2014年中考数学天天练1
2014中考数学模拟试题含答案(精选5套)

2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2014中考数学试卷及答案(1)

=500x+16000﹣400x, =100x+16000. ∵k=100>0, ∴y随x的增大而增大,
∴x=24时,y最大=18400元.
(3)设再次购买A型电脑a台,B型电脑b台,帐篷c顶,由题意,得 2500a+2800b+500c=18400, c=
. ∵a≥2,b≥2,c≥1,且a、b、c为整数, ∴184﹣25a﹣28b>0,且是5的倍数.且c随a、b的增大而减小. 当a=2,b=2时,184﹣25a﹣28b=78,舍去; 当a=2,b=3时,184﹣25a﹣28b=50,故c=10; 当a=3,b=2时,184﹣25a﹣28b=53,舍去; 当a=3,b=3时,184﹣25a﹣28b=25,故c=5; 当a=3,b=4时,184﹣25a﹣28b=﹣2,舍去, 当a=4,b=3时,184﹣25a﹣28b=0,舍去. ∴有2种购买方案: 方案1:购A型电脑2台,B型电脑3台,帐篷10顶, 方案2:购A型电脑3台,B型电脑3台,帐篷5顶. 28. 解:(1)在直角△OAC中,tan∠ACO=
∴A(1,0),B(﹣3,0), ∴AB=4, 设P(m,n), ∵△ABP的面积为10, ∴AB•|n|=10, 解得:n=±5,
当n=5时,m2+2m﹣3=5,
解得:m=﹣4或2, ∴P(﹣4,5)(2,5);
当n=﹣5时,m2+2m﹣3=﹣5,
方程无解,
故P(﹣4,5)(2,5); 23. (1)证明:连结OD,如图,
B.
C.
D.
10.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P 为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②
;③△PMN为等边三角形; ④当∠ABC=45°时,BN=
上海初三数学天天练一

60°30°D CBA宏达校区初三天天练一一、选择 1.51-的相反数是 ( )A . 51 B . 51-C . 5D .5-2.有理数a 、b 在数轴上的位置如图所示,则b a +的值 ( )A .大于0B .小于0C .小于aD .大于b 3.下列运算中正确的是 ( )A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+4. 两个相似三角形的面积比是9:16,则这两个三角形的相似比是 ( )A .9:16B . 3:4C .9:4D .3:16 5.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30° 6.如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是 ( ) A .32 cm B .3cm C .332 cm D .1cm二、填空7.计算3)2(-等于 .8.使2-x 有意义的x 的取值范围是 .9.自上海世博会开幕以来,中国馆以其独特的造型吸引了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是 .10.上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元.可列出方程11.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图所示.根据图中的信息,小张和小李两人中成绩较稳定的是 .12.若22=-b a ,则b a 486-+= .13.从1-9这九年自然数中任取一个,是2的倍数的概率是 .14.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB=,则下底BC 的长为 __________. 15、已知两圆的半径分别为1和3.若两圆相切,则两圆的圆心距为_________.16、如图,一条公路的转弯处是一段圆弧(图中的AB 弧),点O 是这段弧的圆心,AB =120m ,C 是AB 弧是一点,OC ⊥AB 于D ,CD =20m ,则该弯路的半径为 .17、如图,菱形ABCD 的连长是2㎝,E 是AB 中点,且DE ⊥AB ,则菱形ABCD 的面积为_________㎝2.三、简答18.(6分)解不等式组523132x x x +⎧⎪+⎨⎪⎩≥>, 19.(6分)计算221()a b a b a b b a -÷-+- 并写出不等式组的整数解.20、如图,将□ABCD 的边DC 延长到点E ,使CE =DC ,连接AE ,交BC 于点F .⑴求证:△ABF ≌△ECF⑵若∠AFC =2∠D ,连接AC 、BE .求证:四边形ABEC 是矩形.21、为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间 1小时的扇形圆心角的度数;(4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少.DCBA O(第17题)AD CABD宏达校区初三天天练二一、 选择题(本大题每小题4分,满分24分)1.2-的相反数是 ( ) (A)2-;(B)2;(C)12; (D)12-2.( )(A)3.小伟五次数学考试成绩分别为:86分,78分,80分,85分,92分,李老师想了解小伟数学学习的稳定情况,则李老师最关注小伟数学成绩的 ( ) (A)平均数;(B)众数; (C)中位数; (D)方差4.下列图形中,旋转60 后可以和原图形重合的是 ( ) (A )正六边形; (B )正五边形; (C )正方形; (D )正三角形5.如图,平行四边形ABCD 中,对角线AC 、BD 交于点O ,下列等式成立的是 ( )(A )CD AB =; (B)OB BD 2=; (C)AC AD AB =+; (D)CB AB AC =-6.如图是反映某工程队所挖河渠长度()y 米与挖掘时间()x 时之间关系的部分图...像.。
2014年中考数学总复习专题测试卷(1--10)含参考答案 (1)

2011年中考数学总复习专题测试卷(二)(圆)(试卷满分 150 分,考试时间 120 分钟)一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.在△ABC 中,∠C=90°,AB =3cm ,BC =2cm,以点A 为圆心,以2.5cm 为半径作圆,则点C 和⊙A 的位置关系是( ).A .C 在⊙A 上 B.C 在⊙A 外C .C 在⊙A 内 D.C 在⊙A 位置不能确定.2.一个点到圆的最大距离为11cm ,最小距离为5cm,则圆的半径为( ). A .16cm 或6cm B.3cm 或8cm C .3cm D.8cm 3.AB 是⊙O 的弦,∠AOB =80°则弦AB 所对的圆周角是( ).A .40° B.140°或40° C .20° D.20°或160° 4.O 是△ABC 的内心,∠BOC 为130°,则∠A 的度数为( ). A .130° B.60° C .70° D.80° 5.已知圆锥的底面半径为3,高为4,则圆锥的侧面积为( ). A.10πB .12π C.15π D.20π 6.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( ).A .3B .4C .5D .6 7.下列语句中不正确的有( ).①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦③圆是轴对称图形,任何一条直径都是它的对称轴 ④长度相等的两条弧是等弧A .3个 B.2个 C .1个 D.4个 8.先作半径为23的第一个圆的外切正六边形,接着作上述外切正六边形的外接圆,再作上述外接圆的外切正六边形,…,则按以上规律作出的第8个外切正六边形的边长为( ). A .7)332(B.8)332( C .7)23( D.8)23( 9.如图1,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE的度数是( ).A .55° B.60° C .65° D.70°10.如图2,圆内接四边形ABCD 的BA 、CD 的延长线交于P ,AC 、BD 交于E ,则图中相似三角形有( ).A .2对 B.3对 C .4对 D.5对图1 图2二、填空题(本题共 4 小题,每小题 5 分,满分 20 分)11.同圆的外切正六边形与内接正六边形的面积之比为_________.12.在半径为5cm 的圆内有两条平行弦,一条弦长为6cm ,另一条弦长为8cm ,则两条平行弦之间的距离为_________.13.如图3,△ABC 内接于⊙O ,AB=AC ,∠BOC=100°,MN 是过B 点而垂直于OB 的直线,则∠ABM=________,∠CBN=________; 14.