(完整版)初一数学绝对值经典练习题

合集下载

(word完整版)初一数学绝对值计算题及答案过程

(word完整版)初一数学绝对值计算题及答案过程

初一数学绝对值计算题及答案过程例1求下列各数的绝对值:(1)-38; (2)0.15; (3)a(a<0); (4)3b(b>0);(5)a-2(a<2); (6)a-b.例2判断下列各式是否正确(正确入“T”,错误入“F”):(1)|-a|=|a|; ( )(2)-|a|=|-a|; ( )(4)若|a|=|b|,则a=b; ( )(5)若a=b,则|a|=|b|; ( )(6)若|a|>|b|,则a>b; ( )(7)若a>b,则|a|>|b|; ( )(8)若a>b,则|b-a|=a-b. ( )例3判断对错.(对的入“T”,错的入“F”)(1)如果一个数的相反数是它本身,那么这个数是0. ( )(2)如果一个数的倒数是它本身,那么这个数是1和0. ( )(3)如果一个数的绝对值是它本身,那么这个数是0或1. ( )(4)如果说“一个数的绝对值是负数”,那么这句话是错的. ( )(5)如果一个数的绝对值是它的相反数,那么这个数是负数. ( )例4 已知(a-1)2+|b+3|=0,求a、b.例5填空:(1)若|a|=6,则a=______; (2)若|-b|=0.87,则b=______; (4)若x+|x|=0,则x是______数.例6 判断对错:(对的入“T”,错的入“F”)(1)没有最大的自然数. ( )(2)有最小的偶数0. ( )(3)没有最小的正有理数. ( )(4)没有最小的正整数. ( )(5)有最大的负有理数. ( )(6)有最大的负整数-1. ( )(7)没有最小的有理数. ( )(8)有绝对值最小的有理数. ( )例7 比较下列每组数的大小,在横线上填上适当的关系符号 (“<”“=”“>”) (1)|-0.01|______-|100|; (2)-(-3)______-|-3|;(3)-[-(-90)]_______0; (4)当a<3时,a-3______0;|3-a|______a-3.例8在数轴上画出下列各题中x的范围: (1)|x|≥4;(2)|x|<3;(3)2<|x|≤5.例9 (1)求绝对值不大于2的整数;(2)已知x是整数,且2.5<|x|<7,求x.例10解方程:(1) 已知|14-x|=6,求x;*(2)已知|x+1|+4=2x,求x.*例11 化简|a+2|-|a-3|1,解:(1)|-38|=38;(2)|+0.15|=0.15; (3)∵a<0,∴|a|=-a; (4)∵b>0,∴3b>0,|3b|=3b; (5)∵a<2,∴a-2<0,|a-2|=-(a-2)=2-a;说明:分类讨论是数学中的重要思想方法之一,当绝对值符号内的数(用含字母的式子表示时)无法判断其正、负时,要化去绝对值符号,一般都要进行分类讨论.分析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判数(或证明)一个结论是错误的,只要能举出反例即可.如第(2)小题中取a=1,则-|a|=-|1|=-1,而|-a|=|-1|=1,所以-|a|≠|-a|.同理,在第(6)小题中取a=-1,b=0,在第(4)、(7)小题中取a=5,b=-5等,都可以充分说明结论是错误的.要证明一个结论正确,须写出证明过程.如第(3)小题是正确的.证明步骤如下:此题证明的依据是利用|a|的定义,化去绝对值符号即可.对于证明第(1)、(5)、(8)小题要注意字母取零的情况.2,解:其中第(2)、(4)、(6)、(7)小题不正确,(1)、(3)、(5)、(8)小题是正确的.说明:判断一个结论是正确的与证明它是正确的是相同的思维过程,只是在证明时需要写明道理和依据,步骤都要较为严格、规范.而判断一个结论是错误的,可依据概念、性质等知识,用推理的方法来否定这个结论,也可以用举反例的方法,后者有时更为简便.3,解:(1)T. (2)F.-1的倒数也是它本身,0没有倒数.(3)F.正数的绝对值都等于它本身,所以绝对值是它本身的数是正数和0. (4)T.任何一个数的绝对值都是正数或0,不可能是负数,所以这句话是错的. (5)F.0的绝对值是0,也可以认为是0的相反数,所以少了一个数0.说明:解判断题时应注意两点: (1)必须“紧扣”概念进行判断; (2)要注意检查特殊数,如0,1,-1等是否符合题意.分析:根据平方数与绝对值的性质,式中(a-1)2与|b+3|都是非负数.因为两个非负数的和为“0”,当且仅当每个非负数的值都等于0时才能成立,所以由已知条件必有a-1=0且b+3=0.a、b即可求出.4,解:∵(a-1)2≥0,|b+3|≥0,又(a-1)2+|b+3|=0 ∴a-1=0且b+3=0∴a=1,b=-3.说明:对于任意一个有理数x,x2≥0和|x|≥0这两条性质是十分重要的,在解题过程中经常用到.分析:已知一个数的绝对值求这个数,则这个数有两个,它们是互为相反数. 5,解:(1)∵|a|=6,∴a=±6; (2)∵|-b|=0.87,∴b=±0.87;(4)∵x+|x|=0,∴|x|=-x.∵|x|≥0,∴-x≥0∴x≤0,x是非正数.说明:“绝对值”是代数中最重要的概念之一,应当从正、逆两个方面来理解这个概念.对绝对值的代数定义,至少要认识到以下四点:6,解:(1)T.(2)F.数的范围扩展后,偶数的范围也随之扩展.偶数包含正偶数,0,负偶数(-2,-4,…),所以0不是最小的偶数,偶数没有最小的. (3)T. (4)F.有最小的正整数1. (5)F.没有最大的负有理数. (6)T. (7)T. (8)T.绝对值最小的有理数是0.分析:比较两个有理数的大小,需先将各数化简,然后根据法则进行比较. 7,解:(1)|-0.01|>-|100|; (2)-(-3)>-|-3|; (3)-[-(-90)]<0; (4)当a<3时,a-3<0,|3-a|>a-3.说明:比较两个有理数大小的依据是:①在数轴上表示的两个数,右边的数总比左边的数大,正数大于0,大于一切负数,负数小于0,小于一切正数,两个负数,绝对值大的反而小.②两个正分数,若分子相同则分母越大分数值越小;若分母相同,则分子越大分数值越大;也可将分数化成小数来比较.。

