ArcGIS中的地统计克里格插值法及其应用汇总

合集下载

ArcGIS插值方法及其应用

ArcGIS插值方法及其应用

ArcGIS插值方法及其应用在 ArcGIS 中,插值方法是用来预测未知数据值的一种技术。

插值方法可以用于解决各种空间问题,例如地形分析、环境监测、城市规划等。

在 ArcGIS 中,插值方法可以分为两大类:空间插值和属性插值。

空间插值用于预测二维或三维数据的空间分布,而属性插值则用于预测某一属性值在空间区域中的分布。

ArcGIS 中提供了多种插值方法,包括:1. 全局多项式插值:这是一种传统的插值方法,可以用于预测二维或三维数据。

全局多项式插值方法通过建立一个多项式方程来预测未知数据值。

2. 局部多项式插值:与全局多项式插值不同,局部多项式插值方法可以指定插值区域的不同部分使用不同的多项式阶数和参数。

这种方法可以更好地适应局部数据分布。

3. 样条函数插值:样条函数是一种分段多项式插值函数,可以用于预测二维或三维数据。

样条函数插值方法可以通过选择不同的样条插值方法、参数和超参数来适应不同数据分布和复杂程度。

4. 克里金插值:克里金插值方法是一种基于距离权重的插值方法,可以用于预测二维或三维数据。

克里金插值方法通过将距离函数应用于数据点之间的相互关系来预测未知数据值。

5. 泛克里金插值:泛克里金插值方法是一种改进的克里金插值方法,可以用于预测二维或三维数据。

泛克里金插值方法在克里金插值方法的基础上引入了一个泛克里金参数,可以更好地适应数据分布和变化趋势。

6. 指示克里金插值:指示克里金插值方法是一种基于指示数据的插值方法,可以用于预测二维或三维数据。

指示克里金插值方法通过将指示数据应用于数据点之间的相互关系来预测未知数据值。

7. 概率克里金插值:概率克里金插值方法是一种基于概率统计的插值方法,可以用于预测二维或三维数据。

概率克里金插值方法通过将概率分布应用于数据点之间的相互关系来预测未知数据值。

8. 析取克里金插值:析取克里金插值方法是一种基于析取统计的插值方法,可以用于预测二维或三维数据。

析取克里金插值方法通过将析取统计应用于数据点之间的相互关系来预测未知数据值。

arcgis克里金插值等值线标注

arcgis克里金插值等值线标注

arcgis克里金插值等值线标注摘要:1.ArcGIS克里金插值介绍2.克里金插值原理与应用3.等值线标注方法与步骤4.插值结果的可视化与分析正文:ArcGIS是一款强大的地理信息系统软件,其中克里金插值(Kriging Interpolation)是一种常用的空间数据插值方法。