如图4,在矩形ABCD 中,已知AB=8 cm ,将矩形绕点A 旋转90°,到达A ′B ′C ′D ′的位置,则在旋转过程 中,边CD 扫过的(阴影部分)面积S=_________.图3 图4三、(本题共2小题,每小题8分,满分 16 分)15.如图,P 是⊙O 外一点,PAB 、PCD 分别与⊙O 相交于A 、B 、C 、D.(1)PO 平分∠BPD ; (2)AB=CD ;(3)OE ⊥CD ,OF ⊥AB ;(4)OE=OF.从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明.ABPO E FCD16.如图,⊙O 1的圆心在⊙O 的圆周上,⊙O 和⊙O 1交于A ,B ,AC 切⊙O 于A ,连结CB ,BD 是⊙O的直径,∠D =40°求:∠A O 1B 、∠ACB 和∠CAD 的度数.四、(本题共2小题,每小题8分,满分16分)17.已知:如图,在△ABC 中,∠BAC=120°,AB=AC ,BC=43,以A 为圆心,2为半径作⊙A ,试问:直线BC 与⊙A 的关系如何?并证明你的结论.ABC18.如图,ABCD 是⊙O 的内接四边形,DP ∥AC ,交BA 的延长线于P ,求证:AD ²DC =PA ²BC.五、(本题共2小题,每小题10分,满分20分)19.如图,△ABC 中∠A =90°,以AB 为直径的⊙O 交BC 于D ,E 为AC 边中点,求证:DE 是⊙O的切线.20.如图,已知扇形OACB 中,∠AOB =120°,弧AB 长为L =4π,⊙O ′和弧AB 、OA 、OB 分别相切于点C 、D 、E ,求⊙O 的周长.PA B C DOB MPP EE D D BCBCA A N MPE D CA 六、(本题满分12 分)21.如图,半径为2的正三角形ABC 的中心为O ,过O 与两个顶点画弧,求这三条弧所围成的阴影部分的面积.七、(本题满分12分)22.如图,ΔABC 的∠C =Rt ∠,BC =4,AC =3,两个外切的等圆⊙O 1,⊙O 2各与AB ,AC ,BC 相切于F ,H ,E ,G ,求两圆的半径.八、(本题满分14 分)23.如图①、②、③中,点E 、D 分别是正△ABC 、正四边形ABCM 、正五边形ABCMN 中以C 点为顶点的相邻两边上的点,且BE = CD ,DB 交AE 于P 点. ⑴求图①中,∠APD 的度数;⑵图②中,∠APD 的度数为___________,图③中,∠APD 的度数为___________;⑶根据前面探索,你能否将本题推广到一般的正n 边形情况.若能,写出推广问题和结论;若不能,请说明理由.参考答案一、1、C 2、B 3、B 4、D 5、C 6、A 7、D 8、A9、C 10、C二、11、4:3; 12、7cm 或1cm ; 13、65°,50°; 14、16πcm 2. 三、15、命题1,条件③④结论①②, 命题2,条件②③结论①④.证明:命题1∵OE ⊥CD , OF ⊥AB, OE=OF ,∴AB=CD, PO 平分∠BPD.16、∠A O 1B=140°,∠ACB=70°,∠CAD=130°.四、17、作AD ⊥BC 垂足为D, ∵AB=AC ,∠BAC=120°, ∴∠B=∠C=30°.∵BC=43, ∴BD=21BC=23. 可得AD=2.又∵⊙A 半径为2,∴⊙A 与BC 相切.18、连接BD ,证△PAD ∽△DCB.五、19、连接OD 、OE ,证△OEA ≌△OED. 20、12π. 六、21、4π-36.七、22、75.提示:将两圆圆心与已知的点连接,用面积列方程求.八、23、(1)∵△ABC 是等边三角形 ∴AB=BC ,∠ABE=∠BCD=60°∵BE=CD ∴△ABE ≌△BCD ∴∠BAE=∠CBD ∴∠APD=∠ABP+∠BAE=∠ABP+∠CBD=∠ABE=60° (2)90°,108°(3)能.如图,点E 、D 分别是正n 边形ABCM …中以C 点为顶点的相邻两边上的点,且BE=CD ,BD 与AE 交于点P ,则∠APD 的度数为nn ︒-180)2( .2011年中考数学总复习专题测试卷(三)(方程与不等式)(试卷满分 150 分,考试时间 120 分钟)一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.点(412)A m m --,在第三象限,那么m 值是( ). A.12m >B.4m < C.142m << D.4m >2.不等式组⎩⎨⎧>>a x x 3的解集是x>a ,则a 的取值范围是( ).A.a ≥3 B .a =3 C.a >3 D.a <3 3.方程2x x 2-4 -1=1x +2的解是( ).A.-1 B .2或-1 C.-2或3 D.3 4.方程2-x 3 - x-14= 5的解是( ). A. 5 B . - 5 C. 7 D.- 75.一元二次方程x 2-2x-3=0的两个根分别为( ). A .x 1=1,x 2=-3 B .x 1=1,x 2=3 C .x 1=-1,x 2=3 D .x 1=-1,x 2=-36.已知a b ,满足方程组2324a b m a b m +=-⎧⎨+=-+⎩,,则a b -的值为( ).A.1-B.1m -C.0D.17. 若方程组35223x y m x y m +=+⎧⎨+=⎩的解x 与y 的和为0,则m 的值为( ).A.-2 B .0 C.2 D.48.如果x 1,x 2是两个不相等实数,且满足x 12-2x 1=1,x 22-2x 2=1, 那么x 1²x 2等于( ).A.2 B .-1 C.1 D.-29.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形图.如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm , 那么x 满足的方程是( ). A .x 2+130x-1400=0 B .x 2+65x-350=0 C .x 2-130x-1400=0 D .x 2-65x-350=010.若解分式方程2x x -1 -m +1x 2+x =x +1x产生增根,则m 的值是( ). A.-1或-2 B .-1或2 C.1或2 D.1或-2二、填空题(本题共 4 小题,每小题 5 分,满分 20 分)11.不等式(m-2)x>2-m 的解集为x<-1,则m 的取值范围是__________________.12.已知关于x 的方程10x 2-(m+3)x+m -7=0,若有一个根为0,则m=_________,这时方程的另一个根是_________.13.不等式组⎩⎨⎧-<+<212m x m x 的解集是x <m -2,则m 的取值应为_________.14.用换元法解方程4112=-+-x x x x ,若设y x x=-1,则可得关于y 的整式方程为___________________________.三、(本题共2小题,每小题8分,满分 16 分) 15.解方程:(1) (2x – 3)2 = (3x – 2)2(2) 解方程:11262213x x=---16.解不等式组,并把其解集在数轴上表示出来:33213(1)8.x x x x -⎧+⎪⎨⎪--<-⎩,≥四、(本题共2小题,每小题8分,满分16分)17. 如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?↑↓60cm18.某科技公司研制成功一种新产品,决定向银行贷款200万元资金用于生产这种产品,签定的合同约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元;若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数.五、(本题共2小题,每小题10分,满分20分)19.将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成a b c d ,定义a bc d=ad -bc ,上述记号就叫做2阶行列式.若1111x x x x +--+=6,求x 的值.20.已知关于x ,y 的方程组⎩⎨⎧=+=+12by ax y x 与⎩⎨⎧=-=-452by ax y x 的解相同,求a ,b 的值.六、(本题满分12 分)21.小华在沿公路散步,往返公交车每隔8分钟就有一辆迎面而过;每隔403分钟就有一辆从小华的背后而来.若小华与公交车均为匀速运动,求车站每隔几分钟发一班公交车?七、(本题满分12分)22.“十一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.八、(本题满分 14 分)23.机械加工需要用油进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油量为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、•乙两个车间都组织了人员为减少实际耗油量进行攻关.