河北省衡水市衡水中学2020届高三上学期期中考试数学(文)试题 Word版含解析

合集下载

河北省衡水中学2020届高三上学期四调考试数学(文)试题 Word版含解析

河北省衡水中学2020届高三上学期四调考试数学(文)试题 Word版含解析

2019-2020学年河北省衡水中学高三(上)四调数学试卷(文科)一、选择题(本大题共12小题,每题5分,共60分,下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.设集合}{1,2,3M =-,{}22,2N a a =++,且}{3M N ⋂=,则实数a 的值为( )A. 1或-1B. -1C. 1D. 2【答案】B 【解析】 【分析】由A 与B 的交集,得到元素3属于A ,且属于B ,列出关于a 的方程,求出方程的解得到a 的值,经检验即可得到满足题意a 值. 【详解】∵A ∩B ={3}, ∴3∈A 且3∈B , ∴a +2=3或a 2+2=3, 解得:a =1或a =﹣1,当a =1时,a +2=3,a 2+2=3,与集合元素互异性矛盾,舍去; 则a =﹣1. 故选B【点睛】此题考查了交集及其运算,以及集合元素的互异性,熟练掌握交集的定义是解本题的关键.2.已知AB 是抛物线22y x =一条焦点弦,4AB =,则AB 中点C 的横坐标是 ( )A. 2B.32C.12D.52【答案】B 【解析】 【分析】先设A B ,两点的坐标,由抛物线的定义表示出弦长,再由题意,即可求出中点的横坐标. 【详解】设()()1122A ,B ,x y x y ,,C 的横坐标为0x ,则1202x x x +=,因为AB 是抛物线22y x =的一条焦点弦,所以121214AB x x p x x =++=++=,所以123x x +=,故120322x x x +==. 故选B【点睛】本题主要考查抛物线的定义和抛物线的简单性质,只需熟记抛物线的焦点弦公式即可求解,属于基础题型.3.已知{}n a 是等比数列,且0n a >,243546225a a a a a a =++,那么35a a +的值等于( ) A. 5 B. 10 C. 15 D. 20【答案】A 【解析】试题分析:由于{}n a 是等比数列,,()2465a a a =,()224354635225,a a a a a a a a ∴++=+=又0n a >35+5a a ∴=.故选A. 考点:等比中项.4.与双曲线221916x y -=有共同的渐近线,且经过点(3,3)-的双曲线的一个焦点到一条渐近线的距离是 ( ) A. 1 B. 2C. 4D. 8【答案】B 【解析】 【分析】由题意首先求得双曲线方程,据此可确定焦点坐标,然后利用点到直线距离公式可得双曲线的一个焦点到一条渐近线的距离.【详解】设双曲线方程为22916x y λ-=,将点(3,3)-代入双曲线方程,解得2214,1494x y λ=⇒-=.从而所求双曲线方程的焦点坐标为5,02⎛⎫ ⎪⎝⎭,一条渐近线方程为43y x =, 即4x -3y =0,2916=+,故选B .【点睛】本题主要考查共焦点双曲线方程的求解,双曲线的焦点坐标、渐近线方程的求解,点到直线距离公式等知识,意在考查学生的转化能力和计算求解能力.5.C ∆AB 是边长为2的等边三角形,已知向量a r,b r 满足2a AB =u u u rr,C 2a b A =+u u u rrr,则下列结论正确的是( )A. 1b =rB. a b ⊥rrC. 1a b ⋅=rrD.()4C a b +⊥B u u u r rr【答案】D 【解析】试题分析:2,2AB a AC a b ==+u u u ru u ur rQ r r ,AC AB b ∴=+u u u r u u u r r ,b AC AB BC ∴=-=u u u r u u u r u u u rr .由题意知12,cos1201212b a b a b ⎛⎫=⋅=⋅=⨯⨯-=- ⎪⎝⎭or r r r r .()()2422a b BC AB BC BC AB BC BC∴+⋅=+⋅=⋅+u u ur u u u r u u u r u u u r u u u r u u u r u u u r r r 212cos1202222402AB BC ⎛⎫=⋅+=⨯⨯⨯-+= ⎪⎝⎭o u u u r u u u r .()4a b BC ∴+⊥u u u r r r .故D 正确.考点:1向量的加减法;2向量的数量积;3向量垂直. 【此处有视频,请去附件查看】6.存在函数()f x 满足,对任意x R ∈都有( ) A. (sin 2)sin f x x = B. 2(sin 2)f x x x =+ C. 2(1)1f x x +=+ D. 2(2)1f x x x +=+【答案】D【详解】A :取,可知,即,再取,可知,即,矛盾,∴A 错误;同理可知B 错误,C :取,可知 ,再取,可知,矛盾,∴C 错误,D :令,∴,符合题意,故选D.考点:函数的概念7.已知双曲线2221(0)x y a a -=>的左、右焦点分别为1F ,2F ,离心率为233,P 为双曲线右支上一点,且满足2212415PF PF -=,则12PF F ∆的周长为( )A. 25B. 252+C. 254+D.234+【答案】C 【解析】Q 双曲线()22210x y a a -=>的左、右焦点分别为1F ,2F ,离心率为233,21233a a +∴=,可得3,2a c ==,12223PF PF a -==,①()()22121212PF PF PF PF PFPF -=-+()()12121222345,25a PF PF PF PF PF PF =+=+=+=,② 由①②得1253,53PF PF =+=-,12PF F ∴∆的周长为1212425PF PF F F ++=+,故选C. 8.函数为R 上的可导函数,其导函数为()f x ',且()3sin cos 6f x x x π⎛⎫=⋅+⎪⎝⎭',在ABC ∆中,()()1f A f B ='=,则ABC ∆的形状为A. 等腰锐角三角形B. 直角三角形C. 等边三角形D. 等腰钝角三角形【解析】 【分析】求函数的导数,先求出'16f π⎛⎫= ⎪⎝⎭,然后利用辅助角公式进行化简,求出A ,B 的大小即可判断三角形的形状. 【详解】函数的导数()'3'cos sin 6f x x x π⎛⎫=- ⎪⎝⎭,则3131'3'cos sin 3''666662262f f f ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则11'262f π⎛⎫= ⎪⎝⎭,则'16f π⎛⎫= ⎪⎝⎭, 则()'3cos sin 2cos 6f x x x x π⎛⎫=-=+ ⎪⎝⎭,()3sin cos 2cos 3f x x x x π⎛⎫=+=- ⎪⎝⎭,()()'1f A f B ==,()'2cos 16f B B π⎛⎫∴=+= ⎪⎝⎭,即1cos 62B π⎛⎫+= ⎪⎝⎭,则63B ππ+=,得6B π=,()2cos 13f A A π⎛⎫=-= ⎪⎝⎭,即1cos 32A π⎛⎫-= ⎪⎝⎭,则33A ππ-=,则23A π=, 则2366C ππππ=--=, 则B C =,即ABC V 是等腰钝角三角形, 故选D .【点睛】本题考查三角形形状的判断,根据导数的运算法则求出函数()f x 和()'f x 的解析式是解决本题的关键.9.如图,网格纸的各小格都是正方形,粗线画出的是一个三棱锥的左视图和俯视图,则该三棱锥的主视图可能是( )A B. C. D.【答案】A 【解析】试题分析:由已知中锥体的侧视图和俯视图, 可得该几何体是三棱锥,由侧视图和俯视图可得,该几何的直观图如图P-ABC 所示:顶点P 在以BA 和BC 为邻边的平行四边形ABCD 上的射影为CD 的中点O , 故该锥体的正视图是:A 考点:三视图10.已知()sin 2019cos 201963f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值为A ,若存在实数1x 、2x ,使得对任意实数x 总有()()12()f x f x f x ≤≤成立,则12A x x -的最小值为( ) A.2019πB.42019πC.22019πD.4038π【答案】C 【解析】 【分析】先化简()2sin 20193f x x π⎛⎫=+ ⎪⎝⎭,得2A =,根据题意即求半个周期的A 倍. 【详解】解:依题意()sin2019coscos2019sincos2019cossin2019sin6633f x x x x x ππππ=+++3sin2019cos2019x x =+,2sin 20196x π⎛⎫=+ ⎪⎝⎭,2A ∴=,22019T π=, 12||22019min T x x π∴-==,12A x x ∴-的最小值为22019π,故选C .【点睛】本题考查了正弦型三角函数的图像与性质,考查三角函数恒等变换,属中档题.11.已知椭圆()222101y x b b+=<<的左焦点为F ,左、右顶点分别为A C ,,上顶点为B .过F B C ,,作圆P ,其中圆心P 的坐标为()m n ,.当0m n +>时,椭圆离心率的取值范围为( )A. 202⎛ ⎝⎭,B. 102⎛⎫⎪⎝⎭,C. 302⎛ ⎝⎭,D.605⎛⎫⎪ ⎪⎝⎭, 【答案】A 【解析】 【分析】分别求出线段F A 与AB 的垂直平分线方程,联立解出圆心坐标P ,利用m +n >0,与离心率计算公式即可得出. 【详解】如图所示,线段FC 的垂直平分线为:2112bx -=,线段BC 的中点122b ⎛⎫⎪⎝⎭,.∵BC k b =-,∴线段BC 的垂直平分线的斜率1k b=. ∴线段BC 的垂直平分线方程为:1122b y x b ⎛⎫-- ⎪⎝⎭=, 把2112b x m --==代入上述方程可得:2212b b y n b-==.∵0m n +>,2221110b b b ----.化为:21b b -01b <<, 解得212b <. ∴22102c e c b a ⎛- ⎝⎭==,. 故选:A .【点睛】本题主要考查了椭圆的标准方程及简单几何性质、线段的垂直平分线方程、三角形外心性质,离心率,考查了推理能力与计算能力,属于中档.12.设()()22D 22x x a e aa =-+-++,其中 2.71828e ≈,则D 的最小值为( )A.2 B.3 C.21+D.31+【答案】C 【解析】分析:由2()(2)x x a e a -+-表示两点(,)xC x e 与点(,2)A a a 的距离,而点A 在抛物线24y x =上,抛物线的焦点(1,0)F ,准线为1x =-,则D 表示A 与C 的距离和A 与准线的距离的和加上1,由抛物线的定义可得D 表示A 与C 的距离和加上1,画出图象,当,,F A C 三点共线时,可求得最小值.详解:由题意0a ≥,2()(2)2x D x a e a a =-+-++, 由2()(2)x x a e a -+-表示两点(,)xC x e 与点(,2)A a a 的距离,而点A 在抛物线24y x =上,抛物线的焦点(1,0)F ,准线为1x =-, 则D 表示A 与C 的距离和A 与准线的距离的和加上1, 由抛物线的定义可得D 表示A 与C 的距离和加上1,由图象可知,,F A C 三点共线时,且QF 为曲线xy e =的垂线,此时D 取得最小值, 即Q 为切点,设(,)mm e ,由011m m e e m -⋅=--,可得21m m e +=,设()2mg m m e=+,则()g m 递增,且(0)1g =,可得切点(0,1)Q ,即有112FQ +==,则D 的最小值为21+,故选C.点睛:本题考查直线与抛物线的综合应用问题,解答中注意运用两点间的距离公式和抛物线的定义,以及三点共线等知识综合运用,着重考查了转化与化归思想,以及推理与运算能力,属于中档试题.二、填空题(本大题共4小题,每题5分,共20分)13.南北朝时,张邱建写了一部算经,即《张邱建算经》,在这本算经中,张邱建对等差数列的研究做出了一定的贡献.例如算经中有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更给”,则某一等人比其下一等人多得________斤金.(不作近似计算) 【答案】778【解析】 【分析】根据题意将毎等人所得的黄金斤数构造等差数列,设公差为d ,根据题意和等差数列的前n 项和公式列出方程组,求出公差d 即可得到答案.【详解】设第十等人得金1a 斤,第九等人得金2a 斤,以此类推,第一等人得金10a 斤, 则数列{}n a 构成等差数列,设公差为d ,则每一等人比下一等人多得d 斤金,由题意得8910123443a a a a a a a ++=⎧⎨+++=⎩,即113244463a d a d +=⎧⎨+=⎩,解得778d =, 所以每一等人比下一等人多得斤金778. 【点睛】本题主要考查了等差数列的定义、前n 项和公式在实际问题中的应用,以及方程思想,属于中档题.14.已知直线l 经过抛物线2:4x C y =的焦点F ,与抛物线交于A 、B ,且8A B x x +=,点D是弧AOB (O 为原点)上一动点,以D 为圆心的圆与直线l 相切,当圆D 的面积最大时,圆D 的标准方程为_____. 【答案】()()22445x y -+-= 【解析】【分析】作出图形,利用两点间的斜率公式得出直线AB的斜率,可得出直线l的方程,再利用当点D到直线l的距离最大时,圆D的面积最大,由此求出点D的坐标,并计算出点D到直线l 的距离,作为圆D的半径,由此可得出圆D的标准方程.【详解】抛物线的标准方程为24x y=,抛物线的焦点坐标为()0,1F,直线AB的斜率()221424A BA B A BA B A Bx xy y x xkx x x x--+====--,所以,直线l的方程为21y x=+,即210x y-+=.当点D到直线l的距离最大时,圆D的面积最大,如下图所示:设点2,4tD t⎛⎫⎪⎝⎭,Q点D在直线l的下方,则22102tt-+>,点D到直线l的距离为()22121544455tt td-+--==,当4t=时,d5此时,点D的坐标为()4,4,因此,圆D的标准方程为()()22445x y-+-=.故答案为()()22445x y-+-=.【点睛】本题考查直线与抛物线的位置关系,同时也考查了抛物线上一点到直线距离的最值问题,解题的关键在于将问题转化为二次函数的最值问题,考查分析问题和解决问题的能力,属于中等题.15.如图(1),在等腰直角ABC ∆中,斜边4AB =,D 为AB 的中点,将ACD ∆沿CD 折叠得到如图(2)所示的三棱锥C A BD '-,若三棱锥C A BD '-的外接球的半径为5,则A DB '∠=_________.图(1) 图(2)【答案】23π【解析】 【分析】5分析即可解决.【详解】解:球是三棱锥C ﹣A 'BD 的外接球,所以球心O 到各顶点的距离相等,如图. 根据题意,CD ⊥平面A 'BD ,取CD 的中点E ,A 'B 的中点G ,连接CG ,DG , 因为A 'D =BD ,CD ⊥平面A 'BD , 所以A '和B 关于平面CDG 对称,在平面CDG 内,作线段CD 的垂直平分线,则球心O 在线段CD 的垂直平分线上,设为图中的O 点位置,过O 作直线CD 的平行线,交平面A 'BD 于点F , 则OF ⊥平面A 'BD ,且OF =DE =1, 因为A 'F 在平面A 'BD 内,所以OF ⊥A 'F , 即三角形A 'OF 为直角三角形,且斜边OA '=R 5=∴A 'F 2251R OF =-=-=2,所以,BF =2,所以四边形A 'DBF 为菱形,又知OD =R ,三角形ODE 为直角三角形, ∴OE 2251R DE =-=-=2,∴三角形A 'DF 为等边三角形, ∴∠A 'DF 3π=,故∠A 'DB 23π=,故填:23π.【点睛】本题考查了三棱锥的外接球的问题,找到球心的位置是解决本题的关键.属于中档题.16.已知ABC ∆的三边分别为a ,b ,c ,所对的角分别为A ,B ,C ,且满足113a b b c a b c+=++++,且ABC ∆的外接圆的面积为3π,则()()cos24sin 1f x x a c x =+++的最大值的取值范围为__________.【答案】(]12,24 【解析】由ABC ∆的三边分别为a ,b ,c 可得:113a b b c a b c +=++++,3a b c a b c a b b c+++++=++ 1c a a b b c∴+=++ 可知:()()()()c b c a a b a b b c +++=++222ac a c b =+-2221cos 22a cb B ac +-∴==,3B π= 23R ππ=Q ,3R =2sin sin sin a b cR A B C∴=== 23a A ∴=,3c C =)233 23sin sin 23sin sin 23sin cos 322a c A C A A A A π⎤⎛⎫⎫+=+=+-=+ ⎪⎪⎥⎝⎭⎭⎦6sin 6A π⎛⎫=+ ⎪⎝⎭203A π<<Q 5666A πππ∴<+<36sin 66A π⎛⎫∴<+≤ ⎪⎝⎭可知3? 6a c <+≤()()()222sin 22f x x a c a c ⎡⎤=--++++⎣⎦1sin 1x Q -≤≤可知当sin 1x =时,()()4max f x a c =+()12424a c ∴<+≤则()()241f x cos x a c sinx =+++的最大值的取值范围为(]1224,点睛:本题主要考查了三角函数与解三角形综合题目,需要学生有一定计算能力,并能熟练运用公式进行化简求值,在解答此类题目时往往将边的范围转化为求角的范围问题,利用辅助角公式进行化简,本题还是有一定难度.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.已知等差数列{}n a 满足:3577,26a a a =+=,数列{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及前n 项和n S ; (2)令24()1n n b n N a *=∈-,求数列{}n b 的前n 项和n T . 【答案】(1)21n a n =+;22n S n n =+(2)1n nT n =+ 【解析】 【分析】(1)利用等差数列的通项公式列1,a ,d 的方程组求解{}n a 再求前n 项和公式即可得出. (2)变形()22441111211n nb a n n n ===--++-,利用裂项相消求和【详解】(1)设等差数列{}n a 的公差为d , ∵37a =,5726a a +=,∴1127{21026a d a d +=+=,解得13a =,2d =,∴()32121na n n =+-=+;()213222n n n S n n n -=+⨯=+.(2)()22441111211n nb a n n n ===--++-, ∴11111111223111n n T n n n n =-+-+⋅⋅⋅+-=-=+++. 【点睛】本题考查了等差数列的通项公式及其求和公式,考查裂项相消求和,考查了推理能力与计算能力,属于中档题.18.如图,在平面四边形ABCD 中,已知AB=BC=CD=2,AD=2(1)2cos A C -的值;(2)记△ABD 与△BCD 的面积分别是S 1与S 2,求2212S S +的最大值,【答案】(1)12;(2)232. 【解析】【详解】试题分析:(1)在∆ABD ,∆BCD 中,分别用余弦定理,列出等式,2cos cos A C -的值;(2)利用(1)的结果,得到2212s s +是关于cos A 的二次函数,利用三角形两边之和大于第三边,两边之差小于第三边,求出BD 的范围,由BD 的范围求出cos A 的范围,再求出2212s s +的最大值.试题解析:(1)在∆ABD 中:222BD =AB +AD -2AB AD cosA ⨯⨯⨯ =12-82cos ;A 在∆BCD 中:222BD =BC 2cos 88cos CD BC CD C C +-⨯⨯⨯=- 所以12-82cos 88cos A C =-12cos cos 2A C -=; (2)由题意22211AB AD sin 8sin ,2s A A ⎛⎫=⨯⨯= ⎪⎝⎭22221sin 4sin ;2s CB CD C C ⎛⎫=⨯⨯= ⎪⎝⎭所以:2222128sin 4sin s s A C +=+ ()()22=81-cos 41cos A C +- 22=12-8cos 4cos A C -221=12-8cos 42cos 2A A ⎫--⎪⎭2=-16cos 42cos 11A A ++2223=-16cos 2A ⎛-+ ⎝⎭224,216BD BD <<∴<<Q ,21282cos 16A ∴<-<,解之得:25cos 28A << 所以当22cos -184A ⎛⎫=∈ ⎪ ⎪⎝⎭时,()2212max232s s +=. 点睛:三角函数式的化简要遵循“三看”原则:(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.19.已知抛物线C 的方程()220y px p =>,焦点为F ,已知点P 在C 上,且点P 到点F 的距离比它到y 轴的距离大1. (1)试求出抛物线C 的方程;(2)若抛物线C 上存在两动点,M N (,M N 在对称轴两侧),满足OM ON ⊥(O 为坐标原点),过点F 作直线交C 于,A B 两点,若//AB MN ,线段MN 上是否存在定点E ,使得·4EM EN AB=恒成立?若存在,请求出E 的坐标,若不存在,请说明理由.【答案】(1) 24y x =(2)存在,且坐标为()4,0 【解析】 【分析】(1)由P 到点F 的距离比它到y 轴的距离大1,结合抛物线定义可得12p=,从而可得结果;(2)设()22121221,,,44y y M y N y y y ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,结合OM ON ⊥,可得直线()124:4MN y x y y =-+,直线()1AB y k x =-:,与C 联立,利用弦长公式求得122211141AB y y k k ⎛⎫=+-=+ ⎪⎝⎭若点E 存在,设点E 坐标为()00,x y ,可得200241·116y EM EN y k k ⎛⎫⎛⎫=+-+ ⎪⎪⎝⎭⎝⎭,·4EM EN AB =时,20041616y y k -+=,从而可得结果.【详解】(1)因为P 到点F 的距离比它到y 轴的距离大1,由题意和抛物线定义,12p=,所以抛物线C 的方程为24y x =,(2)由题意,0MN k ≠,设()22121221,,,44y y M y N y y y ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭由OM ON ⊥,得1216y y =-,直线124:MN k y y =+,2111244y y y x y y ⎛⎫-=- ⎪+⎝⎭整理可得()1244y x y y =-+, 直线:AB ①若斜率存在,设斜率为(),1k y k x =-,与C 联立得2440ky y k --=,122211141AB y y k k ⎛⎫=+-=+ ⎪⎝⎭, 若点E 存在,设点E 坐标为()00,x y ,()01202211·11EM EN y y y y k k=+-+-()()2120120211y y y y y y k ⎛⎫=+--++ ⎪⎝⎭200241116y y k k ⎛⎫⎛⎫=+-+ ⎪⎪⎝⎭⎝⎭,·4EM EN AB=时,2041616y y k-+=, 解得00y =或04y k=(不是定点,舍去) 则点E 为()4,0经检验,此点满足24y x <,所以在线段MN 上,②若斜率不存在,则4,?4?416AB EM EN ===, 此时点()4,0E 满足题意, 综合上述,定点E 为()4,0.【点睛】本题主要考查直线与抛物线的位置关系以及解析几何中的存在性问题,属于难题.解决存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在,注意:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规方法题很难时采取另外的途径.20.椭圆()222210x y E a b a b +=:>>5P (0,1)做斜率为k 的直线l ,椭圆E 与直线l 交于A ,B 两点,当直线l 垂直于y 轴时33AB = (1)求椭圆E 的方程;(2)当k 变化时,在x 轴上是否存在点M (m ,0),使得△AMB 是以AB 为底的等腰三角形,若存在求出m 的取值范围,若不存在说明理由.【答案】(Ⅰ) 22194x y +=;(Ⅱ)见解析.【解析】 【分析】(Ⅰ)52249b a =,于是椭圆方程为2222149x y a a +=.有根据题意得到椭圆过点33⎫⎪⎪⎝⎭,将坐标代入方程后求得29a =,进而可得椭圆的方程.(Ⅱ)假设存在点(),0M m ,使得AMB ∆是以AB 为底的等腰三角形,则点M 为线段AB 的垂直平分线与x 轴的交点.由题意得设出直线AB 的方程,借助二次方程的知识求得线段AB 的中点C 的坐标,进而得到线段AB 的垂直平分线的方程,在求出点M 的坐标后根据基本不等式可求出m 的取值范围.【详解】5所以22513c b a a =-=,整理得2249b a =. 故椭圆的方程为2222149x y a a +=.由已知得椭圆过点33⎫⎪⎪⎝⎭,所以22927144a a+=,解得29a =, 所以椭圆的E 方程为22194x y +=.(Ⅱ)由题意得直线l 的方程为1y kx =+.由221194y kx x y =+⎧⎪⎨+=⎪⎩消去y 整理得()224918270k x kx ++-=,其中2221849()427()432(31)0k k k ∆=+⨯⨯=+>+. 设()()1122,,,A x y B x y ,AB 的中点()00,C x y则1212221827,4949k x x x x k k +=-=-++, 所以12029249x x kx k +-==+, ∴0024149y kx k =+=+,∴点C 的坐标为2294,4949k C k k -⎛⎫⎪++⎝⎭.假设在x 轴存在点(),0M m ,使得AMB ∆是以AB 为底的等腰三角形, 则点(),0M m 为线段AB 的垂直平分线与x 轴的交点. ①当0k ≠时,则过点C 且与l 垂直的直线方程221944949k y x k k k ⎛⎫=-++ ⎪++⎝⎭, 令0y =,则得2554499k x m k k k==-=-++.若0k >,则554124929kk kk≤=+⨯, ∴5012m -≤<. 若0k <,则555441299k k k k =-≥-+--,∴5012m <≤.②当0k =时,则有0m =. 综上可得551212m -≤≤. 所以存在点M 满足条件,且m 的取值范围是55,1212⎡⎤-⎢⎥⎣⎦.【点睛】求圆锥曲线中的最值或范围问题时,常用的方法是将所求量表示成某个参数的代数式的形式,然后再求出这个式子的最值或范围即可.求最值或范围时一般先考虑基本不等式,此时需要注意不等式中等号成立的条件;若无法利用基本不等式求解,则要根据函数的单调性求解.由于此类问题一般要涉及到大量的计算,所以在解题时要注意计算的合理性,合理利用变形、换元等方法进行求解.21.设抛物线Γ的方程为22y px =,其中常数0p >,F 是抛物线Γ的焦点. (1)若直线3x =被抛物线Γ所截得的弦长为6,求p 的值; (2)设A 是点F 关于顶点O 的对称点,P 是抛物线Γ上的动点,求||||PA PF 的最大值; (3)设2p =,1l 、2l 是两条互相垂直,且均经过点F 的直线,1l 与抛物线Γ交于点A 、B ,2l 与抛物线Γ交于点C 、D ,若点G 满足4FG FA FB FC FD =+++u u u r u u u r u u u r u u u r u u u r,求点G 的轨迹方程.【答案】(1)32p =;(22;(3)23y x =-. 【解析】 【分析】(1)当3x =时,代入抛物线方程,求得y ,可得弦长,解方程可得p ;(2)求得A 的坐标,设出过A 的直线为()2py k x =+,tan k α=,联立抛物线方程,若要使||||PA PF 取到最大值,则直线和抛物线相切,运用判别式为0,求得倾斜角,可得所求最大值;(3)求得(1,0)F ,设1(A x ,1)y ,2(B x ,2)y ,3(C x ,3)y ,4(D x ,4)y ,()G x y ,,设1:(1)l y k x =-,联立抛物线方程,运用韦达定理和两直线垂直斜率之积为-1的条件,结合向量的坐标表示,和消元法,可求得轨迹方程【详解】(1)由3x =可得6y p =±,可得266p =,解得32p =; (2)A 是点(2pF ,0)关于顶点O 的对称点,可得(2p A -,0),设过A 的直线为()2py k x =+,tan k α=,联立抛物线方程可得22222(2)04k p k x k p p x +-+=, 由直线和抛物线相切可得△2242(2)0k p p k p =--=,解得1k =±, 可取1k =,可得切线的倾斜角为45︒, 由抛物线的定义可得||11||sin(90)cos PA PF αα==︒-,而α的最小值为45︒, ||||PA PF 2; (3)由24y x =,可得(1,0)F ,设1(A x ,1)y ,2(B x ,2)y ,3(C x ,3)y ,4(D x ,4)y ,()G x y ,,设1:(1)l y k x =-,联立抛物线24y x =,可得2222(24)0k x k x k -++=,即有12242x x k +=+,12124()2y y k x x k k +=+-=, 由两直线垂直的条件,可将k 换为1k-,可得23424x x k +=+,344y y k +=-, 点G 满足4FG FA FB FC FD =+++u u u r u u u r u u u r u u u r u u u r,可得4(x ,1234)(4y x x x x =+++-,1234)y y y y +++,即为2123424444x x x x x k k =+++-=+①,1234444y y y y y k k=+++=-+②, 联立①②式消元可得222211()22y k k x k k=-=+-=-,则G 的轨迹方程为22y x =-【点睛】本题考查抛物线的定义、方程、性质,直线和抛物线的位置关系,判别式和韦达定理的具体运用,向量的坐标表示,运算及化简求值能力,属于中档题 22.已知函数()()()22112ln 1ln 242f x x x ax x x =----. (1)讨论()f x 的单调性.(2)试问是否存在(],a e ∈-∞,使得()13sin 44a f x π>+对[)1,x ∈+∞恒成立?若存在,求a 的取值范围;若不存在,请说明理由.【答案】(1)见解析;(2) 存在;a 的取值范围为(]2,e . 【解析】 【分析】(1)()()()ln ln ln 1f x x x a x a x x a x =-+-=--',()0,x ∈+∞,所以()0f x '=得12,x a x e ==,所以通过对a 与0,e 的大小关系进行分类讨论得()f x 的单调性;(2)假设存在满足题意的a 的值,由题意需()min 13sin 44a f x π>+,所以由(1)的单调性求()min f x 即可;又因为()13sin 44a f x π>+对[)1,x ∈+∞恒成立,所以可以考虑从区间[)1,+∞内任取一个x 值代入,解出a 的取值范围,从而将(],a e ∈-∞的范围缩小减少讨论.【详解】解:(1)()()()ln ln ln 1f x x x a x a x x a x =-+-=--',()0,x ∈+∞. 当a e =时,()()()ln 10f x x e x '=--≥,()f x 在()0,∞+上单调递增 当0a ≤时,0x a ->,()f x 在()0,e 上单调递减,在(),e +∞上单调递增 当0a e <<时,()f x 在(),a e 上单调递减,在()0,a ,(),e +∞上单调递增;当a e >时,()f x 在(),e a 上单调递减,在()0,e ,(),a +∞上单调递增.(2)假设存(],a e ∈-∞,使得()13sin 44a f x π>+对[)1,x ∈+∞恒成立.则()31123sin 444a f a π=->+,即8sin1504a a π-->, 设()8sin 154xg x x π=--,则存在(],x e ∈-∞,使得()0g x >, 因为()8cos044xg x ππ='->,所以()g x 在(],x e ∈-∞上单调递增, 因为()20g =,所以()0g x >时2x >即2a >. 又因为()13sin 44a f x π>+对[)1,x ∈+∞恒成立时,需()min 13sin 44a f x π>+, 所以由(1)得:当a e =时,()f x 在[)1,+∞上单调递增,所以()()min 331=2=244f x f a e =--, 且3123sin 444e e π->+成立,从而a e =满足题意. 当2e a <<时,()f x 在(),a e 上单调递减,在[)1,a ,(),e +∞上单调递增,所以()()2113sin ,4413sin ,444a f e a f e ea ππ⎧>+⎪⎪⎨⎪=->+⎪⎩所以22,4sin 1204a a ea e π>⎧⎪⎨--->⎪⎩(*) 设()()24sin 1242xh x ex e x e π=---<<,()4cos044xh x e ππ=-'>,则()h x 在()2,e 上单调递增,因为()228130h e e =-->,所以()h x 的零点小于2,从而不等式组(*)的解集为()2,+∞, 所以2x e <<即2e a <<.综上,存在(],a e ∈-∞,使得()13sin 44a f x π>+对[)1,x ∈+∞恒成立,且a 的取值范围为(]2,e .【点睛】求可导函数()f x 的单调区间的一般步骤是: (1)求定义域; (2)求()f x ';(3)讨论()f x '的零点是否存在;若()f x '的零点有多个,需讨论它们的大小关系及是否在定义域内;(4)判断()f x '在每个区间内的正负号,得()f x 的单调区间. 当()f x a >在区间D 上恒成立时,需()min f x a >.。