本文将详细介绍ArcGIS克里金插值的原理、应用,以及如何进行等值线标注,最后对插值结果进行可视化和分析。

一、ArcGIS克里金插值介绍克里金插值是一种基于统计学的空间插值方法,它通过利用已知的样本点数据,估算未知的空间位置值。

ArcGIS中的克里金插值工具可以根据不同的数据类型和需求,生成不同类型的插值结果,如栅格数据、点数据等。

二、克里金插值原理与应用克里金插值原理主要基于变异函数理论和最小二乘法。

变异函数描述了空间数据在不同距离上的变化规律,而最小二乘法则用于求解最佳拟合参数。

在ArcGIS中,克里金插值应用于各种领域,如土壤侵蚀、矿产资源预测、气象数据重建等。

三、等值线标注方法与步骤1.准备数据:首先,需要准备好克里金插值所需的样本点数据和相应的属性值。

这些数据可以是栅格数据、点数据或线数据等。

2.创建表面:在ArcGIS中,利用克里金插值工具生成插值表面。

可以根据需求选择不同的插值类型,如普通克里金插值、简单克里金插值等。

3.提取等值线:利用ArcGIS的等值线提取工具,根据插值表面的数值范围和间隔,提取等值线。

4.标注等值线:在提取的等值线上添加标注,如数值、图例等。

可以通过ArcGIS的标注工具或Python脚本实现。

四、插值结果的可视化与分析1.插值结果可视化:利用ArcGIS的图层功能,将插值表面、等值线和标注等数据进行可视化展示。

2.插值结果分析:通过ArcGIS的属性查询、统计分析等功能,对插值结果进行进一步分析,如空间分布特征、趋势分析等。

总之,ArcGIS克里金插值是一种实用且广泛应用于地理信息系统领域的空间插值方法。

克里格插值基础arcgis汇总

克里格插值基础arcgis汇总

克里格插值基础来源:互联网1. 克里格方法概述克里格方法(Kriging)又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一。

南非矿产工程师D.R.Krige(1951年)在寻找金矿时首次运用这种方法,法国著名统计学家G.Matheron随后将该方法理论化、系统化,并命名为Kriging,即克里格方法。

克里格方法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里格方法进行内插或外推;否则,是不可行的。

其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计。

无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小。

也就是说,克里格方法是根据未知样点有限邻域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间位置关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。

克里格方法与反距离权插值方法类似的是,两者都通过对已知样本点赋权重来求得未知样点的值,可统一表示为:式中,Z(x 0 为未知样点的值,Z(x i 为未知样点周围的已知样本点的值,为第i个已知样本点对未知样点的权重,n为已知样本点的个数。

不同的是,在赋权重时,反距离权插值方法只考虑已知样本点与未知样点的距离远近,而克里格方法不仅考虑距离,而且通过变异函数和结构分析,考虑了已知样本点的空间分布及与未知样点的空间方位关系。

2. 克里格方法的具体步骤用克里格方法进行插值的主要步骤如图1所示:图1 克里格方法的主要步骤在克里格插值过程中,需注意以下几点:(1)数据应符合前提假设(2)数据应尽量充分,样本数尽量大于80,每一种距离间隔分类中的样本对数尽量多于10对(3)在具体建模过程中,很多参数是可调的,且每个参数对结果的影响不同。