(1)甲车间通过技术革新后,加工一台大型机械设备润滑油用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑用油量,•同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%.这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?参考答案一、1、C 2、A 3、D 4、D 5、C 6、D 7、C 8、B9、B 10、A 二、11、m <2; 12、7,1; 13、m ≥-3; 14、01422=+-y y . 三、15、(1)±1;(2)去分母,得1314x =-+.32x =-,解这个方程,得23x =-.经检验,23x =-是原方程的解.16.解:解不等式332x x -+≥,得3x ≤, 解不等式13(1)8x x --<-,得2x >-.所以,原不等式组的解集是23x -<≤.在数轴上表示为四、17. 每块长方形地砖的长是45cm ,宽是15cm.18.设每年增长的百分数为x .72%)81(200)1(2002++⨯=+x 解得:%202.01==x 2.22-=x (不合题意,舍去) 答:(略) 五、19.因为ab c d =ad -bc ,所以1111x x x x +--+ =6可以转化为(x +1)(x +1)-(x -1)(1-x )=6,即(x +1)2+(x -1)2=6,所以x 2=2,即x =±2; 20. 65=a ,23=b . 六、21.10分钟.(提示:设车站每隔x 分钟发一班车,小华的速度为1υ米/分,公交车的速度为2υ米/分,则()()1222128403x x υυυυυυ+=⎧⎪⎨-=⎪⎩,.) 七、22.(1)385÷42≈9.2∴单独租用42座客车需10辆,租金为320³10=3200元. 385÷60≈6.4∴单独租用60座客车需7辆,租金为460³7=3220元.(2)设租用42座客车 x 辆,则60座客车(8-x )辆,由题意得:32101234- - -⎩⎨⎧≤-+≥-+.)(,)(3200846032038586042x x x x 解之得:733≤x ≤1855. ∵x 取整数, ∴x =4,5.当x =4时,租金为320³4+460³(8-4)=3120元; 当x =5时,租金为320³5+460³(8-5)=2980元. 答:租用42座客车5辆,60座客车3辆时,租金最少.说明:若学生列第二个不等式时将“≤”号写成“<”号,也对. 八、23.(1)由题意,得70³(1-60%)=70³40%=28(千克). (2)设乙车间加工一台大型机械设备润滑用油量为x 千克.由题意,得:x ³[1-(90-x )³1.6%-60%]=12,整理得x 2-65x-750=0,解得:x 1=75,x 2=-10(舍去), (90-75)³1.6%+60%=84%.答:(1)技术革新后,•甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,•乙车间加工一台大型机械设备润滑用油量是75千克,用油的重复利用率是84%.2011年中考数学总复习专题测试卷(四)(函数及其图象)(试卷满分 150 分,考试时间 120 分钟)一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.已知反比例函数 y=a-2x的图象在第二、四象限,则a 的取值范围是( ). A .a ≤2 B .a ≥2 C .a <2 D .a >2 2.若 ab >0,bc<0,则直线y=-a b x -cb不通过( ).A .第一象限B 第二象限C .第三象限D .第四象限3.若二次函数y=x 2-2x+c 图象的顶点在x 轴上,则c 等于( ).A .-1B .1C .21D .24.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ). A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-1 5.已知一次函数y= kx+b 的图象经过第一、二、四象限,则反比例函数y=kbx的图象大致为( ).6.二次函数y=x 2-4x+3的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积为A .1B .3C .4D .67.已知一次函数y=kx+b 的图象如图所示,当x <0时,y 的取值范围是( ). A .y >0 B .y <0 C .-2<y <0 D .y <-2 8.如图是二次函数y=ax 2+bx+c 的图象,则点(a+b ,ac)在( ).A .第一象限B .第二象限C .第三象限D .第四象限xyO(第7题图) (第8题图) (第9题图) (第10题图) 9.二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论: ①a >0; ②b >0; ③c >0;④b 2-4a c >0, 其中正确的个数是( ).A . 0个B . 1个C . 2个D . 3个10.如图,正方形OABC ADEF ,的顶点A D C ,,在坐标轴上,点F 在AB 上,点B E ,在函数1(0)y x x=>的图象上,则点E 的坐标是( ) A.515122⎛⎫+- ⎪ ⎪⎝⎭,B.353522⎛⎫+- ⎪ ⎪⎝⎭, C.515122⎛⎫-+ ⎪⎪⎝⎭,D.353522⎛⎫-+ ⎪⎪⎝⎭, 二、填空题(本题共 4 小题,每小题 5 分,满分 20 分)11.已知y 与(2x+1)成反比例,且当x=1时,y=2,那么当x=-1时,y=_________.12.在平面直角坐标系内,从反比例函数xky =(k >0)的图象上的一点分别作x 、y 轴的垂线段,与x 、y 轴所围成的矩形面积是12,那么该函数解析式是_________.13.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象经过第一象限;乙:函数的图象经过第三象限;丙:在每个象限内,y 随x 的增大而减小.请你根据他们的叙述构造满足上述性质的一个函数 _________ _________.14.点A(-2,a)、B (-1,b )、C (3,c )在双曲线xky =(k<0)上,则a 、b、c 的大小关系为_________.(用”<”将a 、b 、c 连接起来).A ODCE FxyB三、(本题共2小题,每小题8分,满分 16 分)15.用配方法求抛物线4322--=x x y 的顶点坐标、对称轴.16.已知一次函数的图象与直线1+-=x y 平行,且过点(8,2),求此一次函数的解析式.四、(本题共2小题,每小题8分,满分16分) 17.用铝合金型材做一个形状如图1所示的矩形窗框,设窗框的一边为xm ,窗户的透光面积为ym 2,y 与x 的函数图象如图2所示.(1)观察图象,当x 为何值时,窗户透光面积最大? (2)当窗户透光面积最大时,窗框的另一边长是多少?18.已知二次函数y=(m 2-2)x 2-4mx+n 的图象的对称轴是x=2,且最高点在直线y=21x+1上,求这个二次函数的表达式.五、(本题共2小题,每小题10分,满分20分)19.有一座抛物线形拱桥,桥下面在正常水位时AB 宽20米,水位上升3米就达到警戒线CD ,这时水面宽度为10米;(1)在如图的坐标系中,求抛物线的表达式.BC yxA (2)若洪水到来时,再持续多少小时才能到拱桥顶?(水位以每小时0.2米的速度上升)xyCDAO20.如图,直线AB 过x 轴上的点A(2,0),且与抛物线y=ax 2相交于B 、C 两点,B 点坐标为(1,1).(1)求直线和抛物线所表示的函数表达式;(2)在抛物线上是否存在一点D ,使得S △OAD =S △OBC ,若不存在,说明理由;若存在,请求出点D 的坐标.xy AB CD O六、(本题满分12 分)21.如图,抛物线2812(0)y ax ax a a =-+<与x 轴交于A 、B 两点(点A 在点B 的左侧),抛物线上另有一点C 在第一象限,满足∠ACB 为直角,且恰使△OCA ∽△OBC . (1)求线段OC 的长.(2)求该抛物线的函数关系式.(3)在x 轴上是否存在点P ,使△BCP 为等腰三角形?若存在,求出所有符合条件的P 点的坐标;若不存在,请说明理由.七、(本题满分12分)22.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0<x<30).y值越大,表示接受能力越强.(1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?(2)第10分时,学生的接受能力是什么?(3)第几分时,学生的接受能力最强?(4)结合本题针对自己的学习情况有何感受?八、(本题满分14 分)23.某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围);(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?