河北省衡水市衡水中学2020届高三上学期期中考试数学(理)试题 Word版含解析

河北省衡水市衡水中学2020届高三上学期期中考试数学(理)试题 Word版含解析

2019-2020学年度高三年级上学期期中考试数学试卷(理科)一、选择题1.已知曲线()cos 3f x x x x =+在点()()0,0f 处的切线与直线410ax y ++=垂直,则实数a 的值为( ) A. -4 B. -1C. 1D. 4【答案】C 【解析】 【分析】先求出()f x 在点()()0,0f 处的切线斜率,然后利用两直线垂直的条件可求出a 的值. 【详解】由题意,()cos sin 3f x x x x '=-+,()0cos034f '=+=,则曲线()f x 在点()()0,0f 处的切线斜率为4,由于切线与直线410ax y ++=垂直,则414a -⨯=-,解得1a =.故选C.【点睛】本题考查了导数的几何意义,考查了两直线垂直的性质,考查了计算能力,属于基础题.2.已知各项不为0的等差数列{}n a 满足2578220a a a -+=,数列{}n b 是等比数列且77b a =,则212b b 等于( )A.49B.32C.94D.23【答案】C 【解析】由题意可得:()()2225787777722222320a a a a d a a d a a -+=--++=-=,7730,2a a ≠∴=Q ,则:222127794b b b a ===. 本题选择C 选项.3.对于函数()f x ,若存在区间[,]A m n =使得{|(),}y y f x x A A =∈=则称函数()f x 为“同域函数”,区间A 为函数()f x 的一个“同城区间”.给出下列四个函数:①()cos2f x x π=;②2()1f x x =-;③2()|1|f x x =-;④2()log (1)f x x =-.存在“同域区间”的“同域函数”的序号是( ) A. ①②③ B. ①②C. ②③D. ①②④【答案】A 【解析】 ①()cos2f x x π= ,x∈[0,1]时,f (x )∈[0,1],所以①存在同域区间;②()21f x x =-,x∈[-1,0]时,f (x )∈[-1,0],所以②存在同域区间;③()21f x x =-,x∈[0,1]时,f (x )∈[0,1],所以③存在同域区间;④()()2log 1f x x =-,判断该函数是否有同域区间,即判断该函数和函数y=x 是否有两个交点;而根据这两个函数图象可以看出不存在交点,所以该函数不存在同域区间.故答案为①②③.点睛:本题主要考查了对同域函数及同域区间的理解,涉及到二次函数、余弦函数的值域的求解,函数图像的相交等,属于难题.本题在判断邻域时,需要知道通过判断函数f (x )和函数y=x 图象交点的情况来判断函数是否存在同域区间的方法.4.设θ为两个非零向量,a b r r的夹角,已知对任意实数t ,b ta +r r 的最小值为1,下列说法正确的是( )A. 若θ确定,则a r唯一确定 B. 若θ确定,则b r唯一确定 C. 若a r确定,则θ唯一确定D. 若b r确定,则θ唯一确定【答案】B 【解析】 【分析】对式子b ta +r r 平方转化成关于t 的二次函数,再利用最小值为1,得到()221cos 1b θ-=r ,进而判断θ与b r之间的关系.【详解】222222222cos b ta b ta b t a a t a b t b θ+=+⋅+=+⋅⋅+r r r r r r r r r r .因为min1b ta+=r r ,所以()2222222244cos 1cos 14a b a b b aθθ⋅-⋅=-=r r r r r r .所以22sin 1b θ=r ,所以sin 1b θ=r ,即1sin b θ=r .所以θ确定,b r 唯一确定.故选B.【点睛】本题考查向量模的最值、数量积运算、向量夹角等知识,考查与二次函数进行交会,求解时不能被复杂的表达式搞晕,而是要抓住问题的本质,始终把22||,||a b r r 看成实数.5.已知点(),P x y 是直线224y x =-上一动点,PM 与PN 是圆()22:11C x y +-=的两条切线,,M N 为切点,则四边形PMCN 的最小面积为( ) A.43B.23C.53D.56【答案】A 【解析】 【分析】利用当CP 与直线224y x =-垂直时,PC 取最小值,并利用点到直线的距离公式计算出PC 的最小值,然后利用勾股定理计算出PM 、PN 的最小值,最后利用三角形的面积公式可求出四边形PMCN 面积的最小值. 【详解】如下图所示:由切线的性质可知,CM PM ⊥,CN PN ⊥,且PCM PCN ∆≅∆,2221PM PN PC CMPC ==-=-当PC 取最小值时,PM 、PN 也取得最小值,显然当CP 与直线24y x =-垂直时,PC 取最小值,且该最小值为点()0,1C 到直线224y x =-的距离,即()()min 221453221PC --==+-,此时,22minmin min 541133PMPN PC ⎛⎫==-=-= ⎪⎝⎭,∴四边形PMCN 面积的最小值为min11442212233PM CM ⨯⋅=⨯⨯⨯=,故选A. 【点睛】本题考查直线与圆的位置关系,考查切线长的计算以及四边形的面积,本题在求解切线长的最小值时,要抓住以下两点:(1)计算切线长应利用勾股定理,即以点到圆心的距离为斜边,切线长与半径为两直角边; (2)切线长取最小值时,点到圆心的距离也取到最小值. 6.已知函数()sin()(0,0,0)2f x A wx A πϕωϕ=+>><<的部分图象如图所示,则3()4f π=( )A. 22-B. 12-C. 1-D.22【答案】C 【解析】 【分析】根据图像最低点求得A ,根据函数图像上两个特殊点求得,ωϕ的值,由此求得函数()f x 解析式,进而求得3π4f ⎛⎫⎪⎝⎭的值. 【详解】根据图像可知,函数图像最低点为7π,212⎛⎫-⎪⎝⎭,故2A =,所以()2sin()f x x ωϕ=+,将点(7π,,212⎛⎫- ⎪⎝⎭代入()f x解析式得2sin 7π2sin 212ϕωϕ⎧=⎪⎨⎛⎫+=-⎪ ⎪⎝⎭⎩,解得2π3ωϕ=⎧⎪⎨=⎪⎩,故()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,所以3π3ππ2sin 21443f ⎛⎫⎛⎫=⨯+=- ⎪ ⎪⎝⎭⎝⎭,故选C.【点睛】本小题主要考查根据三角函数图象求三角函数解析式,并求三角函数值,属于中档题.7.已知函数1()4sin cos 2f x x x =-,若()()f x a f x a -=-+恒成立,则实数a 的最小正值为( ) A. 2π B. πC.2π D.4π 【答案】D 【解析】 【分析】先化简f (x ),分析出f (x )本身的最小正周期T ,再根据()()f x a f x a -=-+分析出用a 表示f (x )的最小正周期,最后根据两者相等,求得a 的最小正值. 【详解】由1()4sin cos 2f x x x =-,则1()2sin 22f x x =-,所以f (x )的最小正周期T=π 因为()()f x a f x a -=-+,则',()(2)x x a f x f x a =+=-+‘,令则,,这f (x )的最小正周期T=4a ,所以4a =π,所以实数a 的最小正值是4π,故答案选D 【点睛】本题主要考察带绝对值三角函数的的周期,同时要会通过函数满足的关系式,分析函数周期8.设n S 为数列{}n a 的前n 项和,11a =,12n n a S +=,则数列1{}na 的前20项和为( ) A.1931223-⨯ B.1971443-⨯ C.1831223-⨯ D.1871443-⨯ 【答案】D【解析】12n n a S +=,∴12n n a S -= 相减得()132n n a a n +=≥ 由11a =得出2212,3a a a =≠()21,123,2n n n a n -=⎧⎪=⎨≥⎪⎩ ,1n a =21,111,223n n n -=⎧⎪⎨⎛⎫≥ ⎪⎪⎝⎭⎩011812201111111......1......2333a a a ⎡⎤⎛⎫⎛⎫⎛⎫∴+++=++++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦191911113131111222313⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎛⎫⎝⎭⎢⎥=+=+⋅-⎢⎥ ⎪⎢⎥⎝⎭⎢⎥⎣⎦-⎢⎥⎣⎦ = 1871443-⨯ 故选D点睛:已知数列的n a 与n S 的等量关系,往往是再写一项,作差处理得出递推关系,一定要注意n 的范围,有的时候要检验n=1的时候,本题就是检验n=1,不符合,通项是分段的.9.椭圆22221(0)x y a b a b+=>>的左右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为( )A.B.1C.2D.【答案】B 【解析】 【分析】根据椭圆的定义可知12||||2PF PF a +=,又1PF 恰好与圆2F 相切于点P ,可知2||PF c =且12PF PF ⊥,即可列出方程求椭圆的离心率.【详解】由1PF 恰好与圆2F 相切于点P ,可知2||PF c =,且 12PF PF ⊥, 又12||||2PF PF a +=,可知1||2PF a c =-,在12Rt PF F ∆中,222(2)4a c c c -+=,即2222a ac c -= 所以2220,(0,1)e e e +-=∈,解得212e -==, 故选:B【点睛】本题主要考查了椭圆的定义,椭圆的简单几何性质,圆的切线的性质,属于中档题.10.已知函数()sin f x a x x =的图像的一条对称轴为直线56x π=,且12()()4f x f x ⋅=-,则12x x +的最小值为( )A. 3π-B. 0C.3π D.23π 【答案】D 【解析】 【分析】运用辅助角公式,化简函数()f x 的解析式,由对称轴的方程,求得a 的值,得出函数()f x 的解析式,集合正弦函数的最值,即可求解,得到答案.【详解】由题意,函数()sin )(f x a x x x θθ==+为辅助角), 由于函数的对称轴的方程为56x π=,且53()622a f π=+,即322a +=1a =,所以()2sin()3f x x π=-, 又由12()()4f x f x ⋅=-,所以函数必须取得最大值和最小值,所以可设11152,6x k k Z ππ=+∈,2222,6x k k Z ππ=-∈, 所以1212222,3x x k k k Z πππ+=++∈, 当120k k ==时,12x x +的最小值23π,故选D.【点睛】本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.11.若函数321()(3)3x f x e x kx kx =--+只有一个极值点,则k 的取值范围为()A. (,)e -∞B. (0,]eC. (,2)-∞D. (0,2]【答案】B 【解析】 【分析】利用函数求导函数 f ′(x )=e x (x ﹣2)﹣kx 2+2kx =(x ﹣2)(e x ﹣kx ),只有一个极值点时f ′(x )=0只有一个实数解,有e x ﹣kx ≥0,设新函数设u (x )=e x ,v (x )=kx ,等价转化数形结合法即可得出结论,【详解】解:函数f (x )=e x (x ﹣3)﹣13kx 3+kx 2只有一个极值点, f ′(x )=e x (x ﹣2)﹣kx 2+2kx =(x ﹣2)(e x ﹣kx ), 若函数f (x )=e x (x ﹣3)﹣13kx 3+kx 2只有一个极值点,f ′(x )=0只有一个实数解, 则:e x ﹣kx ≥0, 从而得到:e x ≥kx , 当k =0 时,成立.当k ≠0时,设u (x )=e x ,v (x )=kx如图:当两函数相切时,k =e ,此时得到k 的最大值,但k <0时不成立. 故k 的取值范围为:(0,e ] 综上:k 的取值范围为:[0,e ] 故选B .【点睛】本题考查了利用导数研究函数的极值点、考查了不等式问题的等价转化方法,数形结合法,考查了推理能力,属于中档题.12.双曲线()2222100x y a b a b-=>,>左右焦点分别为F 1,F 2,过F 1的直线交曲线左支于A ,B 两点,△F 2AB 是以A 为直角顶点的直角三角形,且∠AF 2B =30°.若该双曲线的离心率为e ,则e 2=( ) A. 11+B. 13+C. 16-D.19-【答案】D 【解析】 【分析】设22BF m =,根据2F AB ∆是以A 为直角顶点的直角三角形,且230AF B ∠=o,以及双曲线的性质可得212(32(2AF a AF a ==,再根据勾股定理求得,a c 的关系式,即可求解.【详解】由题意,设22BF m =,如图所示,因为2FAB ∆是以A为直角顶点的直角三角形,且230AF B ∠=o, 由212AF AF a -=,所以12AFa =-, 由212BF BF a -=,所以122BF m a =-,所以11AF BF AB +=222a m a m -+-=, 所以21)m a =,所以221)2(3AF a a ==,12(322(2AF a a a =-=, 在直角12F AF ∆中,222124AF AF c +=,即222224(34(24a a c +=,整理得22(19a c -=,所以22219c e a==-故选D.【点睛】本题主要考查了双曲线的定义,以及双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程,即可得e 的值(范围)..二、填空题13.已知向量,,1,2a b a b ==v v v v,且210a b +=r r a b ⋅=r r ___________.【答案】12【解析】 【分析】把210a b +=r r1,2a b ==r r 代入,化简即可得结果. 【详解】因为1,2a b ==r r,所以222448410a b a a b b a b +=+⋅+=+⋅=v v v vv v v v12a b ∴⋅=v v ,故答案为12.【点睛】本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是cos a b a b θ⋅=r r r r ,二是1212a b x x y y ⋅=+r r,主要应用以下几个方面:(1)求向量的夹角, cos a b a bθ=r r g r r g (此时a b r r g 往往用坐标形式求解);(2)求投影,a r 在b r上的投影是a b b⋅r r r ;(3),a b r r 向量垂直则0a b ⋅=r r ;(4)求向量ma nb +r r 的模(平方后需求a b ⋅r r ). 14.已知抛物线E :212y x =的焦点为F ,准线为l ,过F 的直线m 与E 交于A ,B 两点,过A 作AM l ⊥,垂足为M ,AM 的中点为N ,若AM FN ⊥,则AB =___________. 【答案】16 【解析】 【分析】由题意画出图形,得到直线AB 的斜率,进一步求得直线AB 的方程,与抛物线方程联立求解即可得答案.【详解】AF AM =Q ,N 为AM 的中点,且FN AM ⊥,30AFN ∴∠=︒,则直线AB 的倾斜角为60︒,斜率为3.由抛物线212y x =,得(3,0)F ,则直线AB 的方程为3(3)y x =-.联立23(3)12y x y x⎧=-⎪⎨=⎪⎩,得21090x x -+=. 则10A B x x +=, ||16A B AB x x p ∴=++=.故答案为:16.【点睛】本题考查抛物线的简单性质、直线与抛物线位置关系及抛物线过焦点弦公式的应用,属于中档题.15.已知函数21()()2x f x x x e -=-,若当1x >时,()10f x mx m -++≤有解,则m 的取值范围为________ 【答案】(1,)-+∞ 【解析】 【分析】先求导数,判断函数21()()2x f x x x e-=-的单调性,可得1x >时大致图象,利用数形结合求解.【详解】()10f x mx m -++Q „()(1)1f x m x ∴--„(1)1y m x =--Q 过定点(1,1)-Q 当1x >时,()10f x mx m -++≤有解∴当1x >时,存在()y f x =在(1)1y m x =--的下方,()21()2x f x x e -'=-Q令()0f x '=,解得2x =, 当12x <<时,()0f x '<,当2x >时,()0f x '>,()f x ∴在(1,2)上递减,在(2,)+∞上递增, Q 当2x >时,()0f x >,又(1)1,(2)1,(2)0f f f =-<-=,作函数()y f x =,(1)1y m x =--的大致图象:由图象可知:1m >-时满足条件, 故答案为:(1,)-+∞【点睛】本题主要考查了利用导数研究函数的单调性、最值、图象,直线过定点,数形结合,属于难题.16.数列{}n a 为1,1,2,1,1,2,3,1,1,2,1,1,2,3,4,…,首先给出11a =,接着复制该项后,再添加其后继数2,于是21a =,32a =,然后再复制前面所有的项1,1,2,再添加2的后继数3,于是41a =,51a =,62a =,73a =,接下来再复制前面所有的项1,1,2,1,1,2,3,再添加4,…,如此继续,则2019a =______. 【答案】1 【解析】 【分析】根据数列构造方法可知:21n a n -=,即()21121n nk k a a k -+=≤<-;根据变化规律可得20192a a =,从而得到结果.【详解】由数列{}n a 的构造方法可知11a =,32a =,73a =,154a =,可得:21n a n -= 即:()21121n nk k a a k -+=≤<-201999648523010340921a a a a a a a a ∴========本题正确结果:1【点睛】本题考查根据数列的构造规律求解数列中的项,关键是能够根据构造特点得到数列各项之间的关系,考查学生的归纳总结能力.三、解答题17.如图为一块边长为2km 的等边三角形地块ABC ,为响应国家号召,现对这块地进行绿化改造,计划从BC 的中点D 出发引出两条成60o 角的线段DE 和DF ,与AB 和AC 围成四边形区域AEDF ,在该区域内种上草坪,其余区域修建成停车场,设BDE α∠=.(1)当60α=o 时,求绿化面积;(2)试求地块的绿化面积()S α的取值范围.【答案】(1)232km ;(2)333,82⎛ ⎝⎦. 【解析】【分析】(1)根据角度可确定四边形AEDF 为平行四边形,则BDE ∆和CDF ∆均为边长为1km 的等边三角形;利用ABC BDE CDF S S S ∆∆∆--即可求得结果;(2)利用正弦定理,用α表示出BE 和CF ,利用两角和差公式、二倍角公式和辅助角公式可将BE CF +化简为()312sin 2301α+-+o,利用3090α<<o o 可求得BE CF +的范围;从而将所求面积表示为()()4S BE CF α=+,进而得到所求范围. 【详解】(1)当60α=o 时,//DE AC ,//DF AB∴四边形AEDF 为平行四边形,则BDE ∆和CDF ∆均为边长为1km 的等边三角形又)2122sin 602ABC S km ∆=⨯⨯⨯=o,)2111sin 6024BDE CDF S S km ∆∆==⨯⨯⨯=o ∴)22km =(2)由题意知:3090α<<o o在BDE ∆中,120BED α∠=-o,由正弦定理得:()sin sin 120BE αα=-o在CDF ∆中,120CDF α∠=︒-,CFD α∠= 由正弦定理得:()sin 120sin CF αα-=o()()()()22sin 120sin sin 120sin sin sin 120sin 120sin BE CF αααααααα-+-∴+=+=--o o o o2222153sin sin sin cos cos 222ααααααα⎫++⎪+==⎝⎭()331112sin 2301α==+=+-+o3090α<<o o Q 30230150α∴<-<o o o ()1sin 23012α∴<-≤o()352122sin 2301α∴≤+<-+o ,即52,2BE CF ⎡⎫+∈⎪⎢⎣⎭()())1sin 602ABC BDE CDF S S S S BE CF BE CF α∆∆∆∴=--=+=+o52,2BE CF ⎡⎫+∈⎪⎢⎣⎭Q )482BE CF ⎛+∈ ⎝⎦即绿化面积()S α的取值范围为:82⎛ ⎝⎦【点睛】本题考查解三角形知识的实际应用问题,涉及到正弦定理和三角形面积公式的应用、三角恒等变换中的两角和差公式、二倍角公式和辅助角公式的应用;求解范围类问题的关键是能够构造出关于某一变量的函数,从而利用函数求值域的方法求得结果.18.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,且11a =,11b =,224a b +=.(1)若337a b +=,求{}n b 的通项公式; (2)若313T =,求5S .【答案】(1)12n n b -=;(2)5或75.【解析】 【分析】(1)设等差数列{}n a 公差为d ,等比数列{}n b 公比为()0q q ≠,由已知条件求出q ,再写出通项公式;(2)由1313T =,求出q 的值,再求出d 的值,求出5S .【详解】设等差数列{}n a 公差为d ,等比数列{}n b 公比为()0q q ≠有()14d q ++=,即3d q +=.(1)∵()2127d q ++=,结合3d q +=得2q =,∴12n n b -=.(2)∵23113T q q =++=,解得4q =-或3,当4q =-时,7d =,此时55457752S ⨯=+⨯=; 当3q =时,0d =,此时5155S a ==.【点睛】本题主要考查等差数列与等比数列的通项公式、等差数列的前n 项和公式,属于中档题. 等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量1,,,,,n n a d n a S 一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,另外,解等差数列问题要注意应用等差数列的性质2p q m n r a a a a a +=+=(2p q m n r +=+=)与前n 项和的关系.19.已知圆22:(2)(1)1D x y -+-=,点A 在抛物线2:4C y x =上,O 为坐标原点,直线OA 与圆D 有公共点.(1)求点A 横坐标的取值范围;(2)如图,当直线OA 过圆心D 时,过点A 作抛物线的切线交y 轴于点B ,过点B 引直线l 交抛物线C 于,P Q 两点,过点P 作x 轴的垂线分别与直线,OA OQ 交于,M N ,求证:M 为PN 中点.【答案】(1))9,4A x ⎡∈+∞⎢⎣(2)见证明 【解析】 【分析】(1)设:OA l y kx =,联立抛物线,再利用圆D 与直线相交建立不等式,从而确定点A 横坐标的取值范围;(2)可先找到函数关系式,利用导数确定切线的斜率,设221212:4,,,,44y y l y mx P y Q y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,利用韦达定理即可证明M 为PN 中点.【详解】解:(1)由题意直线OA 斜率存在且不为零,设:OA l y kx =2244A y kx x y xk =⎧⇒=⎨=⎩ ()2,1D 到:0OA l kx y -=4103k ≤⇒≤≤, 所以)9,4A x ⎡∈+∞⎢⎣(2)当直线OA 过圆心()2,1D 时,()214,16,16,82A k x A k=== ()240y x y y y '=>⇒=⇒=,所以1614AB x k y -='=, ()18164AB l y x -=-:即144y x =+, 所以()04B ,,设221212:4,,,,44y y l y mx P y Q y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭, 由214:,:2OA OQ l y x l y x y ==得22112,8M N y y y y y ==22441604y mx my y y x =+⎧⇒-+=⎨=⎩,所以1212416,y y y y m m +== ()222211121112124+=2164P N M y y y y y y m y y y y y y y m+=+===,即M 为PN 中点.【点睛】本题主要考查了直线与圆,抛物线的位置关系,切线问题等,综合性强,直线与圆的相关计算常考点到直线的距离公式,必须熟记.20.已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足sin()n n b a =,集合*{|,}n S x x b n ==∈N .(1)若10a =,23d π=,求集合S ; (2)若12a π=,求d 使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,n T n b b +=,T 是不超过5的正整数,求T 的所有可能值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S .【答案】(1),22⎧⎫⎪⎪-⎨⎬⎪⎪⎩⎭;(2)23π或π;(3)3T =或4,3T =时,23n a n π=,S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭;4T =时,2n a n π=,{}0,1,1S =-【解析】 【分析】(1)根据等差数列的通项公式写出n a ,进而求出n b ,再根据周期性求解;(2)由集合S 的元素个数,分析数列{}n b 的周期,进而可求得答案;(3)分别令1T =,2,3,4,5进行验证,判断T 的可能取值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S 【详解】(1)Q 等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈.∴当120,3a d π==,所以集合{S =0. (2)Q 12a π=,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=, ②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=,综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合1{S b =,2b ,3}b ,符合题意.与之相应的一个等差数列{}n a 的通项公式为23n a n π=,此时33,,0S ⎧⎫⎪⎪=-⎨⎬⎪⎪⎩⎭. ②当4T=时,4n n b b +=,sin(4)sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0d ∈,]π,故42n n a d a k π+=+,2k d π=,又1k ∴=,2 当1k =时满足条件,此时{0S =,1,1}-. 与之相应的一个等差数列{}n a 的通项公式为2n a n π=,此时{}0,1,1S =-【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,是一道综合题.21.已知函数()(1)ln f x x x =-,3()ln eg x x x =--. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)令()()()(0)h x mf x g x m =+>两个零点1212,()x x x x <,证明:121ex e x +>+. 【答案】(Ⅰ)()f x 在(0,1)上单调递减,在[1,)+∞上单调递增.(Ⅱ)见证明 【解析】 【分析】(Ⅰ)求得函数的导数1()ln 1f x x x=+-',且()01f '=,进而利用导数的符号,即可求得函数单调区间;(Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点,利用导数求得函数()h x 的单调性与最值,结合图象,即可得出证明.【详解】(Ⅰ)由题意,函数()(1)ln f x x x =-,则1()ln 1f x x x=+-',且()01f '=, 当01x <<时,()0f x '<,函数()f x 单调递减; 当1x ≥时,()0f x '≥,函数()f x 单调递增;所以函数()f x 在(0,1)上单调递减,在[1,)+∞上单调递增. (Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点可知 由11()(1ln )1h x m x x x-'=++-且0m >可知, 当01x <<时,()0h x '<,函数()h x 单调递减; 当1x ≥时,()0h x '≥,函数()h x 单调增;即()h x 的最小值为3(1)10h e=-<, 因此当1x e=时,1113(1)2()(1)(1)(1)0m e e h m e e e e e -+-=--+---=>, 可知()h x 在1(,1)e上存在一个零点;当x e =时,3()(1)10h e m e e e=-+-->, 可知()h x 在(1,)e 上也存在一个零点, 因此211x x e e -<-,即121x e x e+>+. 【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.22.已知椭圆C :22221(0)y x a b a b +=>>的离心率为2,且过定点M . (1)求椭圆C 的方程;(2)已知直线1:()3l y kx k R =-∈与椭圆C 交于,A B 两点,试问在y 轴上是否存在定点P ,使得以弦AB 为直径的圆恒过点P ?若存在,求出点P 的坐标和PAB ∆的面积的最大值;若不存在,请说明理由.【答案】(1) 2224155y x += (2)见解析 【解析】【分析】(1)本问考查了椭圆的离心率公式,以及椭圆的方程、性质,通过条件构建关于基本量,,a b c 的方程组,求解即可.(2)本题考查了直线与椭圆的位置关系,利用条件以弦AB 为直径的圆恒过点P ,将几何关系代数化,利用韦达定理建立方程,判断方程是否有解.【详解】解:(1)由已知2222222522511142c e a a b c a b a b ⎧==⎪⎧=⎪⎪⎪⎪+=⇒⎨⎨⎪⎪=⎪⎪+=⎩⎪⎩,椭圆C 的方程为2224155y x +=. (2)由221324155y kx y x ⎧=-⎪⎪⎨⎪+=⎪⎩得229(24)12430k x kx +--=.① 设1122(,),(,)A x y B x y ,则12,x x 方程①的两根,1212221243,9(24)9(24)k x x x x k k ∴+==-++ 设(0,)P p ,则1122(,),(,)PA x y p PB x y p =-=-u u u r u u u r ,22121212*********()()()()333p PA PB x x y y p y y p x x kx kx pk x x p ⋅=+-++=+---+++u u u r u u u r 2222(1845)3624399(24)p k p p k -++-=+ 假设在y 轴上存在定点P ,使得以弦AB 为直径的圆恒过点P , 则PA PB ⊥u u u r u u u r ,即0PA PB ⋅=u u u r u u u r ,即222(1845)3624390p k p p -++-=对任意k ∈R 恒成立, 22184503624390p p p ⎧-=∴⎨+-=⎩此方程组无解,∴不存在定点满足条件. 【点睛】本题的关键是将条件“以弦AB 为直径的圆恒过点P ”,几何关系代数化,和联立方程组得到的韦达定理联系起来,建立关于参数p 的方程.。