arcgis插值方法

arcgis插值方法

arcgis插值方法ArcGIS插值方法是一种利用已知的离散点数据来推算未知地点的值的技术。

在地理信息系统中,插值方法被广泛应用于地形分析、环境模拟、资源评估等领域。

本文将介绍几种常用的ArcGIS插值方法,包括反距离加权插值(IDW)、克里金插值(Kriging)、样条插值(Spline)等。

我们来了解一下反距离加权插值(IDW)方法。

IDW方法假设距离越近的点对结果的影响越大,离待插值点越远的点对结果的影响越小。

IDW方法计算待插值点的值时,根据离待插值点的距离和邻域内点的值进行加权平均,得到待插值点的值。

IDW方法的优点是简单易懂,计算速度较快,适用于点密度较大且趋势较明显的情况。

但是IDW方法对异常值敏感,对点密度不均匀的数据拟合效果较差。

克里金插值(Kriging)是一种基于地统计学原理的插值方法。

克里金插值方法假设未知点的值是其周围点值的线性组合,并尽量使残差(即预测值与实际值之差)的方差最小。

根据克里金插值方法的预测模型,可以得到未知点的值。

克里金插值方法考虑了空间相关性,适用于点密度较低、数据不均匀分布的情况。

克里金插值方法的不足之处在于计算复杂度较高,对数据变异性的要求较高,需要根据实际情况选择合适的克里金模型。

除了IDW和克里金插值方法,ArcGIS还提供了样条插值(Spline)方法。

样条插值方法通过拟合一个平滑的曲面来估计未知点的值。

样条插值方法在计算过程中考虑了各个点的权重,能够较好地反映数据的变化趋势。

样条插值方法的优点是对数据分布没有要求,适用于各种数据类型。

但是样条插值方法需要较大的计算量,对数据噪声敏感。

除了上述三种常用的插值方法,ArcGIS还提供了其他一些插值方法,如最近邻插值、自然邻近插值等。

这些方法各有特点,可以根据实际需求选择合适的插值方法。

在使用ArcGIS进行插值分析时,除了选择合适的插值方法,还需要注意数据的质量和分布情况。

数据质量好、点密度均匀的情况下,插值结果会更加准确可靠。

GS+7.0地统计和ARCGIS克里格插值过程

GS+7.0地统计和ARCGIS克里格插值过程

由于是初学地统计和克里格插值,现将自己处理数据的过程和步骤列出,中间有几个问题很是迷惑,还请相关的专家们给点指导,或者同行们讨论一下,对我处理的过程有什么不合理的地方,还请指出,谢谢!!1、在GS+7.0中进行地统计分析,将经纬度坐标转换成平面坐标,Z值为土壤盐分数据,导入到软件中,重计算后如下图1:2、查看数据的分布,发现进行log变换后数据的分布状态还不如元数据,所以未进行变换(图2):3、接下来进行半方差分析,初始界面如图3:4、进行计算(图4):5、查看模型信息,显示最优模型为高斯模型,以及各种参数,这里有点不明白的是那个RSS值怎么会那么大?图5:6、然后再ARCGIS中进行克里格插值,初始界面如图6:7、选择普通克里格,数据不进行变换,图7:8、下一步,图8显示的是ARCGIS自动给出的各个参数和模型9、根据GS+7.0中的参数对图8进行修改,修改后的界面为图9,主要修改了块金值、变程、偏基台值、模型类型以及lag size:10、下一步,没做改动图10:11、下一步显示交互验证结果,图11:12、最终的出图显示,图12:我最后将交叉验证的属性表导出来之后,计算各点的真实值和预测值的相关系数,仅为0.2多,这算是好吗?还有就是,我分别按照GS+中给出的其他模型的参数输入到ARCGIS插值过程中,最后得到的交叉验证结果为下图13和14,图13为指数模型,图14为球状模型,比较三者,发现指数模型的交叉验证结果最好,但是指数模型中真实值和预测值的相关系数仅为0.19啊,这都怎么回事啊?最后我用ARCGIS默认的各个参数进行插值,得出的交叉验证结果为图15,比指数模型的效果差,而且相关系数为0.14,都是那么低啊。

指数模型、球状模型和ARCGIS默认参数的最终效果为图16、17、18就是这样了,请大家积极讨论啊,相互学习!!!1.jpg2.jpg3.jpg4.jpg5.jpg6.jpg7.jpg8.jpg9.jpg10.jpg11.jpg12.jpg13.jpg14.jpg15.jpg16.jpg17.jpg18.jpg。

ArcGIS中的地统计克里格插值法及其应用汇总

ArcGIS中的地统计克里格插值法及其应用汇总

第7卷%第12期软件导刊2008年12月Software GuideVol.7No.12Dec. 2008ArcGIS 中的地统计克里格插值法及其应用王艳妮,谢金梅,郭祥(中国地质大学资源学院,湖北武汉430074)摘要:ArcGIS 软件的地统计分析扩展模块是一个功能强大、简单易用的数据分析与表面建模工具,应用领域广泛。

首先介绍了地质统计学的概念和克里格插值的各种方法,然后从地统计的角度出发,运用ArcGIS 软件中地统计分析模块,探讨了克里格插值法在土地平整工程中的应用。

关键词:GIS ;ArcGIS 地统计分析;克里格插值;土方量中图分类号:TP312文献标识码:A文章编号:1672-7800(2008)12-0036-030引言地质统计学是上个世纪60年代法国人Matheron 在前人的它是数学地质领域中一门发展迅速且有着广泛应用前景的新兴学科。