参考答案一、1、C 2、C 3、B 4、C 5、A 6、A 7、D 8、D9、D 10、A二、11、-6; 12、x y 12= ; 13、xy 1= ; 14、c<a<b.三、15、841)43(22--=x y ,顶点坐标为)841,43(-,对称轴为直线43=x .16、10+-=x y四、17、(1)由图象可知,当x = 1时,窗户透光面积最大.(2)窗框另一边长为1.5米.18、∵二次函数的对称轴x=2,此图象顶点的横坐标为2,此点在直线y=21x+1上. ∴y=21³2+1=2.∴y=(m 2-2)x 2-4mx+n 的图象顶点坐标为(2,2)..∴-)2(242--m m=2. 解得m=-1或m=2.∵最高点在直线上,∴a<0, ∴m=-1.∴y=-x 2+4x+n 顶点为(2,2). ∴2=-4+8+n.∴n=-2. 则y=-x 2+4x+2.五、19、(1)设拱桥顶到警戒线的距离为m.∵抛物线顶点在(0,0)上,对称轴为y 轴, ∴设此抛物线的表达式为y=ax 2(a ≠0).依题意:C (-5,-m ),A (-10,-m -3).∴⎩⎨⎧-=---=-.)10(3,)5(22a m a m ⎪⎩⎪⎨⎧-=-=∴.1,251m a∴抛物线表达式为y=-251x 2. (2)∵洪水到来时,水位以每小时0.2米的速度上升,|m|=1,∴从警戒线开始再持续2.01=5(小时)到拱桥顶.20、(1)设直线表达式为y=ax+b.∵A (2,0),B (1,1)都在y=ax+b 的图象上,∴⎩⎨⎧+=+=.1,20b a b a ∴⎩⎨⎧=-=.2,1b a∴直线AB 的表达式y=-x+2.∵点B (1,1)在y=ax 2的图象上, ∴a=1,其表达式为y=x 2.(2)存在.点C 坐标为(-2,4),设D (x ,x 2).∴S △OAD =21|OA|²|y D |=21³2²x 2=x 2.∴S △BOC =S △AOC -S △OAB =21³2³4-21³2³1=3.∵S △BOC =S △OAD ,∴x 2=3, 即x=±3.∴D 点坐标为(-3,3)或(3,3). 六、21、(1)32;(2)34338332-+-=x x y ;(3)4个点: )0,4(),0,0(),0,326)(0,326(+-七、22、(1)y=-0.1x 2+2.6x+43=-0.1(x-13)2+59.9所以,当0≤x ≤13时,学生的接受能力逐步增强. 当13<x ≤30时,学生的接受能力逐步下降. (2)当x=10时,y=-0.1(10-13)2+59.9=59. 第10分时,学生的接受能力为59. (3)x=13时,y 取得最大值,所以,在第13分时,学生的接受能力最强.(4)前13分钟尽快进入状态,集中注意力,提高学习效率,13分钟后要注意调节.八、23、(1)当销售单价定为每千克55元时,月销售量为:500–(55–50)³10=450(千克),所以月销售利润为:(55–40)³450=6750(元).(2)当销售单价定为每千克x 元时,月销售量为:[500–(x –50)³10]千克而每千克的销售利润是:(x –40)元,所以月销售利润为:y=(x –40)[500–(x –50)³10]=(x –40)(1000–10x )=–10x 2+1400x –40000(元),∴y 与x 的函数解析式为:y =–10x 2+1400x –40000.(3)要使月销售利润达到8000元,即y=8000,∴–10x 2+1400x –40000=8000,即:x 2–140x+4800=0, 解得:x 1=60,x 2=80.当销售单价定为每千克60元时,月销售量为:500–(60–50)³10=400(千克),月销售成本为: 40³400=16000(元);当销售单价定为每千克80元时,月销售量为:500–(80–50)³10=200(千克),月销售单价成本为: 40³200=8000(元);由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元.2011年中考数学总复习专题测试卷(五)(统计与概率)(试卷满分 150 分,考试时间 120 分钟)一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.若一组数据1,2,3,x 的极差为6,则x 的值是( ). A .7 B .8 C .9 D .7或-3 2.样本X 1、X 2、X 3、X 4的平均数是X ,方差是S 2,则样本X 1+3,X 2+3,X 3+3,X 4+3的平均数和方差分别是( ).A .x +3,S 2+3B . x +3, S 2C . x ,S 2+3D . x , S 23.刘翔在出征北京奥运会前刻苦进行110米跨栏训练,教练对他20次的训练成绩进行统计分析,判断他的成绩是否稳定,则教练需要知道刘翔这20次成绩的( ). A 、方差 B .平均数 C .频数 D . 众数4.盒中装有5个大小相同的球,其中3个白球,2个红球,从中任意取两个球,恰好取到一个红球和一个白球的概率是( ).A .254B .101C .53D .215.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( ).A .1925 ;B .1025 ;C .625 ;D .5256.其市气象局预报称:明天本市的降水概率为70%,这句话指的是( ). A . 明天本市70%的时间下雨,30%的时间不下雨 B . 明天本市70%的地区下雨,30%的地区不下雨 C . 明天本市一定下雨 D . 明天本市下雨的可能性是70%7.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是53,这个53的含义是( ).A .只发出5份调查卷,其中三份是喜欢足球的答卷B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8C .在答卷中,喜欢足球的答卷占总答卷的53D .发出100份问卷,有60份答卷是不喜欢足球8.一个袋中装有2个黄球和2个红球,任意摸出一个球后放回,再任意摸出一个球,则两次都摸到红球的概率为( ).A .21B .41C .61D .819.袋中有5个红球,有m 个白球,从中任意取一个球,恰为白球的机会是23,则m 为( ).A .10B .16C .20D .1810.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ).A .118 B .112C .19D .16二、填空题(本题共 4 小题,每小题 5 分,满分 20 分)11.袋中有红、黄、蓝3球,从中摸出一个,放回,共摸3次,摸到二黄一蓝的机会是 .12.晓明玩转盘游戏,当他转动如图所示的转盘,转盘停止时指针指向2的概率是 .13.某地区有80万人口,其中各民族所占比例如图所示,则该地区少数民族人口共有万人.14.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2 个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是 . 三、(本题共2小题,每小题8分,满分 16 分)15.某校有A 、B 两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐.(1)求甲、乙、丙三名学生在同一个餐厅用餐的概率;(2)求甲、乙、丙三名学生中至少有一人在B 餐厅用餐的概率.16.将分别标有数字2,3,5的三张质地、大小完全一样的卡片背面朝上放在桌面上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?并求出抽取到的两位数恰好是35的概率.四、(本题共2小题,每小题8分,满分16分)17.甲乙两人在玩转盘游戏时,把转盘A、B分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定,转动两个转盘停止后,指针所指的两个数字之和为奇数时,甲获胜;为偶数时,乙获胜.(1)用列表法(或画树状图)求甲获胜的概率;(2)你认为这个游戏规则对双方公平吗?请简要说明理由.18.小明和小亮用如下的同一个转盘进行“配紫色”游戏.游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),则小明得1分,否则小亮得1分.你认为这个游戏对双方公平吗?请说明理由;若不公平,请你修改规则使游戏对双方公平.五、(本题共2小题,每小题10分,满分20分)19.小明和小亮做掷硬币游戏,连掷四次硬币,当其中恰有三次结果相同时,小明赢,而当恰有两次结果相同时,小亮赢,其他情况不计输赢,你认为该游戏对双方公平吗?20.根据生物学家的研究,人体的许多特征都是由基因控制的,有的人是单眼皮,有的人是双眼皮,这是由一对人体基因控制的,控制单眼皮的基因f是隐性的,控制双眼皮的基因F是显性的,这样控制眼皮的一对基因可能是ff、FF或Ff,基因ff的人是单眼皮,基因FF或Ff的人是双眼皮.