河北省衡水中学高三上学期期中考试数学(文)试题(有答案)

河北省衡水中学高三上学期期中考试数学(文)试题(有答案)

上学期高三期中考试 数学(文科)试卷第Ⅰ卷(选择题 共60分)一、 选择题(每小题5分,共60分。

下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上) 1.复数321iz i i =+-(i 为虚数单位)的共轭复数为( ) A .12i - B .12i + C .1i - D .1i - 2.已知集合{}0,1A =,{},,B z z x y x A y A ==+∈∈,则B 的子集个数为( ) A .8 B .3 C .4 D .7 3.已知平面直角坐标系内的两个向量(1,2),(,32)a b m m ==-,且平面内的任一向量c 都可以唯一的表示成c a b λμ=+(,λμ为实数),则m 的取值范围是( ) A .(,2)-∞ B .(2,)+∞ C .(,)-∞+∞ D .(,2)(2,)-∞+∞4.将函数()cos f x x x =-的图象向左平移m 个单位(0)m >,若所得图象对应的函数为偶函数,则m 的最小值是( ) A .23π B .3π C .8π D .56π5.已知等比数列{}n a 中,3462,16a a a ==,则101268a a a a --的值为( )A .2B .4C .8D .166.已知一个几何体的三视图如图所示,则该几何体的体积为( ) A .3272π-B .3182π- C .273π- D .183π-7.如图,偶函数()f x 的图象如字母M ,奇函数()g x 的图象如字母N ,若方程(())0f g x =,(())0g f x =的实根个数分别为m 、n ,则m n +=( )A .12B .18C .16D .14 8.函数2)(1-=-x ax f )1,0(≠>a a 的图象恒过定点A ,若点A 在直线01=--ny mx 上,其中0,0>>n m ,则nm 21+的最小值为( ) A .4 B .5 C .6 D .223+9.三棱锥P ABC -中,PA ⊥平面,,1,ABC AC BC AC BC PA ⊥===,则该三棱锥外接球的表面积为( )A .5πBC .20πD .4π 10.某程序框图如图所示,该程序运行后输出的S 的值是( ) A .3024 B .1007 C .2015 D .201611.已知函数32()3f x x x x =-+的极大值为m ,极小值为n ,则 m+n=( )A.0B.2C.-4D.-212.某实验室至少需要某种化学药品10kg ,现在市场上出售的该药品有两种包装,一种是每袋3kg ,价格为12元;另一种是每袋2kg ,价格为10元.但由于保质期的限制,每一种包装购买的数量都不能超过5袋,则在满足需要的条件下,花费最少为( )元A .56B .42C .44D .54第Ⅱ卷(共90分)二、填空题:(本大题共4小题,每题5分,共20分)13.与直线10-=x 垂直的直线的倾斜角为 14.若函数(21)1()1a x f x x x++=++为奇函数,则a =________.15.已知22:12,:210,(0)p x q x x a a -≤-+-≥>,若p ⌝是q 的充分不必要条件,则实数a 的取值范围是 .16.如图,在三棱锥A BCD -中,BC DC AB AD ====2BD =,平面ABD ⊥平面BCD ,O 为BD 中点,点,P Q 分别为线段,AO BC 上的动点(不含端点),且AP CQ =,则三棱锥P QCO -体积的最大值为________.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

河北省衡水中学2020届高三上学期期中考试数学(文)试题 Word版含解析

河北省衡水中学2020届高三上学期期中考试数学(文)试题 Word版含解析

2019-2020学年河北省衡水中学高三(上)期中数学试卷(文科)一、选择题(本大题共12小题)1.下列函数中,既是偶函数又在上单调递增的是A. B. C. D.2.等差数列的前n项和为,已知,且,则等于A. 100B. 50C. 0D.3.已知曲线在点处的切线与直线垂直,则实数a的值为A. B. C. 1 D. 44.在中,D是AB边上一点,,且,则的值为A. B. C. D.5.已知双曲线的离心率,且与椭圆有相同的焦点,则该双曲线的渐近线方程为A. B. C. D.6.已知角满足,则A. B. C. D.7.已知函数的部分图象如图所示,则A.B.C.D.8.已知各项不为0的等差数列满足,数列是等比数列且,则等于A. B. C. D.9.已知点P为双曲线右支上一点,点,分别为双曲线的左右焦点,点I是的内心三角形内切圆的圆心,若恒有成立,则双曲线的离心率取值范围是A. B. C. D.10.函数向右平移个单位后得到,若在上单调递增,则的取值范围是A. B. C. D.11.已知函数,若当时,有解,则m的取值范围为A. B. C. D.12.在平面直角坐标系xOy中,已知圆:,圆:,点,若点A,B分别为圆和圆上的动点,且,N为线段AB的中点,则MN的最小值为A. 1B. 2C. 3D. 4二、填空题(本大题共4小题)13.己知向量,,则在方向上的投影为______.14.若函数只有一个极值点,则k的取值范围为______.15.已知抛物线E:的焦点为F,准线为,过F的直线m与E交于A,B两点,过A作,垂足为M,AM的中点为N,若,则______16.数列为1,1,2,1,1,2,3,1,1,2,1,1,2,3,4,,首先给出,接着复制该项后,再添加其后继数2,于是,,然后再复制前面所有的项1,1,2,再添加2的后继数3,于是,,,,接下来再复制前面所有的项1,1,2,1,1,2,3,再添加4,,如此继续,则______.三、解答题(本大题共6小题)17.己知的面积为,且且.求角A的大小;设M为BC的中点,且,的平分线交BC于N,求线段AN的长度.18.已知等差数列前n项和,等比数列前n项和为,,,.若,求数列的通项公式;若,求.19.已知点F为抛物线E:的焦点,点在抛物线E上,且.求抛物线E的方程;已知点,延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆必与直线GB相切.20.已知数列的各项均为正数,它的前n项和满足,并且,,成等比数列.求数列的通项公式;设,为数列的前n项和,求.21.已知函数,.Ⅰ求函数的单调区间;Ⅱ令两个零点,,证明:.22.在平面直角坐标系xOy中,已知椭圆C:的焦距为4,且过点.求椭圆C的方程设椭圆C的上顶点为B,右焦点为F,直线l与椭圆交于M、N两点,问是否存在直线l,使得F为的垂心,若存在,求出直线l的方程;若不存在,说明理由.答案和解析1.【答案】A【解析】【分析】本题考查函数的单调性,奇偶性,是基础题.根据函数单调性,奇偶性,对选项逐一判断即可.【解答】解:对于A,函数满足,定义域关于原点对称,且在上单调递增,故A正确;对于B,,定义域关于原点对称,函数为偶函数,但在上单调递减,故B错;对于C,函数不是偶函数,故C错;对于D,,定义域关于原点对称,函数为偶函数,但在上不是增函数,故D错;故选A.2.【答案】C【解析】解:设等差数列的公差为d,又,,解得,,故选:C.由题意可得公差d的方程,解得d值代入等差数列的求和公式计算可得.本题考查等差数列的性质和求和公式,求出公差是解决问题的关键,属基础题.3.【答案】C【解析】【分析】本题考查导数的运用:求切线的斜率,考查两直线垂直的条件,化简运算能力,属于基础题.求得的导数,可得切线的斜率,由两直线垂直的条件可得a的方程,解方程可得所求值.【解答】解:的导数为,可得在点处的切线斜率为,由切线与直线垂直,可得,即.故选:C.4.【答案】D【解析】解:由在中,D是AB边上一点,,则,即,故选:D.由平面向量的线性运算可得:,即,得解.本题考查了平面向量基本定理及向量的线性运算,属中档题.5.【答案】C【解析】【分析】本题主要考查椭圆,双曲线的基本元素之间的关系问题,同时双曲线、椭圆的相应知识也进行了综合性考查.先根据椭圆的方程求出焦点坐标,得到双曲线的c值,再由离心率求出a的值,最后根据得到b的值,可得到渐近线的方程.【解答】解:椭圆的焦点为,故双曲线中的,且满足,故,,所以双曲线的渐近线方程为故选C.6.【答案】D【解析】【分析】本题主要考查了诱导公式,二倍角公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.由已知利用诱导公式可求,根据诱导公式,二倍角公式化简所求即可计算得解.【解答】解:,.故选D.7.【答案】C【解析】解:由函数的部分图象,可得,由,求得.再根据五点法作图,可得,,,,故选:C.由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,可得函数的解析式,从而求得的值.本题主要考查由函数的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,属于基础题.8.【答案】C【解析】解:由,得,即,即,,,则.故选:C.由条件利用等差数列的性质可得,求得的值,再根据计算.本题考查等差数列、等比数列的性质,求出是解题的关键,属于中档题.9.【答案】D【解析】解:设的内切圆半径为r,则,,,,,由双曲线的定义可知:,,,即.又,双曲线的离心率的范围是故选:D.根据条件和面积公式得出a,c的关系,从而得出离心率的范围.本题考查了双曲线的性质,考查直线与双曲线位置关系的应用,考查计算能力,是中档题.10.【答案】D【解析】解:函数向右平移个单位后得到,令,整理得,由于在上单调递增,所以,解得,由于,所以.同理,解得,由于,所以.故:的取值范围是故选:D.首先利用三角函数关系式的平移变换的应用求出的关系式,进一步利用函数的单调性和子集间的关系的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数性质的应用,三角函数的图象的平移变换的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.11.【答案】C【解析】解:,令,解得,当时,,当时,0'/>,在上递减,在上递增,当时,,又,,,,,故选:C.先求导,判断出函数的单调性,可得函数值的情况,即可求出m的取值范围.本题考查了导数和函数单调性和最值的关系,考查了运算能力和转化能力,属于中档题.12.【答案】A【解析】【分析】本题主要考查直线和圆的位置关系,两点间的距离公式,圆的标准方程,属于中档题.设、,由已知条件可得设AB中点为,则,利用线段的中点公式求得,再由的范围求得的范围,则的最小值可求.【解答】解:设、,则,,,即,,设AB中点,则,,,即,点的轨迹是以为圆心、半径等于的圆,的取值范围是,,的范围为,则的最小值为1.故选:A.13.【答案】1【解析】解:向量,,,,在方向上的投影为,.故答案为:1.根据,,得在上的投影为,,求出,代入投影的公式计算即可.本题考查了平面向量的坐标运算,属于基础题.14.【答案】【解析】解:函数只有一个极值点,,若函数只有一个极值点,只有一个实数解,则:,从而得到:,当时,成立.当时,设,,如图:当两函数相切时,,此时得到k的最大值,但时不成立.故k的取值范围为:综上:k的取值范围为:故答案为:.利用函数求导函数,只有一个极值点时只有一个实数解有,设新函数设,,等价转化数形结合法即可得出结论,本题考查了利用导数研究函数的极值点、考查了不等式问题的等价转化方法,数形结合法,考查了推理能力,属于中档题.15.【答案】16【解析】【分析】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,是中档题.由题意画出图形,得到直线AB的斜率,进一步求得直线AB的方程,与抛物线方程联立求解即可得答案.【解答】解:由题意画出图形如图,,N为AM的中点,且,,则直线AB的倾斜角为,斜率为.由抛物线,得,则直线AB的方程为.联立,得.则,.故答案为16.16.【答案】1【解析】解:由数列的构造方法可知,,,,可得,即,故.故答案为:1.由数列的构造方法可知,,,,可得,即,进而得出结论.本题考查了数列递推关系、归纳法,考查了推理能力与计算能力,属于中档题.17.【答案】解:由题可得:;的面积为,;;又;.如图在中,AM为中线,;由知;,;由余弦定理得.;;又因为,,;;.【解析】根据已知条件求出角的正切值,再结合角的范围即可求解;先根据条件求出b,c,a;再借助于面积之间的关系求出CN,BN之间的比例关系,结合题中条件即可求解.本题主要考查向量的数量积的应用以及三角形中的有关计算,属于中档题目..18.【答案】解:设等差数列的公差为d,等比数列的公比为q,由,,,,得,解得.;由,,得,即或.当时,,此时,,;当时,,此时,,.综上,或5.【解析】设等差数列的公差为d,等比数列的公比为q,由已知列关于d和q的方程组,求得q,可得数列的通项公式;由,列式求得q,然后分类求解.本题考查等差数列与等比数列的通项公式及前n项和的应用,考查计算能力,是中档题.19.【答案】解:由抛物线定义可得:,解得.抛物线E的方程为;解法一:证明:点在抛物线E上,,解得,不妨取,又因为,则可得直线AF的方程:,联立,化为,解得或,从而.又,,,,轴平分,因此点F到直线GA,GB的距离相等,以点F为圆心且与直线GA相切的圆,必与直线GB相切.解法二:证明:点在抛物线E上,,解得,不妨取,由,可得直线AF的方程:,联立,化为,解得或,从而.又,可得直线GA,GB的方程分别为:,,故点到直线GA的距离,同理可得点到直线GB的距离.因此以点F为圆心且与直线GA相切的圆,必与直线GB相切.【解析】本小题主要考查抛物线、直线与抛物线及与圆的位置关系及其性质、点到直线的距离公式等基础知识,属于中档题.由抛物线定义可得:,解得即可得出抛物线E的方程.解法一:由点在抛物线E上,解得m,不妨取,,可得直线AF的方程,与抛物线方程联立化为,解得又,计算,,可得,,即可证明以点F为圆心且与直线GA相切的圆,必与直线GB相切.解法二:由点在抛物线E上,解得m,不妨取,,可得直线AF的方程,与抛物线方程联立化为,解得又,可得直线GA,GB的方程,利用点到直线的距离公式可得:点到直线GA、GB的距离,若相等即可证明此以点F为圆心且与直线GA相切的圆,必与直线GB相切.20.【答案】解:对任意,有当时,有当并整理得,而的各项均为正数,所以.当时,有,解得或2,当时,,此时成立;当时,,此时不成立;舍去.所以,,.【解析】根据可类比的得到,然后两式相减得到,再由的各项均为正数,可得到,再由等差数列的通项公式法可得到答案.先根据,可得到,再由等差数列的前n项和公式可得到答案.本题主要考查数列递推关系式的应用和等差数列的求和公式的应用.考查综合运用能力.21.【答案】Ⅰ解:由题可知,,单调递增,且,当时,,当时,;因此在上单调递减,在上单调递增.Ⅱ证明:由有两个零点可知由且可知,当时,,当时,;即的最小值为,因此当时,,可知在上存在一个零点;当时,,可知在上也存在一个零点;因此,即.【解析】本小题考查函数与导数的相关知识.函数的单调性以及函数的最值的求法,零点判断定理的应用,是难题.Ⅰ求出函数的导数,利用导函数的符号判断函数的单调性,求出单调区间;Ⅱ求出的导数,求解函数的最小值,通过零点判断定理,转化两个零点,,所在位置,即可证明:.22.【答案】解:由已知可得,解得,,所以椭圆C的方程为.由已知可得,,,,,可设直线l的方程为,代入椭圆方程整理,得.设,,则,,,,即.,,,即.,或.由,得.又时,直线l过B点,不合要求,,故存在直线l:满足题设条件.【解析】由已知列出关于a,b,c的方程组,解得a,b,c,写出结果即可;由已知可得,,所以,因为,所以可设直线l的方程为,代入椭圆方程整理,得设,,由根与系数的关系写出两根之和和两根之积的表达式,再由垂心的性质列出方程求解即可.本题考查了椭圆的方程,直线与椭圆的关系,三角形的垂心等概念,属于中档题.。

