1≤x 2-1≤2,∴f (x )的定义域为[-1,2].]3.C [C 选项中,和a 相对应的有两个元素0和1,不符合映射的定义.故答案为C.]4.B [A 中的函数定义域与y =|x |不同;C 中的函数定义域不含有x =0,而y =|x |中含有x =0,D 中的函数与y =|x |的对应关系不同,B 正确.]5.B [用分离常数法.y =2(x -3)+7x -3=2+7x -3. ∵7x -3≠0,∴y ≠2.] 6.C [化简集合A ,B ,则得A =[1,+∞),B =[2,+∞).∴A ∩B =[2,+∞).]7.(52,-12)解析 由题意⎩⎨⎧ x -y =3x +y =2,∴⎩⎪⎨⎪⎧ x =52y =-12.8.f (x )=x 2-1(x ≥1)解析 ∵f (x +1)=x +2x=(x )2+2x +1-1=(x +1)2-1,∴f (x )=x 2-1. 由于x +1≥1,所以f (x )=x 2-1(x ≥1).9.4解析 ∵-2<0,∴f (-2)=(-2)2=4,又∵4≥0,∴f (4)=4,∴f (f (-2))=4.10.解 令t =x -1,则1-x =-t ,原式变为3f (t )+2f (-t )=2(t +1),①以-t 代t ,原式变为3f (-t )+2f (t )=2(1-t ),②由①②消去f (-t ),得f (t )=2t +25. 即f (x )=2x +25.11.解 f (1)=1×(1+4)=5,∵f (1)+f (a +1)=5,∴f (a +1)=0.当a +1≥0,即a ≥-1时,有(a +1)(a +5)=0,∴a =-1或a =-5(舍去).当a +1<0,即a <-1时,有(a +1)(a -3)=0,无解.综上可知a =-1.12.B [由已知,得⎩⎨⎧ 0≤x +a ≤1,0≤x -a ≤1⇒⎩⎨⎧-a ≤x ≤1-a ,a ≤x ≤1+a . 又∵0<a <12,∴a ≤x ≤1-a ,故选B.]13.解 (1)∵x ≤-1时,f (x )=x +5,∴f (-3)=-3+5=2,∴f [f (-3)]=f (2)=2×2=4.(2)函数图象如右图所示.(3)当a ≤-1时,f (a )=a +5=12,a =-92≤-1; 当-1<a <1时,f (a )=a 2=12,a =±22∈(-1,1); 当a ≥1时,f (a )=2a =12,a =14∉[1,+∞),舍去. 故a 的值为-92或±22.。

人教A版高中数学必修1《1.2函数及其表示习题1.2》0

人教A版高中数学必修1《1.2函数及其表示习题1.2》0
A、B知足条件
A
B,U为全集,则以下会合为空集的是
(
)
A.A∩B
B.A∩(?UB)
C.A∪(?UB)
D.(?UA)∩(?UB)
分析:选B.由Venn图可知.
4.设全集U={a,b,c,d},会合A={a,b},B={b,c,d},则(?UA)∪(?UB)=________.分析:∵(?UA)={c,d},(?UB)={a},∴(?UA)∪(?UB)={a,c,d}.答案:{a,c,d}5.若U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n是3的倍数},则?U(A∪B)=________.分析:U={1,2,3,4,5,6,7,8},则A={1,3,5,7},B={3,6},∴A∪B={1,3,5,6,7},?U(A∪B)={2,4,8}.答案:{2,4,8}1
a>0
要使B??R
,只要
1
A
a≤
2
∴0<a≤
1
2
1
综上,a≤2.
A.1
B.2
C.3
D.4
分析:选B.因为会合A={1,2},B={2,4},所以A∪B={1,2,4},所以?U(AB)={3,5}.4.已知全集U={0,1,2,3,4},会合A={1,2,3},B={2,4},则(?UA)∪B为________.分析:?UA={0,4},所以(?UA)∪B={0,2,4}.答案:{0,2,4}5.设会合A={x|1<x<4},B={x|-1≤x≤3},则A∩(?RB)=________.分析:?RB={x|x<-1或x>3}∴A∩?RB={x|3<x<4}答案:{x|3<x<4}6.已知全集U={x|x取不大于30的质数},A、B是U的两个子集,且A∩(?UB)={5,13,23},(?UA)∩B={11,19,29},(?UA)∩(?UB)={3,7},求会合A、B.