经过广大数学地质工作者、地质统计学工作者、矿山地质和采矿设计专家及其他地质统计学应用者和爱好者的不断努力,现在已经形成了一套独立的理论体系,成为数学地质中比较活跃的一个分支。

基础上总结并提出的,它又称为克里格方法(Kriging )。

地质统计学中的克里格插值方法,由于其具有插值和估计的双重特点,在许多领域中都得到了广泛应用,已成为空间统计学上的一个重要分支,同时也成为许多专业、商业软件的重要组成部分。

近几十年来,地理信息系统(Geographic Information Sys -——空间tem ,简称GIS )技术发展很快,作为其重要的组成部分—信息分析,也已经发展出一些重要的理论模型方法。

空间分析的应用领域含盖面极广,包含空间分析、空间数据分析、空间统计、地质统计学等。

在目前众多的GIS 软件中,虽有许多都涉足了空间分析领域,但其中有关地质统计学方面的内容却非常少。

ArcGIS8及以上版本软件中,将地质统计学单独作为一个分析扩展模块(即Geostatistical Analyst ,简称GA )纳入到了整个1.2克里格插值基础克里格插值(Kriging )又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一。

ArcGIS中几种空间插值方法

ArcGIS中几种空间插值方法

ArcGIS 中几种空间插值方法1. 反距离加权法(IDW)ArcGIS 中最常用的空间内插方法之一,反距离加权法是以插值点与样本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其权重贡献与距离成反比。

可表示为:1111()()n nip p i i i i Z Z D D ===∑∑ 其中Z 是插值点估计值,Z i (i=1Λn)是实测样本值,n 为参与计算的实测样本数,D i 为插值点与第i 个站点间的距离,p 是距离的幂,它显著影响内插的结果,它的选择标准是最小平均绝对误差。

2.多项式法多项式内插法(Polynomial Interpolation)是根据全部或局部已知值,按研究区域预测数据的某种特定趋势来进行内插的方法,属统计方法的范畴。

在GA 模块中,有二种类型的多项式内插方法,即全局多项式内插和局部多项式内插。

前者多用于分析数据的全局趋势;后者则是使用多个平面来拟合整个研究区域,能表现出区域内局部变异的情况。

3.样条函数内插法样条函数是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续,这就意味着样条函数可以修改少数数据点配准而不必重新计算整条曲线。

样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实践中要解决的问题是样条块的定义以及如何在三维空间中将这些“块”拼成复杂曲面,又不引入原始曲面中所没有的异常现象等问题。

4.克里格插值法克里格法是GIS 软件地理统计插值的重要组成部分。

这种方法充分吸收了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。

这种连续性变化的空间属性称为“区域性变量”,可以描述象气压、高程及其它连续性变化的描述指标变量。

地理统计方法为空间插值提供了一种优化策略,即在插值过程中根据某种优化准则函数动态的决定变量的数值。

Kriging 插值方法着重于权重系数的确定,从而使内插函数处于最佳状态,即对给定点上的变量值提供最好的线性无偏估计。

ArcGIS 地统计克里金插值

ArcGIS 地统计克里金插值

评论(25)ArcGIS 地统计学习指南(二)huangyustar2007-8-1 09:14ArcGIS 地统计学习指南(三)(4)Voronoi 图用来发现离群值。

Voronoi 图的生成方法:每个多边形内有一个样点,多变形内任一点到该点的距离都小于其他多边形到该点的距离,生成多边形后。

某个样点的相邻样点便会与该样点的多边形有相邻边。

至于多边形值的计算有多种方法,可以用生成多边形的样点值作为多边形的值(Simple 方法),也可以以相邻样点的平均值为多边形的值(Mean 方法),具体计算方法可以在Type 下拉菜单中选择。

huangyustar2007-8-1 09:14ArcGIS 地统计学习指南(四)最后的两个图表是针对两个数据集而言的。

(6)普通Qqplot 分布图评估两个数据集分布的相似程度。

利用两个数据集中具有相同累积分布值的数据值来作图。

huangyustar2007-8-1 09:14ArcGIS 地统计学习指南(五)第四步:半变异函数/协方差模型面板(Semivariogram/covariance Modeling )此步的主要功能为半变异函数建模,是预测过程中的实质性阶段。