河北省衡水市衡水中学2020届高三上学期二调考试数学(文)试题 Word版含解析

河北省衡水市衡水中学2020届高三上学期二调考试数学(文)试题 Word版含解析

2019—2020学年度上学期高三年级二调考试数学(文科)试卷本试卷分第I 卷(选择题)和第I 卷(非选择题)两部分,共150分,考试时间120分钟.第I 卷一.选择题(从每小题给出的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.若集合}{12A x x =-≤≤,{}10B x x =-<,则A B U =( ). A. }{1x x <B. }{11x x -≤<C. {}2x x ≤D.{}21x x -≤<【答案】C 【解析】 【分析】直接根据并集的定义求解即可.【详解】因为}{12A x x =-≤≤,{}{}101B x x x x =-<=<, 所以,根据并集的定义:A B ⋃是属于A 或属于B 的元素所组成的集合, 可得{}2A B x x ⋃=≤,故选C.【点睛】研究集合问题,一定要抓住元素,看元素应满足属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或属于集合B 的元素的集合.2.设30.2a =,2log 0.3b =,3log 2c =,则( ) A. a b c >> B. a c b >>C. b a c >>D. c a b >>【答案】D 【解析】 【分析】利用函数的单调性,并结合取中间值法即可判断大小.【详解】由于300.20.2<<,22log 0.3log 10<=, 331log 2log 32>=, 则323log 0.30.2log 2<<,即c a b >>.故选D.【点睛】本题主要考查对数与对数函数和指数与指数函数,利用函数的单调性比较大小是常用手段,属基础题.3.函数()2ln 11y x x =-+-的图象大致为( )A B.C. D.【答案】B 【解析】 【分析】利用对称性排除A ,C ;利用单调性排除D ,从而得到结果.【详解】由于2ln y x x =+为偶函数,所以()2ln 11y x x =-+-关于直线x 1=轴对称,从而可排除A ,C ;2ln y x x =+在()0∞+,上为增函数,所以()2ln 11y x x =-+-在()1∞+,上为增函数,排除D; 故选B【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象. 4.在ABC ∆中,角AB C 的对边分别为a,b,c,且sin 22,1,,1cos 26c b B c π===- 则a 的值为( )A.1-B. 2C. 2D.【答案】D 【解析】 【分析】由sin211cos2c c =-得到角C ,又6B π=,故A=712π,利用正弦定理即可得到结果.【详解】由sin211cos2c c =-可得:2212sinCcosC sin C =,即tanC=1,故C=,4πA=712π由正弦定理:a b sinA sinB = 可得:7126a bsin sin ππ=,∴7a 4s?12in π==故选D【点睛】此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键. 5.已知1sin()62πθ-=,且02πθ⎛⎫∈ ⎪⎝⎭,,则cos()3πθ-=( ) A. 0 B.12C. 1【答案】C 【解析】 【分析】解法一:由题意求出θ的值,然后代入求出结果;解法二:由两角差的余弦公式求出结果 【详解】解法一:由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,π3θ=,代入πcos 3θ⎛⎫- ⎪⎝⎭得, πcos 3θ⎛⎫- ⎪⎝⎭=cos01=,故选C .解法二:由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,πcos 62θ⎛⎫-= ⎪⎝⎭, 所以πππππππcos cos cos cos sin sin 13666666θθθθ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=--=-+-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选C . 【点睛】本题考查了运用两角差的余弦公式来求出三角函数值,较为基础6.已知锐角△ABC 的内角A,B,C 的对边分别为a,b,c,23cos 2A+cos 2A=0,a=7,c=6,则b 等于( ) A. 10 B. 9C. 8D. 5【答案】D 【解析】【详解】由题意知,23cos 2A+2cos 2A-1=0, 即cos 2A=125, 又因△ABC 为锐角三角形, 所以cosA=15. △ABC 中由余弦定理知72=b 2+62-2b×6×15,即b 2-125b-13=0, 即b=5或b=-135(舍去),故选D.【此处有视频,请去附件查看】7.已知奇函数()f x 满足()()4f x f x =+,当()0,1x ∈时,()4xf x =,则()4log 184(f =)A. 3223-B.2332C.34D. 38-【答案】A【解析】 【分析】 根据函数的周期性结合奇偶性推导出()()44442332log 184log 18443223f f f log flog ⎛⎫⎛⎫=-==- ⎪ ⎪⎝⎭⎝⎭,利用()0,1x ∈时,()4x f x =能求出结果.【详解】Q 奇函数()f x 满足()()4f x f x =+,()()44423log 184log 184432f f f log ⎛⎫∴=-= ⎪⎝⎭因为4231032log -<<, 所以442332013223log log <-=< 所以444233232322323f log f log f log ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又因为当()0,1x ∈时,()4xf x =,所以432log 23432423f log ⎛⎫-=- ⎪⎝⎭3223=-,故选A . 【点睛】本题考查对数的运算法则,考查函数的奇偶性、周期性等基础知识,考查运算求解能力,属于中档题.解答函数周期性、奇偶性、解析式相结合的问题,通常先利用周期性与奇偶性转化自变量所在的区间,然后根据解析式求解. 8.已知1cos sin 5αα-=,则cos 22πα⎛⎫- ⎪⎝⎭=( ).A. 2425-B. 45- C. 2425D.45【答案】C 【解析】 【分析】 将1cos sin 5αα-=两边平方,求出24sin 225α=,利用诱导公式可得结果.【详解】因为1cos sin 5αα-=, 所以22cos 2sin cos sin 1sin 2ααααα-+=-=125, 所以24sin 225α=,cos 22πα⎛⎫-= ⎪⎝⎭24sin 225α=,故选C.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.9.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若2cos ,4,cos a c Cb b B-==则ABC ∆的面积的最大值为( )A.B. C. 2【答案】A 【解析】 【分析】由已知式子和正弦定理可得B ,再由余弦定理和基本不等式可得ac ≤16,代入三角形的面积公式可得最大值. 【详解】∵在△ABC 中,2cos cos a c Cb B-= ∴(2a ﹣c )cos B =b cos C , ∴(2sin A ﹣sin C )cos B =sin B cos C ,∴2sin A cos B =sin C cos B +sin B cos C =sin (B +C )=sin A ,约掉sin A 可得cos B =12,即B =3π,由余弦定理可得16=a 2+c 2﹣2ac cos B =a 2+c 2﹣ac ≥2ac ﹣ac , ∴ac ≤16,当且仅当a =c 时取等号, ∴△ABC 的面积S =12ac sin B ≤故选A .【点睛】本题考查解三角形,涉及正余弦定理和基本不等式以及三角形的面积公式,属中档题.10.已知函数()()xxf x x e e-=-,对于实数a b ,,“0a b +>”是“()()0f a f b +>”的( ). A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】C 【解析】 【分析】先判断出函数为奇函数,且为R 的单调增函数,结合单调性与奇偶性利用充分条件与必要条件的定义判断即可. 【详解】因为()()()()xx x x f x x e e x e e f x ---=--=--=-,所以()f x 为奇函数,0x >时,()1x x f x x e e ⎛⎫=- ⎪⎝⎭,()f x 在()0,∞+上递增,所以函数()f x 在R 上为单调增函数, 对于任意实数a 和b ,若0a b +>,则()(),a b f a f b >-∴>-,Q 函数()f x 为奇函数,()()f a f b ∴>-,()()0f a f b ∴+>,充分性成立;若()()0f a f b +>,则()()()f a f b f b >-=-,Q 函数在R 上为单调增函数,a b ∴>-,0a b ∴+>,必要性成立,∴对于任意实数a 和b ,“0a b +>”,是“()()0f a f b +>”的充要条件,故选C.【点睛】本题主要考查函数的单调性与奇偶性以及充分条件与必要条件的定义,属于综合题. 判断充分条件与必要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理. 11.如图是函数()sin y x ωϕ=+0,02πωϕ⎛⎫><<⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图像,将该图像向右平移()0m m <个单位长度后,所得图像关于直线4x π=对称,则m 的最大值为( ).A. 12π-B. 6π-C. 4π-D. 3π-【答案】B 【解析】 【分析】由函数图像可得函数解析式为:sin 23y x π⎛⎫=+⎪⎝⎭,由三角函数图像的平移变换可得平移后的解析式为sin 223y x m π⎛⎫=-+ ⎪⎝⎭,再结合三角函数图像的对称性可得,26k m k Z ππ=-+∈,再求解即可. 【详解】解:由题意可知,25()66T ππππω==--=,所以2ω=, 根据五点作图法可得2()06πϕ⨯-+=,解得3πϕ=,所以sin 23y x π⎛⎫=+⎪⎝⎭,将该函数图像向右平移()0m m <个单位长度后, 得到sin 223y x m π⎛⎫=-+⎪⎝⎭的图像,又sin 223y x m π⎛⎫=-+ ⎪⎝⎭的图像关于直线4x π=对称,所以22432m k ππππ⨯-+=+,即,26k m k Z ππ=-+∈, 因为0m <,所以当0k =时,m 取最大值6π-, 故选B.【点睛】本题考查了由函数图像求解析式及三角函数图像的平移变换,重点考查了三角函数图像的对称性,属基础题. 12.若函数2()(1)(0)f x ln x ax a x=-+->恰有一个零点,则实数a 的值为( ) A.12B. 2C.1eD. e【答案】A 【解析】 【分析】先将函数零点转化为直线与曲线相切问题,再利用导数求切点即得切线斜率,即得a 的值. 【详解】函数的定义域为()1,+∞,若函数()()21(0)f x ln x ax a x =-+->恰有一个零点, 等价为()()210f x ln x ax x=-+-=恰有一个根,即()21ln x ax x-+=只有一个根,即函数()21y ln x x=-+和y ax =的图象只有一个交点,即当0a >时,y ax =是函数()21y ln x x=-+的切线,设()()21g x ln x x =-+,切点为(),m n ,则()21ln m n m-+=,因为()222122201x 1x x g x x x x -+=-=>--',切线斜率()212'1k g m a m m ==-=-, 则切线方程为()2121y n x m m m ⎛⎫-=--⎪-⎝⎭,Q 切线过原点()2122101m ln m m mm ⎛⎫∴--+-+= ⎪-⎝⎭, 即()4101mln m m m -+-=-, 因为()()()()()()()2222224111111m m m m mln m m m m m m m m --+--+-≤---=--- 所以2m =,此时21212111121422a m m =-=-=-=--, 故选A .【点睛】本题考查函数零点以及导数几何意义,考查综合分析求解能力,属中档题.第II 卷(非选择题共90分)二、填空题(本题共4小题,每小题5分,共20分)13.已知3sin()(0)25πααπ-=-<<,则sin 2α=__________. 【答案】2425- 【解析】 【分析】由题意求出sin α和cos α,然后再利用倍角公式求解.【详解】∵3sin cos (0)25παααπ⎛⎫-==-<< ⎪⎝⎭, ∴2415sin cos αα=-=, ∴342422sin cos 2()5525sin ααα==⨯-⨯=-. 故答案为2425-. 【点睛】本题考查同角三角函数关系及倍角公式,解题时容易出现的错误是忽视函数值的符号,属于简单题.14.将函数()sin cos (,R,0)f x a x b x a b a =+∈≠的图象向左平移6π个单位长度,得到一个偶函数图象,则ba=________.【解析】 【分析】根据平移后关于y 轴对称可知()f x 关于6x π=对称,进而利用特殊值()03f f π⎛⎫=⎪⎝⎭构造方程,从而求得结果. 【详解】()f x Q 向左平移6π个单位长度后得到偶函数图象,即关于y 轴对称 ()f x ∴关于6x π=对称 ()03f f π⎛⎫∴=⎪⎝⎭即:1sincos332a b b b ππ+=+= b a ∴=【点睛】本题考查根据三角函数的对称轴求解参数值的问题,关键是能够通过平移后的对称轴得到原函数的对称轴,进而利用特殊值的方式来进行求解. 15.设定义域为R 的函数()f x 满足()()f x f x '>,则不等式()()121x e f x f x -<-的解集为__________. 【答案】(1,)+∞ 【解析】 【分析】根据条件构造函数F (x )()xf x e=,求函数的导数,利用函数的单调性即可得到结论.【详解】设F (x )()xf x e =,则F ′(x )()()'xf x f x e -=,∵()()f x f x '>,∴F ′(x )>0,即函数F (x )在定义域上单调递增. ∵()()121x ef x f x -<-∴()()2121xx f x f x ee--<,即F (x )<F (2x 1-)∴x 2x 1-<,即x >1 ∴不等式()()121x ef x f x -<-的解为()1,+∞故答案为()1,+∞【点睛】本题主要考查函数单调性的判断和应用,根据条件构造函数是解决本题的关键. 16.设ABC ∆的内角A B C ,,的对边长a b c ,,成等比数列,()1cos cos 2A CB --=,延长BC 至D ,若2BD =,则ACD ∆面积的最大值为__________.【解析】 【分析】由()1cos cos 2A C B --=,可得1cos cos 4A C =,由,,a b c 成等比数列,结合正弦定理 可得2sin sin sinB AC =,两式相减,可求得3B π=,从而得ABC ∆为正三角形,设正三角形边长为a ,ACD S ∆ ()2a =-,利用基本不等式可得结果. 【详解】()cos cos A C B --Q ()()1cos cos 2A C A C =-++=, 1cos cos 4A C ∴=,① 又,,a b c Q 成等比数列,2b ac ∴=, 由正弦定理可得2sin sin sin B A C =,②①-②得21sin cos cos sin sin 4B AC A C -=- ()cos cos A C B =+=-,21cos 1cos 4B B ∴+-=-,解得1cos ,23B B π==, 由()1cos cos 2A C B --=,得()1cos cos 12A C B -=+=,0,A C A B -==,ABC ∆为正三角形,设正三角形边长为a , 则2CD a =-,1sin1202ACD S AC CD o ∆=⋅()()1222a a a =-=- ()22444a a ⎡⎤+-⎣⎦≤=,1a =时等号成立.即ACD ∆【点睛】本题主要考查对比中项的应用、正弦定理的应用以及基本不等式求最值,属于难题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).三.解答题(共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.将函数()sin2f x x =的图象向左平移6π个单位后得到函数()g x 的图像,设函数()()()h x f x g x =-.(Ⅰ)求函数()h x 的单调递增区间; (Ⅱ)若163g πα⎛⎫+= ⎪⎝⎭,求()h α的值. 【答案】(Ⅰ) ()5 1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,(Ⅱ) 13-【解析】 【分析】(Ⅰ)由已知可得()sin 23g x x π⎛⎫=+⎪⎝⎭,则()sin2sin 2sin 233h x x x x ππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭,由 222232k x k πππππ-+≤-≤+,解不等式即可得结果;(Ⅱ)由163g πα⎛⎫+= ⎪⎝⎭得21sin 2sin 26333πππαα⎡⎤⎛⎫⎛⎫++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,从而可得()21 sin 22333h sin ππααα⎛⎫⎛⎫=-=-+=- ⎪ ⎪⎝⎭⎝⎭. 【详解】(Ⅰ)由已知可得()sin 23g x x π⎛⎫=+⎪⎝⎭, 则()sin2sin 23h x x x π⎛⎫=-+⎪⎝⎭122sin 2223sin x cos x x π⎛⎫=-=- ⎪⎝⎭. 令222232k x k k Z πππππ-+≤-≤+∈,,解得51212k x k k Z ππππ-+≤≤+∈,. ∴函数()h x 的单调递增区间为()51212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,.(Ⅱ)由163g πα⎛⎫+= ⎪⎝⎭得21sin 2sin 26333πππαα⎡⎤⎛⎫⎛⎫++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴221sin 2223333sin sin πππααπα⎛⎫⎛⎫⎛⎫-=+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()13h α=-. 【点睛】本题主要考查三角函数的恒等变换以及三角函数的单调性,属于中档题.函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间.18.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且5b =,()a b +()sin 2sin A b A C =+.(1)证明:ABC V 为等腰三角形.(2)设点D 在AB 边上,2AD BD =,CD =AB 的长. 【答案】(1)证明见解析 (2)6 【解析】 【分析】 (1)由正弦定理sin sin a b A B=,化角为边可得()22a a b b +=,再运算可得证; (2)设BD x =22=.【详解】(1)证明:因为()()sin 2sin 2sin a b A b A C b B +=+=,所以由正弦定理sin sin a b A B=,可得()22a a b b +=,整理可得()()20a b a b +-=. 因为20a b +>,所以a b =,ABC V 为等腰三角形,得证. (2)解:设BD x =,则2AD x =,由余弦定理可得2cosCDA ∠=2cos CDB ∠=.因为CDA CDB π∠=-∠,22=2x =,所以6AB =.【点睛】本题考查了正弦定理及余弦定理,重点考查了解斜三角形及运算能力,属中档题. 19.已知函数2()f x x xlnx =-.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若2()2x f x k ->在(1,)+∞上恒成立,求实数k 的取值范围.【答案】(1)0x y -=;(2)1(,]2-∞. 【解析】【分析】(1)对()f x 求导得到()f x ',代入切点横坐标1x =得到斜率,再写出切线方程;(2)令()()2222x x g x f x xlnx =-=-,证明其导函数在()1,+∞上恒为正,即()g x 在()1,+∞上恒增,而k 要满足()k g x <在()1,+∞上恒成立,从而得到k 的取值范围【详解】(1)()2f x x xlnx =-Q ,()'21f x x lnx ∴=--,'f (1)1=,又f (1)1=,即切线的斜率1k =,切点为()1,1, ∴曲线()y f x =在点()()1,1f 处的切线方程0x y -=;(2)令()()2222x x g x f x xlnx =-=-,()1,x ∈+∞,则()'1g x x lnx =--,令()1h x x lnx =--,则()11'1x h x x x-=-=. 当()1,x ∈+∞时,()'0h x >,函数()h x 在()1,+∞上为增函数,故()h x h >(1)0=; 从而,当()1,x ∈+∞时,()''g x g >(1)0=. 即函数()g x 在()1,+∞上为增函数,故()g x g >(1)12=. 因此,()22x f x k ->在()1,+∞上恒成立,必须满足12k ….∴实数k 的取值范围为(-∞,1]2.【点睛】本题考查利用导数求函数在某一点的切线,利用导数研究函数的单调性,恒成立问题,属于常规题. 20.已知()ln 1mf x n x x =++(m ,n 为常数),在1x =处的切线方程为20x y +-=. (Ⅰ)求f (x)的解析式并写出定义域; (Ⅱ)若1,1x e⎡⎤∀∈⎢⎥⎣⎦,使得对1,22t ⎡⎤∀∈⎢⎥⎣⎦上恒有32)22f x t t at ≥--+(成立,求实数a 的取值范围;(Ⅲ)若2()()()1g x f x ax a R x =--∈+有两个不同的零点12,x x ,求证:212x x e ⋅>.【答案】(Ⅰ)21()ln 12f x x x =-+,x∈(0,+∞);(Ⅱ)5[,)4+∞;(Ⅲ)详见解析. 【解析】 【分析】(Ⅰ)利用导数的几何意义意义求得m ,n 的值,根据对数函数的定义得到函数定义域; (Ⅱ)f (x )在[1e ,1]上的最小值为f (1)=1,只需t 3﹣t 2﹣2at +2≤1,即212a t t t≥-+对任意的122t ⎡⎤∈⎢⎥⎣⎦,上恒成立,构造函数m (t ),利用导数求出m (t )的最大值,即可求得结论;(Ⅲ)不妨设x 1>x 2>0,得到g (x 1)=g (x 2)=0,根据相加和相减得到12112122x x x lnx lnx ln x x x ++=-,再利用分析法,构造函数,求出函数单调性和函数的最小值,问题得以证明.【详解】解:(Ⅰ)由f (x )=1m x ++nlnx 可得()()21m n f x x x +'=-+, 由条件可得()114mf n =-+=-',把x=-1代入x+y =2可得,y =1, ∴()112m f ==,∴m=2,12n =-,∴()21ln 12f x x x =-+,x∈(0,+∞), (Ⅱ)由(Ⅰ)知f (x )在1,1e ⎡⎤⎢⎥⎣⎦上单调递减,∴f (x )在1,1e ⎡⎤⎢⎥⎣⎦上的最小值为f (1)=1,故只需t 3-t 2-2at +2≤1,即212a t t t ≥-+对任意的1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立,令()21m t t t t =-+,()()2221112t 122112t m t t t t t t +⎛⎫=--=-+-=-+ ⎝'⎪⎭易求得m (t )在1,12⎡⎤⎢⎥⎣⎦单调递减,[1,2]上单调递增,而1724m ⎛⎫=⎪⎝⎭,()522m =,∴2a≥m (t )max=g (2),∴54a ≥,即a 的取值范围为5,4⎡⎫+∞⎪⎢⎣⎭(Ⅲ)∵()1ln 2g x x ax =--,不妨设x 1>x 2>0, ∴g (x 1)=g (x 2)=0,∴111ln 2x ax -=,221ln 2x ax -=,相加可得()()12121ln ln 2x x a x x -+=+,相减可得()()12121ln ln 2x x a x x --=-, 由两式易得:12112122ln ln ln x x x x x x x x ++=-;要证212x x e >,即证明12ln ln 2x x +>,即证:121122ln 2x x x x x x +>-,需证明112212ln 2x x x x x x ->+成立,令12xt x =,则t >1,于是要证明()21ln 1t t t ->+,构造函数()()21ln 1t t t t ϕ-=-+,∴()()()()222114011t t t t t t ϕ-=-=+'>+,故ϕ(t )在(1,+∞)上是增函数, ∴ϕ(t )>ϕ(1)=0,∴()21ln 1t t t ->+,故原不等式成立.【点睛】本题考查了利用导数研究函数的单调性极值与最值,考查了恒成立问题的等价转化方法,考查了利用已经证明的结论证明不等式的方法,考查了推理能力与计算能力,属于中档题.21.已知函数()()11ln x f x ea x x -=--+ (a R ∈,e 是自然对数的底数).(1)设()g x =()f x ' (其中()f x '是()f x 的导数),求()g x 的极小值; (2)若对[)1,x ∈+∞,都有()1f x ≥成立,求实数a 的取值范围.【答案】(Ⅰ) 2a -(Ⅱ) (] 2-∞,【解析】 【分析】(Ⅰ)求出()g x ',分别令()'0g x >求得x 的范围,可得函数()g x 增区间,()'0g x <求得x 的范围,可得函数()g x 的减区间,结合单调性可求得函数的极值;(Ⅱ)由(Ⅰ)知,()f x '在()1+∞,上单调递增,在(0,1)上单调递减,()()12f x f a ''≥=-.讨论当2a ≤时,当2a >时两种情况,分别利用对数以及函数的单调性,求出函数最值,从而可筛选出符合题意的实数a 的取值范围.【详解】(Ⅰ)()()()110x g x f x ea x x -=+-'=>,()121x g x e x--'=.令()()()1210x x g x e x x ϕ-=-'=>,∴()1320x x e x ϕ-'=+>, ∴()g x '在()0+∞,上为增函数,()10g '=. ∵当()01x ∈,时,()0g x '<;当()1x ∈+∞,时,()0g x '>, ∴()g x 的单调递减区间为(0,1),单调递增区间为()1+∞,, ∴()()12g x g a ==-极小.(Ⅱ)由(Ⅰ)知,()f x '在()1+∞,上单调递增,在(0,1)上单调递减, ∴()()12f x f a ''≥=-.当2a ≤时,()0f x '≥,()f x 在[)1+∞,上单调递增,()()11f x f ≥=,满足条件; 当2a >时,()120f a ='-<. 又∵()ln 11ln 10ln 1ln 1af a ea a a +=-+=>++',∴()01ln 1x a ,∃∈+,使得()00f x '=,此时,()01x x ∈,,()0f x '<;()0ln 1x x a ∈+,,()0f x '>, ∴()f x 在()01x ,上单调递减,()01x x ∈,,都有()()11f x f <=,不符合题意. 综上所述,实数a 的取值范围为(]2-∞,. 【点睛】本题主要考查利用导数求函数的极值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.22.已知函数()221ln 2x f x x ax e e x=-++-(e为自然对数的底数). (1)当a e =时,求曲线()y f x =在点()(),e f e 处的切线方程; (2)证明:当a e ≤时,不等式32212ln x ax x e x e ⎛⎫-≥-+ ⎪⎝⎭成立. 【答案】(1)0y = (2)证明见解析【解析】 【分析】(1)先求函数的导函数为()'21ln 22xfx x e x-=--,再由导数的几何意义可得,所求切线的斜率即为()0f e '=,再求切线方程即可; (2)先构造函数()2212g x x ex e e =-++,()()ln 0x h x x x=>,结合导数的应用判断函数的单调性求出函数()g x 的最小值,函数()h x 的最大值,再比较大小即可得证. 【详解】(1)解:由题意知,当a e =时,()221ln 2xf x x ex e e x=-++-,解得()0f e =, 又()'21ln 22xfx x e x -=--, 所以()0k f e '==.则曲线()y f x =在点()(),e f e 处的切线方程为0y =. (2)证明:当a e ≤时,得2222ax ex -≥-, 要证明不等式32212ln x ax x e x e ⎛⎫-≥-+ ⎪⎝⎭成立,即证32212ln x ex x e x e ⎛⎫-≥-+ ⎪⎝⎭成立,即证22ln 12x x ex e x e ⎛⎫-≥-+ ⎪⎝⎭成立, 即证221ln 2xx ex e e x-++≥成立, 令()2212g x x ex e e =-++,()()ln 0x h x x x =>,易知()()1g x g e e≥=,由()21ln xh x x-'=,知()h x 在区间()0,e 内单调递增, 在区间()0,∞+内单调递减, 则()()1h x h e e≤=, 所以()()g x h x ≥成立.即原不等式成立.【点睛】本题考查了导数的几何意义及利用导数证明不等式,重点考查了函数与不等式的相互转化,属综合性较强的题型.。