高中数学第一章1.2函数及其表示1.2.1函数的概念学案含解析新人教A版必修019

高中数学第一章1.2函数及其表示1.2.1函数的概念学案含解析新人教A版必修019
x+ 1≠ 0,
解得 x>- 1,且 x≠ 1.
∴函数的定义域为 { x| x>- 1,且 x≠ 1} .
求函数值和值域
1 [例 3] 已知 f(x)= 1+ x(x∈ R,且 x≠- 1), g(x)= x2+ 2(x∈ R).
(1)求 f(2), g(2)的值; (2)求 f(g(2))的值; (3)求 f(x), g(x)的值域.
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
2.根据图形判断对应是否为函数的方法步骤
(1)任取一条垂直于 x 轴的直线 l;
(2)在定义域内平行移动直线 l;
(3)若 l 与图形有且只有一个交点, 则是函数;若在定义域内没有交点或有两个或两个以
上的交点,则不是函数.
2x+ 1 (3)y= x- 3 ;
(4)y= 2x- x- 1.
解: (1)(观察法 )因为 x∈ {1,2,3,4,5},分别代入求值,可得函数的值
域为 {2,3,4,5,6} . (2)(配方法 )y= x2- 2x+3=(x- 1)2+2,由 x∈[0,3),再结合函数的图
象[ 如图 (1)],可得函数的值域为 [2,6).
t- 4
2+
,由 8
t
15 ≥0,再结合函数的图象 [如图 (2)],可得函数的值域为 8 ,+∞ .
[典例 ] 下列各组函数:
3.相等函数的判断
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
x2- x ① f(x)= x , g(x)= x- 1;
x
x
② f(x)= x , g(x)=
(1)∞是一个符号,而不是一个数; (2)以“-∞”或“+∞”为区间的一端时,这一端必须用小括号.