在此面板中需要社定许多与拟合半变异函数相关的选项以及半变异函数的参数。

是克里格预测中十分关键的部分。

Semivariogram/covariance 部分显示的是拟和的模型,黄线即半变异函数曲线。

Models 部分:model1,model2,model3表示可以用多个通用函数来拟和半变异函数模型。

如果数据为各向异性,则需要选中Anisotropy (其实大多数空间数据是各向异性的,各向同性只是相对的),当选中此选项时,黄线变为多条,表示多个方向的拟合函数。

Show Search Direction 选项选中后,表示只搜索某个方向的半变异函数。

Nugget :块金值,函数参数之一,即函数与y 轴相交的y 值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7卷%第12期软件导刊2008年12月Software GuideVol.7No.12Dec. 2008ArcGIS 中的地统计克里格插值法及其应用王艳妮,谢金梅,郭祥(中国地质大学资源学院,湖北武汉430074)摘要:ArcGIS 软件的地统计分析扩展模块是一个功能强大、简单易用的数据分析与表面建模工具,应用领域广泛。

首先介绍了地质统计学的概念和克里格插值的各种方法,然后从地统计的角度出发,运用ArcGIS 软件中地统计分析模块,探讨了克里格插值法在土地平整工程中的应用。

关键词:GIS ;ArcGIS 地统计分析;克里格插值;土方量中图分类号:TP312文献标识码:A文章编号:1672-7800(2008)12-0036-030引言地质统计学是上个世纪60年代法国人Matheron 在前人的它是数学地质领域中一门发展迅速且有着广泛应用前景的新兴学科。

经过广大数学地质工作者、地质统计学工作者、矿山地质和采矿设计专家及其他地质统计学应用者和爱好者的不断努力,现在已经形成了一套独立的理论体系,成为数学地质中比较活跃的一个分支。

基础上总结并提出的,它又称为克里格方法(Kriging )。

地质统计学中的克里格插值方法,由于其具有插值和估计的双重特点,在许多领域中都得到了广泛应用,已成为空间统计学上的一个重要分支,同时也成为许多专业、商业软件的重要组成部分。

近几十年来,地理信息系统(Geographic Information Sys -——空间tem ,简称GIS )技术发展很快,作为其重要的组成部分—信息分析,也已经发展出一些重要的理论模型方法。

空间分析的应用领域含盖面极广,包含空间分析、空间数据分析、空间统计、地质统计学等。

在目前众多的GIS 软件中,虽有许多都涉足了空间分析领域,但其中有关地质统计学方面的内容却非常少。

ArcGIS8及以上版本软件中,将地质统计学单独作为一个分析扩展模块(即Geostatistical Analyst ,简称GA )纳入到了整个1.2克里格插值基础克里格插值(Kriging )又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一。

南非矿产工程师D.R.Krige (1951)在寻找金矿时首次运用这种方法,法国著名统计学家G.Matheron 随后将该方法理论化、系统化,命名为Kriging ,即克里格方法。

克里格法是根据待插值点与临近实测高程点的空间位置,对待插值点的高程值进行线性无偏最优估计,通过生成一个关于高程的克里格插值图来表达研究区域的原始地形。

总的公式是:NArcGIS 软件的框架体系结构中。

在GIS 软件中,嵌入地质统计学分析模块是ArcGIS 软件的一大特色,笔者在本文中将结合该软件,介绍GA 模块中各种Z (x 0)=Σλi Z (x i )i=1式中:Z (x 0)表示未知样点的值;Z (x i )表示未知样点周围的已知样本点的值;N 为已知样本点的个数;λi 为第i 个样本点的权重。