2020届河北省衡水中学高三上学期期中考试数学(文)

2020届河北省衡水中学高三上学期期中考试数学(文)

2020届河北省衡水中学高三上学期期中考试数学试卷(文科)★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

第I 卷(选择题 共60分)一、选择题(每小题5分,共60分。

下列每小题所给选项只有-项符合题意。

请将正确答案的序号填涂在答题卡上)1.下列函数中,既是偶函数又在(0,+∞)上单调递增的是A.y =ln|x|B.y =-x 2C.y =e xD.y =cosx2.等差数列{an }的前n 项和为S n ,已知a 1=-100,5S 7-7S 5=70,则S 101=A.100B.50C.0D.-503.已知曲线f(x)=xcosx +3x 在点(0,f(0))处的切线与直线ax +4y +1=0垂直,则实数a 的值为A.-4B.-1C.1D.44.在△ABC 中,D 是AB 边上一点,2AD DB =,且23CD AC CB λ=+,则λ的值为 A.14 B.-14 C.13 D.-135.己知双曲线离心率e =2,与椭圆221248x y +=有相同的焦点,则该双曲线渐近线方程是A.13y x =± B.y x = C.y = D.y =± 6.已知角α满足cos(α+6π)=13,则sin(2α-6π)=A.9-B.9C.79-D.796.已知函数f(x)=Asin(ωx +φ)(A>0,ω>0,0<φ<2π)的部分图像如图所示,则3()4f π=A.2-B.12- C.-1 D.2 8.已知各项不为0的等差数列{a n }满足a 5-2a 72+2a 8=0,数列{b n }是等比数列且b 7=a 7,则b 2b 12等于 A.49 B.32 C.94 D.239.已知点P 为双曲线22221(0,0)x y a b a b-=>>右支上一点,点F 1,F 2分别为双曲线的左右焦点,点l 是△PF 1F 2的内心(三角形内切圆的圆心),若恒有12122lPF lPF lF F S S S ∆∆∆-≥,则双曲线的离心率取值范围是A.(1)B.(1,)C.(1, ]D.(1]10.函数f(x)=sin(2x +3π)向右平移φ(0<φ<π)个单位后得到g(x),若g(x)在(-6π,6π)上单调递增,则φ的取值范围是A.[0,4π] B.[0,23π] C.[4π,23π] D.[12π,4π]11.己知函数f(x)=(x2-2x)e x-1,若当x>1时,f(x)-mx+1+m≤0有解,则m的取值范围为A.m≤1B.m<-1C.m>-1D.m≥112.在平面直角坐标系xOy中,圆C1:x2+y2=4,圆C2:x2+y2=6,点M(1,0),动点A,B 分别在圆C1和圆C2上,且AM⊥MB,N为线段AB的中点,则MN的最小值为A.1B.2C.3D.4第II卷(共90分)二、填空题:(本大题共4小题,每题5分,共20分)13.己知向量a=,-1),b=(b,1),则a在b方向上的投影为。

河北省衡水中学2020届高三数学上学期七调考试试卷 文(含解析)

河北省衡水中学2020届高三数学上学期七调考试试卷 文(含解析)

2020学年度第一学期七调考试高三年级数学试卷(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B. C. D.【答案】B【解析】A={x|y=log2(2﹣x)}={x|x<2},B={x|x2﹣3x+2<0}={x|1<x<2},则∁A B={x|x≤1},故选:B.2.已知复数z满足,则A. B. 1 C. D. 5【答案】C【解析】试题分析:由题意,.考点:复数的运算.【此处有视频,请去附件查看】3.已知,,,(为自然对数的底数),则()A. B. C. D.【答案】B【解析】【分析】分别计算出和的大小关系,然后比较出结果【详解】,,,则故选【点睛】本题考查了比较指数、对数值的大小关系,在解答过程中可以比较和的大小关系,然后求出结果。

4.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2020年9月到2020年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是()A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化B. 这半年中,网民对该关键词相关的信息关注度不断减弱C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值【答案】D【解析】选项A错,并无周期变化,选项B错,并不是不断减弱,中间有增强。