在遗传时,父母分别将他们所携带的一对基因中的一个遗传给子女,而且是等可能的,例如,父母都是双眼皮而且他们的基因都是Ff,那么他们的子女只有ff、FF或Ff三种可能,具体可用下表表示:父亲基因为FfF f母亲基因Ff F FF Ff f Ff ff你能计算出他们的子女是双眼皮的概率吗?如果父亲的基因是ff,母亲的基因是FF呢?如果父亲的基因是Ff,母亲的基因是ff呢?六、(本题满分12 分)21.初三某班对最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如下图所示的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有_____名同学参加这次测验;(2)在该频数分布直方图中画出频数折线图;(3)这次测验成绩的中位数落在___________分数段内;(4)若这次测验中,成绩80分以上(不含80分)为优秀,那么该班这次数学测验的优秀率是多少?七、(本题满分12分)22.有一种笔记本原售价为每本8元.甲商场用如下办法促销:每次购买1~8本打九折、9~ 16本打八五折、17~25本打八折、超过25本打七五折 乙商场用如下办法促销:(1)、请仿照乙商场的促销表,列出甲商场促销笔记本的购买本数与每本价格对照表;(2)、某学校有A 、B 两个班都需要购买这种笔记本.A 班要8本,B 班要15本.问他们到哪家商场购买花钱较少?(3)、设某班需购买这种笔记本的本数为x ,且9≤x ≤40,总花钱为y 元,从最省钱的角度出发,写出y 与x 的函数关系式八、(本题满分14 分)23.某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购买10元以上物品就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据: (1)计算并完成表格:转动转盘的次数n 100 150 200 500 800100落在“铅笔”的次数m 68 111 136 345 564 701 落在“铅笔”的频率(2)请估计,当n 很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少? (4)在该转盘中,标有铅笔区域的扇形的圆心角大约是多少(精确到1°)?购买本数(本) 1~5 6~10 11~20 超过20 每本价格(元) 7.60 7.20 6.40 6.00参考答案一、1、D 2、C 3、A 4、C 5、C 6、D 7、C 8、B9、A 10、B二、11、91;12、21(或0.5,50%);13、12;14、51.三、15、(1)1/4,(2)7/8; 16、(1)抽到奇数的概率P=23; (2)能组成6个不同的两位数:32, 52,23,53,25,35.其中恰好为35的概率为16.四、17. ⑴(法1)画树状图由上图可知,所有等可能的结果共有12种,指针所指的两个数字之和为奇数的结果有6种.∴P (和为奇数)=0.5(法2)列表如下:1 2 3 45 1+5=6 2+5=7 3+5=8 4+5=9 6 1+6=7 2+6=8 3+6=9 4+6=10 7 1+7=8 2+7=9 3+7=10 4+7=11由上表可知,所有等可能的结果共有12种,指针所指的两个数字之和为奇数的结果有6种. ∴P (和为奇数)=0.5 ⑵∵P (和为奇数)=0.5∴P (和为偶数)=0.5 ∴这个游戏规则对双方是公平的. 18.第二次第一次红 黄 蓝 红 (红,红) (红,黄) (红,蓝) 黄 (黄,红) (黄,黄) (黄,蓝) 蓝 (蓝,红) (蓝,黄) (蓝,蓝)从表中可以得到:P (小明获胜)=95,P (小亮获胜)=94.∴小明的得分为95³1=95 , 小亮的得分为 94³1= 94.转 盘A转 盘 B和∵ 95>94,∴游戏不公平.修改规则不惟一.如若两次转出颜色相同或配成紫色,则小明得4分,否则小亮得5分.五、19. 概率为43.若父亲的基因是ff ,母亲的基因是FF 时, 子女的基因会出现Ff 、Ff 、Ff 、Ff .子女出现双眼皮的概率为44=100% ,若父亲的基因是Ff ,母亲的基因是ff 时,子女出现双眼皮的概率为21(50%) .20、对双方公平利用树状图.如第一次为正面,则有其中恰好三次相同数为6, 其中恰好两次相同数为6,恰有三次相同的概率为83166=,恰有两次相同的概率为83166=,∴该游戏对双方是公平的.六、21、(1)40,(2)略,(3)70.5-80.5,(4)47.5℅. 七、22、(1)甲商场的促销办法列表为: 购买本数(本) 1~89~1617~25超过25每本价格(元)7.20 6.80 6.40 6.00(2)若A 班在甲商场购买至少需57.6元,而在乙简场购买也至少需要57.6元,所以A 班在甲商场购买、乙商场购买花钱一样多.若B 班在甲商场购买至少需102元,而在乙商场购买至少需要96元,所以B 班在乙商场购买花钱较少.(3)由题意知,从最省钱的角度出发,可得y 与x 的函数关系式为:。
2014年中考数学二轮专题复习试1(最终版)

2014年中考数学二轮专题复习试1(最终版)第一篇:2014年中考数学二轮专题复习试1(最终版)2014年中考数学专题复习练习卷:统计与概率一、选择题1、某中学为迎接建党九十周年,举行了”童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年纪各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是()A.1111B.C.D . 24632.(2013福建漳州)某日福建省九地市的最高气温统计如下表:针对这组数据,下列说法正确的是()A.众数是30B.极差是1C.中位数是31D.平均数是283.(2013山东济宁)下列说法正确的是()A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,xn的平均数是x,那么(x1-x)+(x2-x)+⋯+ xn-x=0D.一组数据的方差是这组数据的极差的平方4.(2013山东青岛)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45B.48C.50D.555.(2013四川内江)今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1 000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1 000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1 000名学生是样本容量6.(2013重庆)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽出50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5、10.9,则下列说法正确的是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐7.(2012山东枣庄)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其()2余均相同.若从中随机摸出一个球为白球的概率是,则黄球的个数为()3A.16B.12C.8D.48.(2013山东日照)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占该学校全体教职工总人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组9.(2012山东泰安)某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选出20名同学统计了各自家庭一个月的节水情况,见表:请你估计这400名同学的家庭一个月节约用水的总量大约是()3333A.130 mB.135 mC.65 mD.260 m10.(2013甘肃天水)一组数据:3,2,1,2,2的众数,中位数,方差分别是()A.2,1,0.4B.2,2,0.4C.3,1,2D.2,1,0.211.(2013山东淄博)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是()1352A. B. C. D.6883二、填空题(本大题共6个小题,每小题3分,共18分)11.(2013浙江湖州)某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如表,则这20户家庭这个月的平均用水量是_______t.12.