它的确定是通过半方差图分析获取的,根据统计学上无偏和最优的要求,利用拉格朗日极小化原理,可推导出权重值和半方差之间的公式。

Kriging 插值方法及其适用范围,并对样本区域选用最适合的克里格方法进行内插,来模拟预测表面并计算填挖土方量。

11.1地质统计学基础地质统计学概念地质统计学(简称地统计学)是以区域化变量理论为基础,1.3克里格插值的分类在GA 模块中,有8类克里格方法其简单描述和适用范围如表1所示。

在不同的研究区域和研究尺度下,用户可使用不同的克里格方法来进行数据的处理和分析。

以变异函数为主要工具,研究那些在空间分布上既有随机性又有结构性,或空间相关和依赖性的自然现象的科学。

作者简介:王艳妮(1984~),女,陕西韩城人,中国地质大学(武汉)硕士研究生,研究方向为地理信息系统;谢金梅(1982~),女,新疆博乐人,中国地质大学(武汉)硕士研究生,研究方向为理理信息系统;郭祥(1984~),女,山西大同人,中国地质大学(武汉)硕士研究生,研究方向为数第12期王艳妮,谢金梅,郭表1类型普通克里格方法(OrdinaryKriging 简单克里格方法(Simple Kriging 泛克里格方法(UniversalKriging 指示克里格方法(Indicator Kriging 概率克里格方法(ProbabilityKriging 析取克里格方法(DisjunctiveKriging 协同克里格方法(Co-Kriging 对数正态克里格方法祥:ArcGIS中的地统计克里格插值法及其应用·37·GA 中克里格方法分类及其适用范围适用范围满足内蕴假设, 其区域化变量的平均值是未知的常数满足二阶平稳假设, 其变量的平均值为已知的常数区域化变量的数学期望是未知的变化值有真实的特异值、数据不服从正态分布时使用求某种变量含量的概率时使用计算可采储量时使用适用于相互关联的多元区域化变量数据服从正态分布时使用(LogisticNormal Kriging2ArcGIS 地统计分析近年来,随着GIS 学科的发展,GIS 与地质统计学的联系越来越紧密,此时ArcGIS 地统计分析模块(GA )的出现为地统计学和GIS 架起了一座桥梁。

ArcGIS 地统计分析模块主要由3个功能模块组成:探索性空间数据分析、地统计分析向导以及生成数据子集。

利用这些基本功能模块,可以方便地完成多种地统计分析,创建完善的专题地图(表面预测)。

2.1探索性空间数据分析在获得样本点数据后,首先需要对数据进行分析,检验数据的分布,分析数据的趋势性等。

探索性空间数据分析(Ex -plore Spatial Data Analyst ,ESDA )模块提供了一系列的工具来检查数据,以便对与其数据相关的问题做出更加合理、科学的决策。

对研究区内的127个样本高程点进行分析及拟合表面,包括数据的分布检验和样本数据趋势分析。

图1数据分布的直方图2.1.1高程点数据分布检验在地统计分析中,克里格方法是建立在平稳假设的基础上,这种假设在一定程度上要求所有数据值具有相同的变异性。

另外,一些克里格插值(如普通克里格法、简单克里格法和泛克里格法等)都假设数据服从正态分布。

如果数据不服从正态分布,需要进行一定的数据变换使其服从正态分布。

因此,在用地统计分析创建表面之前,了解数据的分布状况十分重要。

在ArcGIS GA 模块中,主要提供了两种方法检验数据的分布:直方图法和正态QQPlot 图法。

该研究通过地统计分析工具生成127个样本点的直方图和正态QQPlot 图,分别如图1、图2所示。

从图1及其各种统计指标值可以看出,该样本点近乎于正态分布。

在图2中,该例选取的图2数据分布的正态QQPlot 图2.1.2样点数据趋势分析趋势分析工具提供用户研究区平面上的采样点转化为以127个样本点基本沿直线分布,也说明样本点接近于服从正态分布。