C选项错,10月的波动大小11月分,所以方差要大。

D选项对,由图可知,12月起到1月份有下降的趋势,所以会比1月份。

选D.5.在等差数列中,,则()A. 4B. 5C. 6D. 7【答案】C【解析】【分析】利用a1+a9 =a2+a8,将与作和可直接得.【详解】在等差数列{a n}中,由与作和得:=()+-()∴a1+a9 =a2+a8,∴==6.∴a5=6.故选:C.【点睛】本题考查等差数列的性质,是基础的计算题.6.设是边长为2的正三角形,是的中点,是的中点,则的值为()A. 3B.C. 4D.【答案】A【解析】【分析】用表示,在利用向量数量积的运算,求得的值.【详解】,故选A.【点睛】本小题主要考查平面向量的线性运算,考查平面向量数量积的计算,还考查了等边三角形的几何性质,属于基础题.7.已知抛物线的焦点为,点为上一动点,,,且的最小值为,则等于()A. B. 5 C. D. 4【答案】C【解析】分析:先设,再根据的最小值为求出p的值,再求|BF|的长得解.详解:设,则因为,所以或(舍去).所以故答案为:C点睛:(1)本题主要考查抛物线的基础知识.(2)解答本题的关键是转化的最小值为,主要是利用函数的思想解答.处理最值常用函数的方法,先求出函数|PA|的表达式再求函数在的最小值.8.已知,则的值为A. B. C. D.【答案】B【解析】故选B9..一个空间几何体的三视图如图所示,俯视图为正三角形,则它的外接球的表面积为( )A. B. C. D.【答案】B【解析】分析:由三视图可知还几何体是以ABCD为底面的四棱锥,由此可求其外接球的半径,进而得到它的外接球的表面积.详解:由三视图可知还几何体是以为底面的四棱锥,过作,垂足为,易证面,设其外接球半径为,底面ABCD是正方形外接圆,.设圆心与球心的距离为,则由此可得,故其外接球的表面积故选B.点睛:本题考查球的表面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.10.已知直三棱柱的底面为等边三角形,且底面积为,体积为,点,分别为线段,上的动点,若直线平面,点为线段的中点,则点的轨迹长度为()A. B. C. D.【答案】D【解析】【分析】由图像可知点M的轨迹为线段,两个端点分别为和的中点,即为等边三角形的高线,由底面积求出等边三角形边长,进而求出三角形的高线,即M的轨迹.【详解】由题意可作如下图像:因为直线PQ与平面无交点所以与此平面平行,所以,当点P、点Q分别在点、C处时,此时中点M为中点,当点P、点Q分别在点、处时,此时中点M为中点,若D、E、F分别为三条棱的中点,则点M的轨迹为等边三角形的中线,设底面边长为x,由底面面积可得:,解得,所以轨迹长度为.故选D.【点睛】本题考查立体几何中,动点的轨迹问题,由题意找出图形中两个临界点,由题意两点之间的线段即为所求,注意计算的准确性.11.在斜中,设角,,的对边分别为,,,已知,若是角的角平分线,且,则()A. B. C. D.【答案】B【解析】【分析】由已知,可得结合余弦定理可得又是角的角平分线,且,结合三角形角平分线定理可得,再结合余弦定理可得的值,则可求.【详解】由已知,根据正弦定理可得又由余弦定理可得故即结合三角形角平分线定理可得,再结合余弦定理可得,,由,可得故故选B.【点睛】本题考查正弦定理,余弦定理及三角形角平分线定理,属中档题.12.(原创,中等)已知函数,若且满足,则的取值范围是( )A. B. C. D.【答案】A【解析】【分析】由,得,结合分段函数的范围可得,又,构造函数,求函数导数,利用单调性求函数值域即可.【详解】由,得.因为,所以,得.又令.令 .当时,,在上递减故选A.【点睛】函数的零点或方程的根的问题,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值域取值范围问题;研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现。

2020年衡水中学高三一调数学试卷(文科)(可编辑修改word版)

2020年衡水中学高三一调数学试卷(文科)(可编辑修改word版)

0 0试卷类型:B2019-2020 学年普通高等学校招生全国统一考试高三一调考试文科数学考试时间 120 分钟,试卷总分 150 分.命题人:集备组审核人:教研组请将答案填写(涂)在答题卡上。