(2013山东青岛)某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:22则这两名运动员中________的成绩x甲=1.69 mx乙=1.69 m,s 甲=0.000 6,s乙=0.003 15,更稳定.13、(2011山东菏泽)从-2、-1、0、1、2这5个数中任取一个数,作为关于x的一元二次方程x2-x+k=0 的k值,则所得的方程中有两个不相等的实数根的概率是.14、(2011湖南益阳)在-1,1,2这三个数中任选2个数分别作为P点的横坐标和纵坐标,过P点画双曲线y=k,该双曲线位于第一、三象限的概率是 x15.(2013湖南岳阳)如图所示的3×3方格形地面上,阴影部分是草地,其余部分是空地,一只自由飞翔的小鸟飞下来落在草地上的概率为______.16.(2012浙江温州)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有________人.三、解答题(本大题共5个小题,共57分)17、为庆祝国庆,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:分数(分)请根据以上图表提供的信息,解答下列问题:(1)表中m和n所表示的数分别为:m=__________,n=__________;(2)请在图中补全频数分布直方图;(3)比赛成绩的中位数落在哪个分数段?(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?18.(本小题满分10分)(2013宁夏)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.19、(2012浙江衢州)据衢州市2011年国民经济和社会发展统计公报显示,2011年衢州市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型.老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生,如果对2011年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果2012年新开工廉租房建设的套数比2011年增长10%,那么2012年新开工廉租房有多少套?第二篇:中考数学二轮专题:一次函数2021中考数学二轮专题汇编:一次函数一、选择题1.(2019•陕西)若正比例函数的图象经过点O(a–1,4),则a的值为A.–1B.0C.1D.22.(2019•上海)下列函数中,函数值随自变量x的值增大而增大的是A.B.C.D.3.在直角坐标系中,点M,N在同一个正比例函数图象上的是()A.M(2,-3),N(-4,6)B.M(-2,3),N(4,6)C.M(-2,-3),N(4,-6)D.M(2,3),N(-4,6)4.已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是()5.如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax +b=0的解是()A.x=2B.x=0C.x=-1D.x=-36.已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0B.k>1,b>0C.k>0,b>0D.k>0,b<07.如图,一直线与两坐标轴的正半轴分别交于A、B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5B.y=x+10C.y=-x+5D.y=-x+108.一次函数y=x-b与y=x-1的图象之间的距离等于3,则b的值为()A.-2或4B.2或-4C.4或-6D.-4或6二、填空题9.直线y=2x-1与x轴的交点坐标为.10.将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第________象限.11.若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是________(写出一个即可).12.如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b14.已知二元一次方程组的解为,则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=-x-1的交点坐标为________.15.如图,点A的坐标为(-4,0),直线y=x+n与坐标轴交于点B,C,连接AC,如果∠ACD=90°,则n的值为________.16.已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为____________.三、解答题17.如图,一次函数y1=k1x+b与反比例函数y2=(x<0)的图象相交于A,B两点,且与坐标轴的交点为(-6,0),(0,6),点B的纵坐标为2.(1)试确定反比例函数的解析式;(2)求△A OB的面积;(3)直接写出不等式k1x+b<的解.18.根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8∶00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11∶30全部排完,游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.19.如图所示,已知正比例函数和,过点作轴的垂线,与这两个正比例函数的图象分别交与两点,求三角形的面积(其中为坐标原点)。
【夺分天天练】(新课标)2014中考数学总复习 第2讲 整式与因式分解课件(含13年试题)

( C )
(B (B
) )
第2讲┃ 整式与因式分解
4. [2013· 重庆 A 卷 ] 下列运算正确的是 ( D ) A. 3x2+ 4x2= 7x4 B. 2x3· 3x3= 6x3 C. x6÷ x3= x2 D. (x2)4= x8 5.分解因式 a3- a 的结果是 ( C ) A. a(a2- 1) B. a(a- 1)2 C. a(a+ 1)(a- 1) D. (a2+ a)(a- 1) 6. [2013· 枣庄 ] 如图 2- 1(1)是一个长为 2a,宽为 2b(a>b)的长 方形,用剪刀沿图中虚线(对称轴 )剪开,把它分成四块形状 和大小都一样的小长方形,然后 按图(2)那样拼成一个正方形,则 中间空的部分的面积是 ( C ) A. 2ab B.(a+ b)2 C. (a- b)2 D. a2- b2
2
第2讲┃ 整式与因式分解
14. [2013· 衡阳 ] 先化简,再求值:(1+ a)(1- a)+ a(a- 2), 1 其中 a= . 2
解: (1+ a)(1- a)+ a(a- 2)= 1- a2+ a2- 2a= 1-2a. 1 当 a= 时,原式= 0. 2
第2讲┃ 整式与因式分解
15. (1)已知 x+ y=7, xy= 12,求 (x- y)2 的值; (2)已知 a+ b= 8, a- b= 2,求 ab 的值.
第2讲┃ 整式与因式分解
16. [2013· 扬州 ] 如果 10b= n,那么称 b 为 n 的劳格数,记为 b= d(n).由定义可知: 10b= n 与 b= d(n)所表示的是 b, n 两个量 之间的同一关系. - (1)根据劳格数的定义,填空: d(10) = ____, d(10 2)= _____; (2)劳格数有如下运算性质: m 若 m, n 为正数,则 d(mn)= d(m)+ d(n), d = d(m)- d(n). n d( a3) 根据运算性质,填空: =________(a 为正数),若 d(2)= d( a) 0.3010,则 d(4)= _______, d(5)= _______,d(0.08)= _______;
【中考夺分天天练(新课标·RJ)】2014中考数学总复习课件(含13年试题):第9讲 平面直角坐标系及函数
第9讲┃ 平面直角坐标系及函数
考点2
平面直角坐标系中点的对称与平移
1.在平面直角坐标系中,点 M(-3,2)关于 x 轴对称的点 在 ( C ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.点 M(2,-1)向上平移 2 个单位长度得到的点的坐标是 ( B ) A.(2, 0) B.(2, 1) C.(2,2) D.(2,-3) 3.在平面直角坐标系中,点(3,- 2)关于原点对称的点的 坐标是 (C ) A.(3, 2) B.(3,- 2) C.(-3,2) D.(- 3,-2)
第9讲┃ 平面直角坐标系及函数
探究二
函数图象与实际问题
例 2 某蓄水池的横断面示意图如图 9- 2 所示,分深水区和 浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出, 下面的图象能大致表示水的深度 h 和放水时间 t 之间的关系的 是 ( A )
第9讲┃ 平面直角坐标系及函数
[ 解析 ] 观察蓄水池的横断面示意图可知,浅水区的横 断面宽,深水区的横断面窄,故在放水时,水面下降的速度 应是先慢后快.观察所给的四个选项可知,与变化过程相吻 合的为 A.