在本研究区的样本点近乎于正态分布,而且区域化变量高程值Z 的期望值是未知的,经过分析,在后期预测表面时,采。

感兴趣的属性值为高度的三维视图,然后用户从不同视角分析采样数据集的全局趋势。

趋势分析图中的每一根竖棒代表了一个数据点的值(高度)和位置。

这些点被投影到一个东西向的和一个南北向的正交平面上。

·38·软件导刊2008年线,并用它来模拟特定方向上存在的趋势。

此研究中的趋势分析图中南北方向不存在趋势,而东西方向上有明显的东高西低的趋势出现,因此需要用一次曲面拟合,即在后续剔除趋势的操作中选择First 。

可见,使用趋势分析来分析样本点数据的走向,可以使后续的表面拟合更加客观,拟合的结果具有更大的可信程度。

格网为挖方; 若△Z (i ,j )<0,则该格网为填方。

假设格网面积为S ,则该格网处的土方量为V (i ,j )=△Z (i ,j )×S 。

分别对V (i ,j )>0和V(i ,j )<0的数据进行累加,即可求得该区域的填挖方量。

在ArcGIS 空间分析(Spatial Analyst )模块中,可采用表面分析中的Cut/Fill 工具进行挖填方的计算,把所生成的栅格图属性表输出,并分别对其中的正负数值进行累加,即可得到该样本区域的挖填方量。

2.2使用普通克里格法创建表面普通克里格法是根据待插值点与临近实测高程点的空间位置,对待插值点的高程值进行线性无偏最优估计,通过生成一个关于高程的克里格插值图来表达研究区域的原始地形。

在ArcGIS GA 模块中的统计分析向导中,使用普通克里格方法内插表面可按以下步骤进行操作:(1)数据的输入及内插方法的选择;(2)完成具体克里格方法以及结果类型图的选取、数据转换方法的选择、以及趋势剔除时所用多项式阶数的选择等。

如此,便可以很方便地生成一幅基于普通克里格插值法的预测图。

4结束语Kriging 方法有很多类型,每种类型都有各自的优缺点及适用范围,我们在具体使用时,应该在ESDA 中对数据特性分析的基础上,来选择使用最适合的方法。

用地统计克里格插值法计算土方量只需提供平整场地的高程值,通过高程点样本数据分布检验、样点数据趋势分析,进而用克里格插值生成DEM 预测表面,即可根据模拟生成的栅格图进行土方的计算,大大减少了工作量,提高了工作效率。

参考文献:[1][2][3][4][5][6][7][8]秦涛,付宗堂.ArcGIS 中几种空间内插方法的比较[J ]. 物探化探计算技术,2007(1).王劲峰,李连发,葛咏,等. 地理信息空间分析的理论体系探讨[J ]. 地理学报,2000(1).侯景儒,尹镇南,李维明,等. 实用地质统计学[M ]. 北京:地质出版社,1998.俞志新,李艳,黄明祥. 地统计克里格插值法在工程土方计算中的应用[J ]. 浙江水利科技,2003(4).孙洪泉. 地质统计学及其应用[M ]. 北京:中国矿业大学出版社,3土方量的计算土方工程量是原始地表与设计地表之间的体积值之差。

因此在完成对原始地表的模拟后,还需要利用设计数据建立同一区域的设计地面模型。

在计算设计地表时,要根据具体情况和施工要求使建立的设计地表遵循一定的施工原则,例如填挖平衡原则、挖方大于填方等。

我们已经借助ArcGIS 软件地统计克里格插值法对原始地表进行模拟,然后进一步将其转化成栅格,就是把所要平整的场地按一定的格网间距dx 、dy (一般dx=dy)进行格网化的过程,则每一个格网值就是一个高程值。

对任意格网的土方量计算,其分量可以表示为△Ζ(i ,j )=Ζ(i ,j )t-Z(i ,j )d 。

相关文档
最新文档