在本卷上作答无效!一、选择题1. 给出下列命题:(1) 存在实数使sin + cos= 5. 3(2) 直线 x =2019是函数 y = cos x 图象的一条对称轴.2(3) y = cos(sin x )( x ∈ R ) 的值域是[cos1,1] .(4) 若,都是第一象限角,且sin> sin ,则tan> tan .其中正确命题的题号为( )A .(1)(2)B .(2)(3)C .(3)(4)D .(1)(4)2. 已知四个命题:①如果向量a 与b 共线,则a = b 或a= -b ;② x ≤ 3 是 x ≤ 3 的必要不充分条件;③ 命 题 p : ∃x 0 ∈(0, 2) , x 2- 2x - 3 < 0 的 否 定 ⌝p : ∀x ∈(0, 2) ,x 2 - 2x - 3 ≥ 0 ;2 0 ⎛ 1 ⎫x ④“指数函数 y = a x 是增函数,而 y = ⎪ ⎝ 2 ⎭ ⎛1 ⎫x是指数函数,所以 y = ⎪ ⎝ ⎭是增函数”此三段论大前提错误,但推理形式是正确的. 以上命题正确的个数为( ) A .0B .1C .2D .33. i 是虚数单位,复数5 - 2i= ( )2 + 5iA. -iB. iC .- 21 - 20i D .- 4+ 10 i 29 2921 214. 已知直线m 、n 与平面、,下列命题正确的是( )A . m ⊥,n / /且⊥ ,则m ⊥ n B . m ⊥,n ⊥ 且⊥ ,则m ⊥ nC .⋂= m , n ⊥ m 且⊥ ,则n ⊥D . m / /,n / /且/ /,则m / /n5.已知 f ( x ) = 2018x 2017 + 2017x 2016 + + 2x +1,下列程序框图设计的是求 f ( x ) 的值,在“ ”中应填的执行语句是()A . n = 2018 - iB . n = 2017 - iC . n = 2018 + iD . n = 2017 + i6. 如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视= OC OA OB), {-1} (-B . 图,则该多面体的表面积为()A .7 + 3B .7 + 2 11C . 2 + 3 11D . 2 + 27. 已知平面内的两个单位向量,,它们的夹角是60°,与 、向 OA OB OC OA OB量的夹角都为 30°,且 | OC | 2,若 = +,则+ 值为( )A. 2B. 4 C .2 D .48.函数f(x) =cosπx 的图象大致是( )x 2A .B .C .D .9.已知函数 f (x ) = 2 sin(x +)(0 < < 6, <的图象经过点 2π ( , 2) 和6 ( 2-2) .若函数 g (x ) = 3围是( )f (x ) - m 在区间[- 2 上有唯一零点,则实数m 的取值范A .(-1,1] 1 , 1 ]2 255553 33, 0]2C .(- 1,1] 2D .{-2} (-1,1]10. 设函数 f (x ) = x + e |x | e |x |的最大值为 M ,最小值为 N ,则下列结论中:①M - N = 2 ,② M + N = 4 ,③ MN = 1- 1,④ M = e +1 ,其中一定成立的有e e 2 ( )N e -1A .0 个B .1 个C .2 个D .3 个11. 已知椭圆C :x + y 24 3= 1 的右焦点为 F ,过点 F 的两条互相垂直的直线l 1 ,l 2 , l 1 与椭圆C 相交于点 A , B , l 2 与椭圆C 相交于点C , D ,则下列叙述不正确的是( )A. 存在直线l 1 , l 2 使得 AB + CD 值为 7B. 存在直线l 1 , l 使得 AB + CD 值为 482 7C. 弦长 AB 存在最大值,且最大值为 4D. 弦长 AB 不存在最小值12.已知函数y = f (x )的定义域为(0, + ∞),当x > 1时,f (x ) > 0,对任意的 x ,y ∈ (0, + ∞),f (x ) + f (y ) = f (x ⋅ y )成立,若数列{a n }满足a 1 = f (1),且f (a n + 1 ) = f (2a n + 1)(n ∈ N ∗ ),则a 2017的值为( )A .22014−1B .22015−1C .22016−1D .22017−1二、填空题13.+的化简结果是 .14. 若曲线C 与直线l 满足:① l 与C 在某点 P 处相切;②曲线C 在 P 附近位于直线l 的异侧,则称曲线C 与直线l “切过”.下列曲线和直线中,“切过”的有.(填写相应的编号)2① y =x 3 与 y = 0 ② y = (x + 2)2 与 x = -2 ③ y = e x 与 y = x + 1④ y = sin x 与y = x ⑤ y = tan x 与y = x15. 已知函数 f (x ) = sin x - x + 3 ,则不等式 f (x +1) + f (2x - 7) > 6 的解集为.x 2 16.已知直线l 与椭圆 + ay 2 b 2= 1(a > 0,b > 0)相切于第一象限的点P (x 0,y 0),且直线l与x 轴、y 轴分别交于点A 、B ,当△ AOB (O 为坐标原点)的面积最小时,∠F 1PF 2 =60°(F 、F 是椭圆的两个焦点),若此时在 △ PF F 中,∠F PF 的平分线的长度为 121 212a ,则实数m 的值是.三、解答题17. 在 △ ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c ,R 表示△ ABC 的外接圆半径.(Ⅰ)如图,在以 O 圆心、半径为 2 的⊙ O 中,BC 和 BA 是⊙ O 的弦,其中BC = 2,∠ABC =45°,求弦 AB 的长;(Ⅱ)在△ ABC 中,若∠C 是钝角,求证:a 2 + b 2 < 4R 2;(Ⅲ)给定三个正实数 a 、b 、R ,其中b ≤ a ,问:a 、b 、R 满足怎样的关系时,以 a 、b 为边长,R 为外接圆半径的△ ABC 不存在、存在一个或存在两个(全等的三角形算作同一个)?在△ ABC 存在的情况下,用 a 、b 、R 表示 c.18. 为利于分层教学,某学校根据学生的情况分成了 A ,B,C 三类,经过一段时间的学习后在三类学生中分别随机抽取了 1 个学生的 5 次考试成缎,其统计表如下:3mA 类∑ i =1(x i - x )= 10≈ 180 ;B 类∑ i =1(x i - x )= 10 ≈ 60 ;C 类∑ i =1(x i- x ) = 10 ≈ 63 ;(1) 经计算己知 A ,B 的相关系数分别为 r 1 = -0.45 , r 2 = 0.25 .,请计算出 C 学生的( x i , y i )(1 = 1,2,3,4,5) 的相关系数,并通过数据的分析回答抽到的哪类学生学习成绩最稳定;(结果保留两位有效数字, r 越大认为成绩越稳定)5 5 5∑ in( x -x ) 2i =1∑ n( y - y ii =1)2∑ in( x - x ) 2i =1∑n( y - y ii =1)2nny (2) 利用(1)中成绩最稳定的学生的样本数据,已知线性回归直线方程为 ˆy = 6.2x + a ˆ ,利用线性回归直线方程预测该生第十次的成绩.∑(x - x )( y - y )iir =i =1⋅y ˆ = b ˆx + a ˆ附相关系数, 线性回归直线方程,∑(x - x )( y - y )iibˆ =i =1⋅ , a ˆ = y - b ˆ x .19.(本题满分 12 分) 如图,ΔABC 的外接圆⊙ O 的半径为 5,CD ⊥⊙ O 所在的平 面,B E//CD ,CD = 4,BC = 2,且B E = 1,tan∠A E B = 2 5.(1) 求证:平面 ADC ⊥ 平面 BCDE .(2) 试问线段 DE 上是否存在点 M ,使得直线 AM 与平面 ACD 所成角的正弦值为27?若存在,确定点 M 的位置,若不存在,请说明理由.20. 如图,在平面直角坐标系 xOy 中,已知椭圆 C : x a 22+ = 1(a >b >0)的左、右b2顶点分别为 A 1(﹣2,0),A 2(2,0),右准线方程为 x =4.过点 A 1 的直线交椭圆 C 于 x 轴上方的点 P ,交椭圆 C 的右准线于点 D .直线 A 2D 与椭圆 C 的另一交点为 G ,直线 OG 与直线 A 1D 交于点 H .23 PA PB(1) 求椭圆 C 的标准方程;(2) 若 HG ⊥A 1D ,试求直线 A 1D 的方程;(3) 如果A 1H = A 1P ,试求的取值范围.21.设函数 f (x ) = x e x + a (1- e x )+1, a ∈ R .(I )求函数 f (x ) 的单调区间;(Ⅱ)若方程 f (x ) = 0 在(0, +∞) 上有解,证明: a >2 .考生注意:请从第 22、23 题中选择一题作答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年度高三年级上学期期中考试数学试卷(文科)一、选择题1.下列函数中,既是偶函数又在()0,+∞上单调递增的是( ) A. ln y x =B. 2y x =-C. x y e =D.cos y x =【答案】A 【解析】 【分析】根据偶函数的定义,可得A ,B ,D 是偶函数,再利用函数单调性的性质,即可得出结论. 【详解】根据偶函数的定义()()f x f x =-,可得A ,B ,D 是偶函数,B 在()0,+∞上单调递减,D 在()0,+∞上有增有减,A 在()0,+∞上单调递增, 故选A .【点睛】本题考查函数单调性的性质,考查函数的奇偶性,考查学生分析解决问题的能力,比较基础.2.等差数列{}n a 的前n 项和为n S ,已知175100,5770a S S =--=.则101S 等于( ) A. 100 B. 50C. 0D. 50-【答案】C 【解析】设等差数列{}n a 的公差为d ,又1100a =-,所以757654575(700)7(500)7022S S d d ⨯⨯-=-+--+=,解得2d =, 所以101101100101(100)202S ⨯=⨯-+⨯=,故选C. 3.已知曲线()cos 3f x x x x =+在点()()0,0f 处的切线与直线410ax y ++=垂直,则实数a 的值为( ) A. -4 B. -1C. 1D. 4【答案】C【分析】先求出()f x 在点()()0,0f 处的切线斜率,然后利用两直线垂直的条件可求出a 的值. 【详解】由题意,()cos sin 3f x x x x '=-+,()0cos034f '=+=,则曲线()f x 在点()()0,0f 处的切线斜率为4,由于切线与直线410ax y ++=垂直,则414a -⨯=-,解得1a =.故选C.【点睛】本题考查了导数的几何意义,考查了两直线垂直的性质,考查了计算能力,属于基础题.4.在ABC ∆中,D 是AB 边上一点,2AD DB =u u u r u u u r,且23CD AC CB λ=+u u u r u u u r u u u r ,则λ的值为( ) A. 14 B. 14- C. 13D. 13-【答案】D 【解析】 【分析】根据2AD DB =u u u r u u u r,用基向量,AC CB u u u r u u u r 表示CD uuu r,然后与题目条件对照,即可求出. 【详解】由在ABC ∆中,D 是AB 边上一点,2AD DB =u u u r u u u r,则1112()3333CD CB BD CB BA CB CA CB AC CB =+=+=+-=-+u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u uv u u u v ,即13λ=-,故选D .【点睛】本题主要考查了平面向量基本定理的应用及向量的线性运算.5.已知双曲线离心率2e =,与椭圆221248x y +=有相同的焦点,则该双曲线渐近线方程是()A. 13y x =±B. 3y x =±C. y =D.y =±【答案】C 【解析】先求出椭圆221248x y +=的焦点()4,0和()4,0-,所以双曲线方程可设为22221x y a b-=,所以其渐近线方程为by x a=±,由题意得双曲线的4c =,再根据其离心率2e =,求出a ,根据222c a b =+,得到b ,从而得到双曲线的渐近线方程,求出答案.【详解】因为椭圆221248x y +=,其焦点为()4,0和()4,0-,因为双曲线与椭圆有相同的焦点,所以设双曲线的方程为22221x y a b-=,则其渐近线方程为b y x a =±,且双曲线中4c = 因为双曲线的离心率2ce a==,所以2a =, 又因双曲线中222c a b =+所以22212b c a =-=,即b =所以双曲线的渐近线方程为y = 故选C 项.【点睛】本题考查根据双曲线的离心率和焦点求,,a b c ,双曲线的渐近线,属于简单题. 6.已知角α满足1cos()63πα+=,则sin(2)6πα-=( )A. B.C. 79-D.79【答案】D 【解析】 【分析】由已知利用诱导公式可求133sin πα⎛⎫-= ⎪⎝⎭,sin 2263cos ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再由二倍角公式化简,即可得结果. 【详解】162633cos sin sin ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦Q ,2sin 2cos 2cos 2262633cos πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦22171212()339sin πα⎛⎫=--=-⨯= ⎪⎝⎭.故选D .【点睛】本题主要考查了诱导公式,二倍角公式在三角函数化简求值中的应用,属于基础题.三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种系;(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.7.已知函数()sin()(0,0,0)2f x A wx A πϕωϕ=+>><<的部分图象如图所示,则3()4f π=( )A. 22-B. 12-C. 1-D.22【答案】C 【解析】 【分析】根据图像最低点求得A ,根据函数图像上两个特殊点求得,ωϕ的值,由此求得函数()f x 解析式,进而求得3π4f ⎛⎫⎪⎝⎭的值. 【详解】根据图像可知,函数图像最低点为7π,212⎛⎫-⎪⎝⎭,故2A =,所以()2sin()f x x ωϕ=+,将点(7π,,212⎛⎫- ⎪⎝⎭代入()f x解析式得2sin 7π2sin 212ϕωϕ⎧=⎪⎨⎛⎫+=-⎪ ⎪⎝⎭⎩,解得2π3ωϕ=⎧⎪⎨=⎪⎩,故()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,所以3π3ππ2sin 21443f ⎛⎫⎛⎫=⨯+=- ⎪ ⎪⎝⎭⎝⎭,故选C.【点睛】本小题主要考查根据三角函数图象求三角函数解析式,并求三角函数值,属于中档题.8.已知各项不为0的等差数列{}n a 满足2578220a a a -+=,数列{}n b 是等比数列且77b a =,则212b b 等于( )A.49B.32C.94D.23【答案】C 【解析】由题意可得:()()2225787777722222320a a a a d a a d a a -+=--++=-=,7730,2a a ≠∴=Q ,则:222127794b b b a ===. 本题选择C 选项.9.已知点P 为双曲线22221(0,0)x y a b a b-=>>右支上一点,点F 1,F 2分别为双曲线的左右焦点,点I 是△PF 1F 2的内心(三角形内切圆的圆心),若恒有1212IPF IPF IF F S S -≥V V V 成立,则双曲线的离心率取值范围是( ) A. (1) B. (1,) C. (1,] D. (1]【答案】D 【解析】 【分析】根据条件和三角形的面积公式,求得,a c 的关系式,从而得出离心率的取值范围,得到答案. 【详解】设12PF F ∆的内切圆的半径为r,则12121212111,,222IPF IPF IF F S PF r S PF r S F F r ∆∆∆=⋅=⋅=⋅,因为12122IPF IPF IF F S S S ∆∆∆-≥,所以1212PF PF F -≥, 由双曲线的定义可知12122,2PF PF a F F c -==, 所以2a ≥,即c a ≤,又由1ce a=>,所以双曲线的离心率的取值范围是, 故选D .【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程,即可得e 的值(范围). 10.函数()sin 23f x x π⎛⎫=+⎪⎝⎭向右平移()0ϕϕπ≤≤个单位后得到函数()g x ,若()g x 在,66ππ⎛⎫- ⎪⎝⎭上单调递增,则ϕ的取值范围是() A. 0,4⎡⎤⎢⎥⎣⎦πB. 20,3π⎡⎤⎢⎥⎣⎦C. 2,43ππ⎡⎤⎢⎥⎣⎦D.,124ππ⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】首先求函数()g x ,再求函数的单调递增区间,区间,66ππ⎛⎫- ⎪⎝⎭是函数单调递增区间的子集,建立不等关系求ϕ的取值范围. 【详解】()()sin 23g x x πϕ⎡⎤=-+⎢⎥⎣⎦,令2222232k x k ππππϕπ-+≤-+≤+解得51212k x k ππϕπϕπ-++≤≤++ ,k Z ∈ 若()g x ,66ππ⎛⎫- ⎪⎝⎭上单调递增, 126{5126k k ππϕπππϕπ++≥-++≤- ,解得:124k k πππϕπ-≤≤- ()0,ϕπ∈Q0k ∴=时,124ππϕ≤≤.故选D.【点睛】本题考查了三角函数的性质和平移变换,属于中档题型.11.已知函数21()(2)e x f x x x -=-,若当1x > 时,()10f x mx m -++≤有解,则m 的取值范围为( ) A. 1m £ B. 1m <- C. 1m >- D. m 1≥【答案】C 【解析】 【分析】求得函数的导数21()(2)ex f x x -'=-,得到函数()f x 的单调性,以及()()1,2f f f 的取值,再由导数的几何意义,即可求解. 【详解】由题意,函数21()(2)ex f x x x -=-,则导数21()(2)ex f x x -'=-,所以函数()f x在上递减,在)+∞上递增,当2x >时,()0f x >,又由(1)1f =-,1f <-,(2)0f =,当1x > 时,()10f x mx m -++≤有解,即函数()y f x =和(1)1y m x =--的图象有交点,如图所示,又因为在点(1,(1))f 的切线的斜率为(1)1f '=-,所以1m >-.