考点3
第9讲┃ 平面直角坐标系及函数
【归纳总结】
1. 自变量取值范围: (1)函数关系式为整式形式,自变 全体实数 量取值范围为 ____________ ;(2)函数关系式为分式 不等于 零; (3)函数关系式含算术平方 形式,分母________ 大于等于 零; (4)函数关系式含零指数, 根,被开方数 ________ 底数 ________ 不等于 零. 列表法 、 _______ 图象法 和解析式法 2.函数的三种表示法: _______ ________. 描点 ; 3.函数图象的画法:一般步骤为:①列表;② ______ 连线 . ③ _______
【夺分天天练】(新课标)2014中考数学总复习 第36讲 操作探究题课件(含13年试题)
第36讲┃ 操作探究题
探究二
折叠形操作题
例 2 [2012· 兰州] 如图 36- 1①,矩形纸片 ABCD,把它沿对
角线 BD 向上折叠. (1)在图②中用实线画出折叠后得到的图形 (要求尺规作图,保 留作图痕迹,不写作法 ); (2)折叠后重合部分是什么图形?说明理由.
第36讲┃ 操作探究题
【例题分层探究】 (1)图形的折叠,能得到哪些性质? (2)折叠前后两个图形与折叠之间有什么关系? (3)若利用轴对称如何作出折叠后的图形? (4)若利用角平分线性质如何作出折叠后的图形?
第36讲┃ 操作探究题
【例题分层探究】 (1)等腰三角形有哪些性质? (2)在图 36- 3①中,若过点 C 作一条直线,交 AB 于点 M, 使∠ACM= 24° ,那么△BCM 的三个内角分别是多少度?可能 为等腰三角形吗?用类似的方法,过点 B 和点 A 可以吗? (3)在图②和图③中,类似(1),探究△ ABC 可能分为两个等 腰三角形吗?若能,请指出如何作.
第36讲┃ 操作探究题
[ 解析] 如图,有三种拼接方式,前一种拼接方式的周长 为 4+ 2 3,后两种拼接方式的周长均为 8,故选 D.
第36讲┃ 操作探究题
3.如图 36- 6,菱形 OABC 的顶点 O 在坐标原点,顶点 A 在 x 轴上,∠ B= 120°, OA= 2,将菱形 OABC 绕原点顺时针旋 转 105°至 OA′B′C′的位置,则点 B′的坐标为 ( A ) A. ( 2,- 2) B. (- 2, 2) C. (- 3, 3) D. ( 3,- 3)
第36讲┃ 操作探究题
④不规则四边形:
连接 DD′交 AB 于点 O.易知,△ ADB∽△ DOB. DO BD DO 6 ∴ = ,即 = .∴ DO= 4.8 cm. AD BA 8 10 ∵ DD′= 2DO= 2×4.8= 9.6(cm), ∴四边形的两条对角线长的和是 AC+ DD′= 10+ 9.6= 19.6(cm).
中考数学天天练(1)
中考数学天天练(1)
班级________ 姓名________ 学号________
一、填空题
=
x,则x=_______________.
1.如果2
2.一元二次方程有两个相同的实数根,则这个方程可以是_______________(只要写出一个). 3.若一次函数b
=的图像过原点,则b=_______________.
kx
y+
4.等腰梯形的周长为26,中位线为7,则腰长为_______________.
5.在地面A处测得东方明珠顶端C的仰角为θ,地面AD长为m米,则东方明珠DC的高为_______________米.(结果用含θ的三角比表示)
6.相切两圆半径分别为1,3.则它们的圆心距是_______________.
二、单项选择题
7.下列命题中,假命题的是()
(A)任何一个锐角的正弦与正切值都不相等
(B)在同圆中,弧相等,它们所对的弦也相等
(C)一个角的余弦值与这个角的两条边长无关
(D)平分弦的直径垂直于弦
8.下列命题中,叙述正确的是()
(A)圆的切线垂直于半径
(B)相交两圆的公共弦垂直平分两圆的连心线
(C)相切两圆的连心线经过切点
(D)垂直于切线的直线必经过切点
三、解答题
9.已知一元二次方程0122=--x x 的两根为21,x x .
求代数式:(1)2111x x +;(2)2221x x +的值.
10、如图,D 是射线AB 上的一点,过点D 作AC DE //,交BAC ∠平分线于点E ,过点D 作AE DF ⊥,垂足为F ,DF 交AC 于点G ,按要求在所给图中将图形补全,然后判断四边形ADEG 的形状,并证明你的结论。
2014年中考真题——一元一次方程的应用综合训练
2014年中考真题——一元一次方程的应用综合训练2014年中考真题——一元一次方程的应用综合训练一.解答题(共20小题)1.(2014•吉林)为促进教育均能发展,A市实行“阳光分班”,某校七年级一班共有新生45人,其中男生比女生多3人,求该班男生、女生各有多少人.2.(2013•海南)为迎接6月5日的“世界环境日”,某校团委开展“光盘行动”,倡议学生遏制浪费粮食行为.该校七年级(1)、(2)、(3)三个班共128人参加了活动.其中七(3)班48人参加,七(1)班参加的人数比七(2)班多10人,请问七(1)班和七(2)班各有多少人参加“光盘行动”?3.(2014•抚州)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需_________元,购买12根跳绳需_________元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.4.(2014•黄冈四月调考)为了改善住房条件,小亮的父母考察了某小区的A、B两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍,求两户型楼房的面积.5.(2014•江西样卷)小江今天出差回来,发现日历好几天没翻,就一次撕了6张,这6天的日期数字之和是123,今天的日期是多少?6.(2014•株洲)家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?7.(2013•红桥区一模)列方程或方程组解应用题:为保证学生有足够的睡眠,政协委员于今年两会向大会提出一个议案,即“推迟中小学生早晨上课时间”,这个议案当即得到不少人大代表的支持.根据北京市教委的要求,学生小强所在学校将学生到校时间推迟半小时.小强原来7点从家出发乘坐公共汽车,7点20分到校;现在小强若由父母开车送其上学,7点45分出发,7点50分就到学校了.已知小强乘自家车比乘公交车平均每小时快36千米,求从小强家到学校的路程是多少千米?8.(2014•通州区一模)列方程或方程组解应用题:现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A公司安装66台空调,乙安装队为B公司安装60台空调,两个安装队同时开工恰好同时安装完成,甲队比乙队平均每天多安装2台空调.求甲、乙两个安装队平均每天各安装多少台空调.9.(2013•泰州)某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.10.(2014•台山市模拟)整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?11.(2014•晋江市二模)学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天.(1)两个人合作需要_________天完成;(2)现由徒弟先做1天,再两个合作,问:还需几天可以完成这项工作?12.(2014•昌平区一模)列方程解应用题:王亮的父母每天坚持走步锻炼.今天王亮的妈妈以每小时3千米的速度走了10分钟后,王亮的爸爸刚好看完球赛,马上沿着妈妈所走的路线以每小时4千米的速度追赶,求爸爸追上妈妈时所走的路程.13.(2014•南昌县模拟)如图,已知箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3小时到达B点后,又继续顺流航行2小时15分钟到达C点,总共行驶了198km,已知游艇的速度是38km/h.(1)求水流的速度;(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需要多少时间?14.(2014•宁波)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?15.(2013•宜昌)[背景资料]一棉花种植区的农民研制出采摘棉花的单人便携式采棉机,采摘效率高,能耗低,绿色环保,经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元,雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工钱,雇工每天工作8小时.[问题解决](1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇佣的人数是张家的2倍,张家雇人手工采摘,王家所雇的人中有的人自带采棉机采摘,的人手工采摘,两家采摘完毕,采摘的天数刚好一样,张家付给雇工工钱总额为14400元,王家这次采摘棉花的总重量是多少?16.