2021年高中数学 1.2函数及其表示检测题(含解析)新人教版必修1

2021年高中数学 1.2函数及其表示检测题(含解析)新人教版必修1

2021年高中数学 1.2函数及其表示检测题(含解析)新人教版必修1一、填空题1.设函数f (x )=⎩⎨⎧1-x 2,x ≤1,x 2+x -2,x >1,则=________.解析 本题主要考查分段函数问题.正确利用分段函数来进行分段求值. ∵f (2)=4,∴=f ⎝ ⎛⎭⎪⎫14=1-116=1516.答案15162. 若函数f (x )=⎩⎨⎧2x,x <0,-2-x,x >0,则函数y =f (f (x ))的值域是________.解析 当x <0时,f (x )=2x∈(0,1),故y =f (f (x ))=-2-f (x )∈⎝⎛⎭⎪⎫-1,-12; 当x >0时,f (x )=-2-x ∈(-1,0),故y =f (f (x ))=2f (x )∈⎝ ⎛⎭⎪⎫12,1,从而原函数的值域为⎝ ⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫12,1. 答案 ∪⎝ ⎛⎭⎪⎫12,1 3.设函数f (x )=⎩⎪⎨⎪⎧1-12xx ≥0,1xx <0,若f (a )=a ,则实数a 的值是________.解析 当a ≥0时,1-12a =a ,所以a =23.当a <0时,1a=a ,所以a =-1.答案23或-1 4.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的序号有________.解析 由映射的定义,要使函数在定义域上都有图象,并且一个x 对应着一个y ,据此排除①④,③中值域为{y |0≤y ≤3}不合题意. 答案 ②5.下列函数中与函数y =x 相同的是_______. ①;② ;③; ④ 解析 因为所以应天②. 答案 ②6.已知f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x2,则f (3)=________.解析 ∵f ⎝⎛⎭⎪⎫x -1x =⎝ ⎛⎭⎪⎫x -1x2+2,∴f (x )=x 2+2(x ∈R ),∴f (3)=32+2=11. 答案 117.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.解析 当1-a <1,即a >0时,a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,解得a =-32(舍去).当1-a >1,即a <0时,a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,解得a =-34.答案 -348.若f (x )=1log122x +1,则f (x )的定义域为________.解析 因为log 12(2x +1)>0,所以0<2x +1<1,解得-12<x <0.答案 ⎝ ⎛⎭⎪⎫-12,09.设函数f (x )=若f (-3)=f (0),f (-1)=-2,则关于x 的方程f (x)=x 的解的个数为______. 解析 由f(-3)=f(0),f(-1)=-2可得b=3,c=0,从而方程f(x)=x 等价于 或 解得到x=0或x=-2,从而得方程f(x)=x 的解的个数为3.答案 310.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是________.解析 当(x 2-2)-(x -1)≤1时,-1≤x ≤2,所以f (x )=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤2,x -1,x <-1或x >2, f (x )的图象如图所示.y =f (x )-c 的图象与x 轴恰有两个公共点,即方程f (x )=c 恰有两个解,由图象可知当c ∈(-2, -1]∪(1,2]时满足条件. 答案 (-2,-1]∪(1,2]11.对于使-x 2+2x ≤M 成立的所有常数M 中,我们把M 的最小值1叫做-x 2+2x 的上确界,若a ,b ∈R +,且a +b =1,则-12a -2b的上确界为________. 解析 因为a ,b ∈R +,a +b =1,所以12a +2b =(a +b )·⎝ ⎛⎭⎪⎫12a +2b =52+2a b +b 2a ≥52+22a b ·b2a=52+2=92,所以-12a -2b ≤-92,所以-12a -2b 的上确界为-92. 答案 -9212.设函数f (x )对于任意实数x 满足条件f (x +2)=1f x,若f (1)=-5,则f (f (5))的值为________. 解析 令x =1,f (3)=1f 1=-15.由f (x +2)=1f x得f (x +4)=1fx +2=f (x ), 所以f (5)=f (1)=-5,则f (f (5))=f (-5)=f (-1) =1f-1+2=1f 1=-15.答案 -1513.设f (x )=lg2+x 2-x ,则f ⎝ ⎛⎭⎪⎫x 2+f ⎝ ⎛⎭⎪⎫2x 的定义域为________. 解析 f (x )=lg 2+x 2-x 有意义,则2+x2-x>0,即(x +2)(x -2)<0,∴-2<x <2.对f ⎝ ⎛⎭⎪⎫x 2+f ⎝ ⎛⎭⎪⎫2x 有意义,则⎩⎪⎨⎪⎧-2<x2<2,-2<2x <2⇒⎩⎪⎨⎪⎧-4<x <4,x <-1或x >1.∴-4<x <-1,或1<x <4. 答案 (-4,-1)∪(1,4) 二、解答题14.已知函数f (x )=log 2⎝⎛⎭⎪⎫x +3x-a 的定义域为A ,值域为B .