【点睛】本题主要考查导数在函数中的综合应用,以及方程的有解问题,着重考查了转化与化归思想、数形结合思想和推理、运算能力,对于方程的有解问题,通常转化为两个函数图象的交点个数,结合图象求解.12.在平面直角坐标系xOy 中,圆1C :224x y +=,圆2C :226x y +=,点(1,0)M ,动点A ,B 分别在圆1C 和圆2C 上,且MA MB ⊥,N 为线段AB 的中点,则MN 的最小值为 A. 1 B. 2 C. 3 D. 4【答案】A 【解析】 【分析】由MA MB ⊥得0MA MB ⋅=u u u r u u u r,根据向量的运算和两点间的距离公式,求得点N 的轨迹方程,再利用点与圆的位置关系,即可求解MN 的最小值,得到答案. 【详解】设11(,)A x y ,22(,)B x y ,00(,)N x y , 由MA MB ⊥得0MA MB ⋅=u u u r u u u r,即1212121x x y y x x +=+-,由题意可知,MN 为Rt △AMB 斜边上的中线,所以12MN AB =,则2222222121211221122()()22AB x x y y x x x x y y y y =-+-=-++-+222211221212120()()2()102(1)124x y x y x x y y x x x =+++-+=-+-=-又由12MN AB =,则224AB MN =,可得220001244[(1)]x x y -=-+,化简得220019()24x y -+=, ∴点00(,)N x y 的轨迹是以1(,0)2为圆心、半径等于32的圆C 3, ∵M 在圆C 3内,∴ MN 的最小值即是半径减去M 到圆心1(,0)2的距离,即min 31122MN r d =-=-=,故选A . 【点睛】本题主要考查了圆的方程及性质的应用,以及点圆的最值问题,其中解答中根据圆的性质,求得N 点的轨迹方程,再利用点与圆的位置关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题.二、填空题13.已知向量1)a =-r,b =r ,则a r 在b r方向上的投影为___________. 【答案】1 【解析】 【分析】根据||||cos a b a b a ⋅=<r r r r r ,b >r ,得a r 在b r 上的投影为||cos a a <r r ,||a b b b ⋅>=r r r r ,求出a b ⋅r r ,代入投影的公式计算即可.【详解】Q 向量a =r,1)-,b =r ,1),∴312a b ⋅=-=r r ,||2b =r , ∴a r 在b r方向上的投影为||cos a a <r r ,212||a b b b ⋅>===r r r r .故答案为:1.【点睛】本题考查平面向量数量积的坐标运算及几何意义,属于基础题.14.若函数321()(3)3x f x e x kx kx =--+只有一个极值点,则k 的取值范围为___________.【答案】[0,]e 【解析】 【分析】利用函数求导函数2()(2)2(2)()xxf x e x kx kx x e kx '=--+=--,只有一个极值点时()0f x '=只有一个实数解有0x e kx -≥,设新函数设()x u x e =,()h x kx =,等价转化数形结合法即可得出结论,【详解】函数321()(3)3x f x e x kx kx =--+只有一个极值点,2()(2)2(2)()x x f x e x kx kx x e kx '=--+=--,若函数321()(3)3x f x e x kx kx =--+只有一个极值点,()0f x '=只有一个实数解,则:0x e kx -≥, 从而得到:x e kx ≥, 当0k = 时,成立.当0k ≠时,设()xu x e =,()h x kx =,当两函数相切时,k e =,此时得到k 的最大值,但k 0<时不成立. 故k 的取值范围为:(0,]e 综上:k 的取值范围为:[0,]e . 故答案为:[0,]e .【点睛】本题考查利用导数研究函数的极值点、不等式问题的等价转化方法,考查数形结合思想、函数与方程思想、分类讨论思想的综合运用,考查逻辑推理能力和运算求解能力,属于中档题.15.已知抛物线E :212y x =的焦点为F ,准线为l ,过F 的直线m 与E 交于A ,B 两点,过A 作AM l ⊥,垂足为M ,AM 的中点为N ,若AM FN ⊥,则AB =___________. 【答案】16 【解析】 【分析】由题意画出图形,得到直线AB 的斜率,进一步求得直线AB 的方程,与抛物线方程联立求解即可得答案.【详解】AF AM =Q ,N 为AM 的中点,且FN AM ⊥,30AFN ∴∠=︒,则直线AB 的倾斜角为60︒,斜率为3.由抛物线212y x =,得(3,0)F ,则直线AB 的方程为3(3)y x =-.联立23(3)12y x y x⎧=-⎪⎨=⎪⎩,得21090x x -+=.则10A B x x +=, ||16A B AB x x p ∴=++=.故答案为:16.【点睛】本题考查抛物线的简单性质、直线与抛物线位置关系及抛物线过焦点弦公式的应用,属于中档题.16.数列{}n a 为1,1,2,1,1,2,3,1,1,2,1,1,2,3,4,…,首先给出11a =,接着复制该项后,再添加其后继数2,于是21a =,32a =,然后再复制前面所有的项1,1,2,再添加2的后继数3,于是41a =,51a =,62a =,73a =,接下来再复制前面所有的项1,1,2,1,1,2,3,再添加4,…,如此继续,则2019a =______. 【答案】1 【解析】 【分析】根据数列构造方法可知:21n a n -=,即()21121n nk k a a k -+=≤<-;根据变化规律可得20192a a =,从而得到结果.【详解】由数列{}n a 的构造方法可知11a =,32a =,73a =,154a =,可得:21n a n -= 即:()21121n nk k a a k -+=≤<-201999648523010340921a a a a a a a a ∴========本题正确结果:1【点睛】本题考查根据数列的构造规律求解数列中的项,关键是能够根据构造特点得到数列各项之间的关系,考查学生的归纳总结能力.三、解答题17.已知ABC ∆的面积为32,且1AB AC ⋅=-u u u r u u u r 且AB AC >. (1)求角A 的大小;(2)设M 为BC 的中点,且32AM =,BAC ∠的平分线交BC 于N ,求线段AN 的长度. 【答案】(1)23π;(2)23. 【解析】 【分析】(1)根据已知条件求出角的正切值,再结合角的范围即可求解;(2)先根据条件求出b ,c ,a ;再借助于面积之间的关系求出CN ,BN 之间的比例关系,结合题中条件即可求解.【详解】(1)1AB AC ⋅=-u u u r u u u r||||cos cos 1AB AC A bc A ⇒⋅⋅==-u u u r u u u r ,又13sin 2ABC S bc A ∆==,即sin 3bc A =, ∴sin sin tan 3cos cos bc A A A bc A A===-,又(0,)A π∈,∴23A π=. (2)如下图所示:在ABC ∆中,AM 为中线,∴2AM AB AC =+uuu r uu u r uuu r,∴2222224||()||2||AM AB AC AB AB AC AC c b =+=+⋅+=+u u u u r u u u r u u u r u u u r u u u r u u u r u u u r∴225b c +=.由(1)知:sin bc A =2bc ⇒=,又c b >, ∴2c =,1b =,由余弦定理可得:2222cos 527a b c bc A =+-=+=⇒a =11sin sin 22ANC S AN b CAN AN CAN =⋅∠=⨯∠, 1csin sin 2BANS AN BAN AN BAN =⨯∠=⨯∠, 又CAN BAN ∠=∠,∴12BAN ANC S CN S BN ==,又CN BN a +==,∴3CN =, 在ACN ∆中,有:2222cos AN b CN b CN ACB =+-⨯⨯∠712193=+-⨯⨯7441939=+-=, 所以23AN =. 【点睛】本题考查向量的数量积的应用、正余弦定理的应用,考查函数与方程思想、数形结合思想,考查运算求解能力,属于中档题.18.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,且11a =,11b =,224a b +=.(1)若337a b +=,求{}n b 的通项公式; (2)若313T =,求5S【答案】(1)12n n b -=;(2)5或75.【解析】 【分析】(1)设等差数列{}n a 公差为d ,等比数列{}n b 公比为()0q q ≠,由已知条件求出q ,再写出通项公式;(2)由1313T =,求出q 的值,再求出d 的值,求出5S .【详解】设等差数列{}n a 公差为d ,等比数列{}n b 公比为()0q q ≠有()14d q ++=,即3d q +=.(1)∵()2127d q ++=,结合3d q +=得2q =,∴12n n b -=.(2)∵23113T q q =++=,解得4q =-或3,当4q =-时,7d =,此时55457752S ⨯=+⨯=; 当3q =时,0d =,此时5155S a ==.【点睛】本题主要考查等差数列与等比数列的通项公式、等差数列的前n 项和公式,属于中档题. 等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量1,,,,,n n a d n a S 一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,另外,解等差数列问题要注意应用等差数列的性质2p q m n r a a a a a +=+=(2p q m n r +=+=)与前n 项和的关系.19.已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =.(Ⅰ)求抛物线E方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【答案】(Ⅰ)24y x =;(Ⅱ)详见解析.【解析】解法一:(Ⅰ)由抛物线的定义得F 22pA =+. 因为F 3A =,即232p+=,解得2p =,所以抛物线E 的方程为24y x =. (Ⅱ)因为点()2,m A 在抛物线:E 24y x =上,所以m =±(A .由(A ,()F 1,0可得直线F A的方程为)1y x =-.由)21{4y x y x=-=,得22520x x -+=,解得2x =或12x =,从而1,2⎛B ⎝. 又()G 1,0-,所以()G 0213k A==--,()G 01312k B ==---, 所以G G 0k k A B +=,从而GF GF ∠A =∠B ,这表明点F 到直线G A ,G B 的距离相等, 故以F 为圆心且与直线G A 相切的圆必与直线G B 相切. 解法二:(Ⅰ)同解法一.(Ⅱ)设以点F 为圆心且与直线G A 相切的圆的半径为r . 因为点()2,m A 在抛物线:E 24y x =上,所以m =±(A .由(A ,()F 1,0可得直线F A的方程为)1y x =-.由)21{4y x y x=-=,得22520x x -+=,解得2x =或12x =,从而1,2⎛B ⎝. 又()G 1,0-,故直线G A的方程为30y -+=,从而r ==.又直线G B 的方程为30y ++=,所以点F 到直线G B 的距离d r ===. 这表明以点F 为圆心且与直线G A 相切的圆必与直线G B 相切. 考点:1、抛物线标准方程;2、直线和圆的位置关系. 【此处有视频,请去附件查看】20.已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满足()()1126n n n S a a =++,并且2a ,4a ,9a 成等比数列. (1)求数列{}n a 的通项公式; (2)设()111n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .【答案】(1)32n a n =-,*n ∈N (2)2186n n -- 【解析】 【分析】(1)根据n a 与n S 的关系,利用临差法得到13n n a a --=,知公差为3;再由1n =代入递推关系求1a ;(2)观察数列{}n b 的通项公式,相邻两项的和有规律,故采用并项求和法,求其前2n 项和.【详解】(1)Q 对任意*n ∈N ,有()()1126n n n S a a =++,① ∴当1a =时,有()()11111126S a a a ==++,解得11a =或2. 当2n ≥时,有()()1111126n n n S a a ---=++.②①-②并整理得()()1130n n n n a a a a --+--=. 而数列{}n a 的各项均为正数,13n n a a -∴-=. 当11a =时,()13132n a n n =+-=-, 此时2429a a a =成立;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成立,舍去.32n a n ∴=-,*n ∈N .(2)2122n n T b b b =+++=L 12233445221n n a a a a a a a a a a +-+-+-L()()()21343522121n n n a a a a a a a a a -+=-+-++-L242666n a a a =----L()2426n a a a =-+++L()246261862n n n n +-=-⨯=--.【点睛】已知n S 与n a 的递推关系,利用临差法求n a 时,要注意对下标与n 分两种情况,即1,2n n =≥;数列求和时要先观察通项特点,再决定采用什么方法.21.已知函数()(1)ln f x x x =-,3()ln eg x x x =--. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)令()()()(0)h x mf x g x m =+>两个零点1212,()x x x x <,证明:121ex e x +>+. 【答案】(Ⅰ)()f x 在(0,1)上单调递减,在[1,)+∞上单调递增.(Ⅱ)见证明 【解析】 【分析】(Ⅰ)求得函数的导数1()ln 1f x x x=+-',且()01f '=,进而利用导数的符号,即可求得函数单调区间;(Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点,利用导数求得函数()h x 的单调性与最值,结合图象,即可得出证明.【详解】(Ⅰ)由题意,函数()(1)ln f x x x =-,则1()ln 1f x x x=+-',且()01f '=, 当01x <<时,()0f x '<,函数()f x 单调递减; 当1x ≥时,()0f x '≥,函数()f x 单调递增;所以函数()f x 在(0,1)上单调递减,在[1,)+∞上单调递增. (Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点可知 由11()(1ln )1h x m x x x-'=++-且0m >可知, 当01x <<时,()0h x '<,函数()h x 单调递减; 当1x ≥时,()0h x '≥,函数()h x 单调增;即()h x 的最小值为3(1)10h e=-<, 因此当1x e=时,1113(1)2()(1)(1)(1)0m e e h m e e e e e -+-=--+---=>, 可知()h x 在1(,1)e上存在一个零点;当x e =时,3()(1)10h e m e e e=-+-->, 可知()h x 在(1,)e 上也存在一个零点, 因此211x x e e -<-,即121x e x e+>+. 【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.22.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的焦距为4,且过点.(1)求椭圆C 的方程(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M 、N 两点,问是否存在直线l ,使得F 为BMN ∆的垂心,若存在,求出直线l 的方程;若不存在,说明理由.【答案】(1)22184x y +=;(2)存在直线8:3l y x =-满足题设条件,详见解析 【解析】 【分析】(1)由已知列出关于a ,b ,c 的方程组,解得a ,b ,c ,写出结果即可;(2)由已知可得,(0,2)B ,(2,0)F .所以1BF k =-,因为BF l ⊥,所以可设直线l 的方程为y x m =+,代入椭圆方程整理,得2234280x mx m ++-=.设1(M x ,1)y ,2(N x ,2)y ,由根与系数的关系写出两根之和和两根之积的表达式,再由垂心的性质列出方程求解即可.【详解】(1)由已知可得,2222224421c a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩ 解得28a =,24b =,2c =,所以椭圆C 的方程为22184x y +=.(2)由已知可得,(02)(20)B F ,,,,∴1BF k =-.∵BF l ⊥, ∴可设直线l 的方程为y x m =+,代入椭圆方程整理,得2234280x mx m ++-=.设()()1122M x y N x y ,,,, 则2121242833m m x x x x -+=-=,,∵1212212y y BN MF x x -⊥∴⋅=--,. 即121212220y y x x y x +--=∵()()()1122121212,220y x m y x m x m x m x x x m x =+=+∴+++-+-=,即()212122(2)20x x m x x m m +-++-=,∵222842(2)2033m mm m m --⋅+-⋅+-=∴28321603m m m +-=∴=-,或2m =.由()222(4)12289680m m m ∆=--=->,得212m < 又2m =时,直线l 过B 点,不合要求,∴83m =-, 故存在直线8:3l y x =-满足题设条件.【点睛】本题主要考查椭圆方程的求法,直线与椭圆的位置关系应用,以及垂心的定义应用.意在考查学生的数学运算能力.。

相关文档
最新文档