(2013•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?18.(2014•北仑区模拟)从2012年7月起,浙江省执行居民阶梯电价新规定,新规定中将原先的按月抄见电量实行阶梯式累进加价改为按年抄见电量实行阶梯式累进加价,则按新方案计算,小华家平均每月电费支出是增加还是减少了,增加或减少了多少元?(2)为了节省开支,小华计划2014年的电费不超过2214元,则小华家2014年最多能用电多少千瓦时?19.(2013•梅州模拟)仔细阅读下列材料,然后解答问题.某商场在促销期间规定:商场内所有商品按标价的80%出售.同时当顾客在该商场消费满一定金额后,按如下方案450×80%=360元,获得的优惠额为450×(1﹣80%)+30=120元.设购买该商品得到的优惠率=购买商品获得的优惠额÷商品的标价.(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?20.(2013•永州)中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一.以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;(1)若甲、乙两人的每月工资收入额分别为4000元和6000元,请分别求出甲、乙两人的每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额应为多少?2014年中考真题——一元一次方程的应用综合训练参考答案与试题解析一.解答题(共20小题)1.(2014•吉林)为促进教育均能发展,A市实行“阳光分班”,某校七年级一班共有新生45人,其中男生比女生多3人,求该班男生、女生各有多少人.2.(2013•海南)为迎接6月5日的“世界环境日”,某校团委开展“光盘行动”,倡议学生遏制浪费粮食行为.该校七年级(1)、(2)、(3)三个班共128人参加了活动.其中七(3)班48人参加,七(1)班参加的人数比七(2)班多10人,请问七(1)班和七(2)班各有多少人参加“光盘行动”?3.(2014•抚州)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.4.(2014•黄冈四月调考)为了改善住房条件,小亮的父母考察了某小区的A、B两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍,求两户型楼房的面积.5.(2014•江西样卷)小江今天出差回来,发现日历好几天没翻,就一次撕了6张,这6天的日期数字之和是123,今天的日期是多少?6.(2014•株洲)家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?7.(2013•红桥区一模)列方程或方程组解应用题:为保证学生有足够的睡眠,政协委员于今年两会向大会提出一个议案,即“推迟中小学生早晨上课时间”,这个议案当即得到不少人大代表的支持.根据北京市教委的要求,学生小强所在学校将学生到校时间推迟半小时.小强原来7点从家出发乘坐公共汽车,7点20分到校;现在小强若由父母开车送其上学,7点45分出发,7点50分就到学校了.已知小强乘自家车比乘公交车平均每小时快36千米,求从小强家到学校的路程是多少千米?分钟即分就到学校了即:开车到校的时间是:小时.若设小强乘公=依题意得:.∴8.(2014•通州区一模)列方程或方程组解应用题:现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A公司安装66台空调,乙安装队为B公司安装60台空调,两个安装队同时开工恰好同时安装完成,甲队比乙队平均每天多安装2台空调.求甲、乙两个安装队平均每天各安装多少台空调.=,解方程得:9.(2013•泰州)某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.10.(2014•台山市模拟)整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?11.(2014•晋江市二模)学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天.(1)两个人合作需要 2.4天完成;(2)现由徒弟先做1天,再两个合作,问:还需几天可以完成这项工作?+)÷=2.4天可以完成这项工作,由题意可得:+=112.(2014•昌平区一模)列方程解应用题:王亮的父母每天坚持走步锻炼.今天王亮的妈妈以每小时3千米的速度走了10分钟后,王亮的爸爸刚好看完球赛,马上沿着妈妈所走的路线以每小时4千米的速度追赶,求爸爸追上妈妈时所走的路程..解得:13.(2014•南昌县模拟)如图,已知箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3小时到达B点后,又继续顺流航行2小时15分钟到达C点,总共行驶了198km,已知游艇的速度是38km/h.(1)求水流的速度;(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需要多少时间?.则往返时间段的路程为故原路返回时间为:14.(2014•宁波)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?)由题意,得盒子的个数为:=3015.(2013•宜昌)[背景资料]一棉花种植区的农民研制出采摘棉花的单人便携式采棉机,采摘效率高,能耗低,绿色环保,经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元,雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工钱,雇工每天工作8小时.[问题解决](1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇佣的人数是张家的2倍,张家雇人手工采摘,王家所雇的人中有的人自带采棉机采摘,的人手工采摘,两家采摘完毕,采摘的天数刚好一样,张家付给雇工工钱总额为14400元,王家这次采摘棉花的总重量是多少?出采摘的天数为:,然后由王家所雇的人中有的人自带采棉机采摘,a=公斤棉花人采摘棉花,其中王家所雇的人中有的人手工采摘.采摘的天数为:,即:××)×=5120016.(2013•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?18.(2014•北仑区模拟)从2012年7月起,浙江省执行居民阶梯电价新规定,新规定中将原先的按月抄见电量实行阶梯式累进加价改为按年抄见电量实行阶梯式累进加价,则按新方案计算,小华家平均每月电费支出是增加还是减少了,增加或减少了多少元?(2)为了节省开支,小华计划2014年的电费不超过2214元,则小华家2014年最多能用电多少千瓦时?1119.(2013•梅州模拟)仔细阅读下列材料,然后解答问题.某商场在促销期间规定:商场内所有商品按标价的80%出售.同时当顾客在该商场消费满一定金额后,按如下方案450×80%=360元,获得的优惠额为450×(1﹣80%)+30=120元.设购买该商品得到的优惠率=购买商品获得的优惠额÷商品的标价.(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?×12=,解得:之间时,=,解得元的商品,可以得到的优惠率.20.(2013•永州)中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一.以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;元,请分别求出甲、乙两人的每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额应为多少?13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年中考数学天天练1
>>>试题详细答案
2014年中考数学天天练
在平面直角坐标系中,A(-1,0),B(3,0).
(1)若抛物线过A,B两点,且与y轴交于点(0,-3),
求此抛物线的顶点坐标;
(2)如图,小敏发现所有过A,B两点的抛物线如果与y轴负半轴交于点C,M为抛物线的顶点,那么△ACM与△ACB的面积比不变,请你求出这个比值;
(3)若对称轴是AB的中垂线l的抛物线与x轴交于点E,F,与y轴交于点C,过C作CP∥x轴交l于点P,M为此抛物线的顶点.若四边形PEMF是有一个内角为60°的菱形,求次抛物线的解析式.
>>>试题详细答案
2014
年中考数学天天练
2014
年中考数学天天练
>>>试题详细答案
2014年中考数学天天练
>>>试题详细答案。