(1)当a =4时,求集合A ;(2)当B =R 时,求实数a 的取值范围.解析 (1)当a =4时,由x +3x -4=x 2-4x +3x =x -1x -3x>0,解得0<x <1或x >3,故A ={x |0<x <1或x >3}.(2)若B =R ,只有u =x +3x-a 可取到一切正实数,则x >0及u min ≤0,∴u min =23-a ≤0.解得a ≥2 3.实数a 的取值范围为[23,+∞). 15.已知函数f (x )=2a +1a -1a 2x,常数a >0.(1)设m ·n >0,证明:函数f (x )在[m ,n ]上单调递增;(2)设0<m <n 且f (x )的定义域和值域都是[m ,n ],求常数a 的取值范围. 解析 (1)证明 任取x 1,x 2∈[m ,n ],且x 1<x 2,则 f (x 1)-f (x 2)=1a 2·x 1-x 2x 1x 2.因为x 1<x 2,x 1,x 2∈[m ,n ],所以x 1x 2>0,即f (x 1)<f (x 2),故f (x )在[m ,n ]上单调递增. (2) 因为f (x )在[m ,n ]上单调递增,f (x )的定义域、值域都是[m ,n ]⇔f (m )=m ,f (n )=n ,即m ,n 是方程2a +1a-1a 2x=x 的两个不等的正根⇔a 2x 2-(2a 2+a )x +1=0有两个不等的正根. 所以Δ=(2a 2+a )2-4a 2>0,2a 2+aa2>0⇒a >12.即常数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 16.已知函数f (x )=⎩⎪⎨⎪⎧1+1x x >1,x 2+1-1≤x ≤1,2x +3x <-1.(1)求f ⎝ ⎛⎭⎪⎫1-12-1,f (f (f (-2)))的值; (2)求f (3x -1);(3)若f (a )=32,求a 的值.解析 (1)∵1-12-1=1-(2+1)=-2<-1,∴f ⎝⎛⎭⎪⎫1-12-1=f (-2)=-22+3,又∵f (-2)=-1,f (f (-2))=f (-1)=2,∴f (f (f (-2)))=f (2)=1+12=32.(2)若3x -1>1,即x >23,则f (3x -1)=1+13x -1=3x3x -1;若-1≤3x -1≤1,即0≤x ≤23,则f (3x -1)=(3x -1)2+1=9x 2-6x +2; 若3x -1<-1,即x <0,则f (3x -1)=2(3x -1)+3=6x +1.∴f (3x -1)=⎩⎪⎨⎪⎧3x 3x -1⎝ ⎛⎭⎪⎫x >23,9x 2-6x +2⎝⎛⎭⎪⎫0≤x ≤23,6x +1x <0.(3)∵f (a )=32,∴a >1或-1≤a ≤1.当a >1时,有1+1a =32,∴a =2;当-1≤a ≤1时,有a 2+1=32,∴a =±22.∴a =2或±22. 17.已知函数f (x )=a x-24-a x-1(a >0且a ≠1). (1)求函数f (x )的定义域、值域;(2)求实数a 的取值范围,使得函数f (x )满足:当定义域为[1,+∞)时,f (x )≥0恒成立. 解析 (1)由4-a x≥0,即a x≤4,当0<a<1时,x≥log a4,当a>1时,x≤log a4,故f(x)的定义域为:当a>1时,为(-∞,log a4],当0<a<1时,为[log a4,+∞).令t=4-a x,则t∈[0,2),所以y=4-t2-2t-1=4-(t+1)2.当t∈[0,2)时,y=4-(t+1)2是减函数,所以函数的值域为(-5,3].(2)由(1)知,若a>1,f(x)是增函数,当x∈[1,+∞)时,f(x)≥f(1)=a-24-a-1,由于f(x)≥0恒成立,∴a-24-a-1≥0,解得3≤a≤4.若0<a<1,f(x)在[1,+∞)上是减函数,f(x)max=a-1-24-a<0,即f(x)≥0不成立.综上知,当3≤a≤4时,在[1,+∞)上f(x)≥0恒成立.18.据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(k m/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(k m).(1)当t=4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650 k m,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.解析(1)由图象可知;当t=4时,v=3×4=12,所以s=12×4×12=24.(2)当0≤t≤10时,s=12·t·3t=32t2当10<t≤20时,s=12×10×30+30(t-10)=30t-150;当20<t≤35时,s=12×10×30+10×30+(t-20)×30-12×(t-20)×2(t-20)=-t2+70t-550.综上可知s =⎩⎪⎨⎪⎧32t 2, t ∈[0,10],30t -150, t ∈10,20],-t 2+70t -550, t ∈20,35].(3)当t ∈[0,10]时,s max =32×102=150<650.当t ∈(10,20]时,s max =30×20-150=450<650. 当t ∈(20,35]时,令-t 2+70t -550=650.解得t 1=30,t 2=40,0<t ≤35故t =30,所以沙尘暴发生30 h 后将侵袭到N 城.$ 4C| -,31415 7AB7窷g 32924 809C 肜30691 77E3 矣31500 7B0C 笌。

人教A版高中数学必修1《1.2 函数及其表示 习题1.2》_0

师生共同总结该类题的方法
学生1配凑法
学生2换元法
学生独立思考并完成例2,
教师提问,查看学生掌握情况,对于例2(2)可采用试错法让学生提出问题,解决问题
师生共同总结换元的解题步骤及注意事项
教师板书解题过程及小结
学生学生独立思考并完成.
学生总结该题的方法
学生思考受阻
教师提示问题3
学生:独立完成思考例4与问题3的关系,得出方法.
函数的表示法习题课(一)教学设计
【教学目标】:
1.会用代入法,换元法,及待定系数法求解析式.
2.通过解析式的求法的教学,培养学生抽象概括能力及严谨的思维品质.
【教学重点】:代入法,换元法,及待定系数法求解析式
【教学难点】:换元法求解析式
【教学策略与方法】:
1.教学方法:启发讲授式,问题探究式
2.教具准备:多媒体
变式1:已知f(3x﹣5)=2(3x﹣5)+3求f(x)
变式2:已知f(3x﹣5)=6x﹣7,求f(x)
例2:(1)已知f(2x+1)=4x2+8x+3,求f;
例3:(1)已知二次函数的图象的顶点坐标是(1,﹣3),且经过点P(2,0),求这个函数的解析式.
教师提问学生能用几种方法解决
例4已知 ,求f(x)
问题3:f(1),f(2)怎么求?
变式3:函数f(x)满足2f(x)﹣f(﹣x)=x+1,求f(x)
学生独立思考并完成例1:对于定义域中的任意x,在“对应法则f”的作用下,即可得到y.因此,f是使“对应”得以实现的方法和途径.是联系x与y的纽带,例1中f(x)的对应关系是乘2加3
学生总结
让学生养成解后反思总结的学习习惯,培养学生总结概括能力.

高一数学必修1《1.2函数及其表示》单元测试题(含答案)

§1.2函数及其表示练习题一.选择题1 函数)23(,32)(-≠+=x x cx x f 满足,)]([x x f f =则常数c 等于 ( ) A 3 B 3- C 33-或 D 35-或2. 已知)0(1)]([,21)(22≠-=-=x x x x g f x x g ,那么)21(f 等于 ( ) A 15 B 1 C 3 D 303.函数2y =的值域是( )A [2,2]-B [1,2]C [0,2] D[]4 已知2211()11x x f x x--=++,则()f x 的解析式为( ) A21x x + B 212x x +- C 212x x + D 21x x+-5. 下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是( )6.已知二次函数)0()(>++=a ax x x f ,若0)(<m f ,则)1(+m f 的值为 ( ) A .正数 B .负数 C .0 D .符号与a 有关 7.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 ( )A .q p +B .q p 23+C .q p 32+D .23q p +8.某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大.于.6.时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )(A )y =[10x ] (B )y =[310x +] (C )y =[410x +] (D )y =[510x +] 9.已知函数()()2113,f x x x =+≤≤则 ( )A .()()12202f x x x -=+≤≤B .()()12124f x x x -=-+≤≤C .()()12102f x x x -=-≤≤D .()()12124f x x x -=-≤≤ 10.函数ln 1x y +=的定义域为 A .()4,1-- B .()4,1- C .()1,1- D .(1,1]-11.设函数()221, 1,2, 1,x x f x x x x ⎧-≤⎪=⎨+->⎪⎩则()12f f ⎛⎫⎪ ⎪⎝⎭的值为 ( )A .1516 B .2716- C .89D.18 12.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离S 表示为时间t (小时) 的函数表达式是 ( ) A .S=60t B .S=60t +50tC .S=⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t tD .S=⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t13.下列函数中与函数y =有相同定义域的是 ( ) A .()ln f x x = B. ()1f x x= C. ()f x x = D. ()x f x e =14.下列各组函数表示同一函数的是 ( ) A.2(),()f x g x == B .0()1,()f x g x x ==C .())()()t t g x x x x x f =⎩⎨⎧<-≥=,00D .21()1,()1x f x x g x x -=+=- 15 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为 ( )A 10B 11C 12D 13 二.填空题1. 函数1(0)y x x x=+>的值域为 2. 设()x x x f -+=22lg ,则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为3.已知()234log 3233,x f x =+则()()()()82482f f f f ++++ 的值等于4.已知2211f x x x x ⎛⎫-=+ ⎪⎝⎭,则函数值()3f = 5. 设函数.)().0(1),0(121)(a a f x x x x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 6. 函数xx f -=11)(的定义域为M ,x x g +=1)(的定义域为N ,则=⋂N M ________7. 已知一次函数)(x f 满足关系式52)2(+=+x x f ,则=)(x f_____________ 8. 全集U ={1,2,3,4,5},A ={1,2},若{3}⊆B UA ,则集合B 可能是_____________§1.2函数及其表示练习题答题卡班级:______ 姓名:______ 成绩:________一、选择题1-5_____________ 6-10_____________ 11-15_____________二、填空题1、_________ 2、_________ 3、_________ 4、_________5、_________6、_________7、_________8、_________三、解答题1 设,αβ是方程24420,()x mx m x R -++=∈的两实根,当m 为何值时,22αβ+有最小值?求出这个最小值2 求下列函数的值域(1)x x y -+=43 (2)152222++++=x x x x y (3) 13y x x =-+-3. (1) 设,)1(2)()(x xf x f x f =-满足求)(x f(2) 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f .4.动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A ;设x 表示P 点的行程,y 表示PA 的长,求y 关于x 的函数解析式.5 已知函数2()23(0)f x ax ax b a =-+->在[0,3]有最大值5和最小值2,求a 、b 的值6.动物园要建造一面靠墙的2间面积相同的矩形熊猫居室(如图),如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的熊猫居室面积最大?最大面积是多少?§1.2函数及其表示练习题答案BACCB ABBDC ADACB 1.()3,(),32()3223cf x x cxx f x c f x c x x ====-+-+得2. 令[]2211111(),12,,()()152242x g x x x f f g x x -=-===== 3224(2)44,02,20x x x -+=--+≤≤-≤≤022,02y ≤≤≤≤4. 令22211()1121,,()11111()1t x t t t t x f t t x t t t----+====-+++++则11. 解析:法一:特殊取值法,若x=56,y=5,排除C 、D ,若x=57,y=6,排除A ,所以选B 法二:设)90(10≤≤+=ααm x ,,时⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+≤≤10103103,60x m m x αα19. [][](5)(11)(9)(15)(13)11f f f f f f f =====二.填空题答案1. 因为0>x ,于是2121=⋅≥+=xx x x y ,当且仅当x =1时取等号 所以1(0)y x x x=+>的值域为),2[+∞ 2. 由202x x +>-得,()f x 的定义域为22x -<<。

高中人教A版数学必修1高中数学 1.2.2 函数的表示法习题 新人教A版必修1

1.2.2函数的表示法班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.已知是反比例函数,当时,,则的函数关系式为A. B. C. D.2.已知函数若,则的取值范围是A. B.C. D.3.已知函数f(x)=,则函数f(x)的图象是( )A. B. C. D.4.已知则A.2B.-2C.D.5.已知函数,且,则 . 6.已知函数f(x)对于任意实数x满足条件f(x+2)=,若f(1)=-5,则f7.已知,为常数,且,,,方程有两个相等的实数根.求函数的解析式.8.如图,是边长为2的正三角形,记位于直线左侧的图形的面积为,试求函数的解析式.【能力提升】下图是一个电子元件在处理数据时的流程图:(1)试确定y与x的函数关系式;(2)求f(-3), f(1)的值;(3)若f(x)=16,求x的值.答案【基础过关】1.C【解析】根据题意可设(k≠0),∵当x=2时,y=1,∴,∴k=2.2.D【解析】若x∈[-1,1],则有f(x)=2∉[-1,1],∴f(2)=2;若x∉[-1,1],则f(x)=x∉[-1,1],∴f[f(x)]=x,此时若f[f(x)]=2,则有x=2.【备注】误区警示:本题易将x∉[-1,1]的情况漏掉而错选B.3.A【解析】当x=-1时,y=0,即图象过点(-1,0),D错;当x=0时,y=1,即图象过点(0,1),C错;当x=1时,y=2,即图象过点(1,2),B错.故选A.4.C【解析】∵,∴.【备注】无5.【解析】,∴,∴,解得.6.-【解析】由已知条件f(x+2)=可得f(x+4)==f(x),所以f(5)=f(1)=-5,所以f[f(5)]=f(-5)=f(-1)===-.7.∵,且方程f(x)=x有两个相等的实数根,∴,∴b=1,又∵f(2)=0,∴4a+2=0,∴,∴.8.OB所在的直线方程为.当t∈(0,1]时,由x=t,求得,所以;当t∈(1,2]时,;当t∈(2,+∞)时,,所以【能力提升】(1)由题意知y=.(2)f(-3)=(-3)2+2=11, f(1)=(1+2)2=9.(3)若x≥1,则(x+2)2=16,解得x=2或x=-6(舍去);若x<1,则x2+2=16,解得x=(舍去)或x=-.综上可得,x=2或x=-.。

2021年高中数学 1.2函数及其表示习题 新人教A版必修1

2021年高中数学 1.2函数及其表示习题新人教A版必修1典例1:作出下列函数的图象.(1)y=2x+2.(2)y=(3)y=(4)y=|log2x-1|.分析:(1)(3)(4)可通过图象变换画出函数的图象,对于(2)可先化简解析式,分离常数,再用图象变换画图象.规范解答 (1)将y=2x的图象向左平移2个单位.图象如图.(2)因y= ,先作出y= 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y= 的图象,如图.(3)作出y= 的图象,保留y= 图象中x≥0的部分,加上y= 的图象中x>0部分关于y轴的对称部分,即得y=的图象,如图实线部分.(4)先作出y=log2x的图象,再将其图象向下平移一个单位,保留x轴上方的部分,将x轴下方的图象翻折到x轴上方,即得y=|log2x-1|的图象,如图.【易错警示】关注函数定义域本例在作函数图象时,有时会忽略定义域而致误,在作函数图象时要注意函数定义域.【规律方法】作函数图象的三个重要方法及适用类型(1)直接法:当函数表达式(或变形后的表达式)是熟悉的函数或解析几何中熟悉的曲线的局部(如圆、椭圆、双曲线、抛物线的一部分)时,就可根据这些函数的奇偶性、周期性、对称性或曲线的特征直接作出.(2)图象变换法:①若函数图象可由某个基本函数的图象经过平移、翻折、对称和伸缩得到,可利用图象变换作出,但要注意变换顺序;②对不能直接找到熟悉函数的,要先变形,同时注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.(3)描点法:当上面两种方法都失效时,则可采用描点法.为了通过描少量点,就能得到比较准确的图象,常常需要结合函数的单调性、奇偶性等性质进行分析.提醒:当函数表达式是较复杂的高次、分式、指数、对数及三角函数式时,常借助于导数探究图象的变化趋势从而画出图象的大致形状.【变式训练】作出下列函数的图象.(1)y=e lnx. (2)y=|log2(x+1)|.(3)y= . (4)y=x2-2|x|-1.解析如下:(1)(2)(3)(4)典例2:(1)(xx·杭州模拟)已知函数f(x)是定义在R上的增函数,则函数y=f(|x-1|)-1的图象可能是( )(2)(xx·山东高考)函数y=xcosx+sinx的图象大致为( )分析:(1)根据函数f(x)的单调性及图象的平移、对称变换求解.(2)利用函数的奇偶性和函数值的变化规律求解.规范解答:(1)选 B.根据题意,由于函数f(x)是定义在R上的增函数,那么可知函数y=f(|x-1|)-1的图象先是保留在y轴右侧的图象不变为增函数,再作关于y轴对称的图象,再整体向右平移一个单位,再整体向下平移一个单位,那么可知为先减后增,同时关于直线x=1对称,故选B.(2)选D.函数y=xcosx+sinx为奇函数,所以图象关于原点对称,所以排除B,C.当x=π时,f(π)=-π<0,排除A,故选D.【互动探究】若本例题(1)中,函数f(x)是定义在R上的增函数改为“减函数”,则结果如何? 26928 6930 椰 26566 67C6 柆'32817 8031 耱 24780 60CC 惌@38706 9732 露22994 59D2 姒Y 99。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修一1.2函数及其表示练习题
一:单项选择题: (共10题,每小题5分,共50分)
1. 函数()y f x =的图象与直线1x =的公共点数目是( )
A 1
B 0
C 0或1
D 1或2
2. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )
A 沿x 轴向右平移1个单位
B 沿x 轴向右平移1
2个单位
C 沿x 轴向左平移1个单位
D 沿x 轴向左平移1
2个单位
3. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且
*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A 2,3 B 3,4 C 3,5 D 2,5
4. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)
5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2
-+=x x y ; ⑶x x f =)(,2)(x x g =;
⑷()f x =
()F x = ⑸21)52()(-=x x f ,52)(2-=x x f
A ⑴、⑵
B ⑵、⑶
C ⑷
D ⑶、⑸
5. 设
⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A 10 B 11 C 12 D 13 6. 函数f (x )=的定义域是( )
A .-∞,0]
B .[0,+∞
C .(-∞,0)
D .(-∞,+∞)
7. 若函数f(x) = + 2x
+ log 2x 的值域是 {3, -1, 5 + , 20},则其定义域是( ) (A) {0,1,2,4} (B) {,1,2,4} (C) {,2,4} (D) {,1,2,4,8}
8.
反函数是( ) A. B.
C. D.
9. 若任取x 1,x 2∈[a ,b ],且x 1≠x 2,都有
成立,则称f (x ) 是[a ,b ]
上的凸函数。

试问:在下列图像中,是凸函数图像的为 ( )
10. 函数f (x )=在区间(-2,+∞)上单调递增,则实数a 的取值范围是( )
A .(0,)
B .( ,+∞)
C .(-2,+∞)
D .(-∞,-1)∪(1,+∞) 二:填空题: (共2题,每小题10分,共20分)
1.
函数0y =
_____________________
2. 设函数f(x)的定义域为R ,若存在常数M>0,使得|f(x)|≤M|x|对一切实数x 均成立,则称f(x)为F 函数,给出下列函数: ①f(x)=0; ②f(x)=x 2; ③f(x)=(sinx+cosx); ④f(x)=; ⑤f(x)是定义在R 上的奇函数,且对于任意实数x 1,x 2,均有|f(x 1)-f(x 2)|≤2|x 1-x 2|。

则其中是F 函数的序号是___________________
三:解答题: (共2题,每小题10分,共20分)
1. 已知函数
2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.
2. 求函数
12++=x x y 的值域.。

相关文档
最新文档