(word完整版)7.初一上册数学绝对值专项练习带答案

(word完整版)7.初一上册数学绝对值专项练习带答案

状元私塾内部资料——全体都有-针对性练习绝对值的数的绝对值相等,那么点 A 表示的数是()一.选择题(共16 小题)1.相反数不大于它自己的数是()A.正数B.负数C.非正数D.非负数2.以下各对数中,互为相反数的是()A.2 和B.﹣ 0.5 和C.﹣ 3 和D.和﹣23.a, b 互为相反数,以下各数中,互为相反数的一组为()A. a2与 b2B. a3与 b5C. a2n与 b2n( n 为正整数)D. a2n+1与 b2n+1(n 为正整数)4.以下式子化简不正确的选项是()A. +(﹣ 5) =﹣ 5 B.﹣(﹣ 0.5) =0.5C.﹣ |+ 3| =﹣ 3D.﹣( +1)=15.若 a+b=0,则以下各组中不互为相反数的数是()A.a3和 b3 B.a2和 b 2 C.﹣ a 和﹣ b D.和6.若 a 和 b 互为相反数,且a≠0,则以下各组中,不是互为相反数的一组是()A.﹣ 2a3和﹣ 2b3 B. a2和 b 2C.﹣ a 和﹣ b D. 3a 和 3b7.﹣ 2018 的相反数是()A.﹣2018 B. 2018 C.± 2018D.﹣8.﹣ 2018 的相反数是()A.2018B.﹣ 2018 C.D.﹣9.以下各组数中,互为相反数的是()A.﹣ 1 与(﹣ 1)2B.1 与(﹣ 1)2 C . 2与D. 2 与 | ﹣ 2|10.如图,图中数轴的单位长度为1.假如点 B,C表示A.﹣ 4 B.﹣ 5 C.﹣ 6D.﹣ 211.化简 | a﹣ 1|+ a﹣ 1=()A.2a﹣2B.0 C. 2a﹣ 2 或 0D. 2﹣ 2a12.如图, M ,N, P, R 分别是数轴上四个整数所对应的点,此中有一点是原点,而且MN=NP=PR=1.数 a 对应的点在M 与 N 之间,数 b 对应的点在P 与 R 之间,若 | a|+| b| =3,则原点是()A.M 或 RB.N 或 P C. M 或 N D. P 或 R13.已知: a> 0, b < 0, | a| < | b| < 1,那么以下判断正确的选项是()A.1﹣ b>﹣ b> 1+a> aB.1+a> a> 1﹣b >﹣ bC.1+a> 1﹣b> a>﹣ bD. 1﹣b>1+a>﹣ b> a14.点 A, B 在数轴上的地点以下图,其对应的数分别是 a 和 b.关于以下结论:甲: b﹣ a< 0 乙: a+b> 0 丙: | a| < | b|丁:> 0此中正确的选项是()A.甲乙B.丙丁C.甲丙D.乙丁15.有理数a、b 在数轴上的地点以下图,则以下各式中错误的选项是()A.b<aB.| b| > | a| C. a+b> 0D. ab< 016.﹣ 3 的绝对值是()A. 3B.﹣ 3 C.D.状元私塾内部资料——全体都有 -针对性练习二.填空题(共 10小题)( 1)分别求出 | x﹣ 5| 和 | x﹣ 4| 的零点值;17. | x+1|+|x﹣ 2|+|x﹣ 3| 的值为.( 2)化简代数式 | x﹣ 5|+| x﹣ 4| ;18.已知 | x| =4, | y| =2,且 xy< 0,则 x﹣ y 的值等( 3)求代数式 | x﹣ 5|+| x﹣ 4| 的最小值.于.28.同学们都知道 | 5﹣(﹣ 2) | 表示 5与(﹣ 2)之差19.﹣ 2 的绝对值是,﹣ 2 的相反数是.的绝对值,也可理解为 5 与﹣ 2 两数在数轴上所对的两20.一个数的绝对值是 4,则这个数是.点之间的距离,尝试究:21.﹣ 2018 的绝对值是.( 1)求 | 5﹣(﹣ 2) | =.22 .假如x、 y 都是不为 0的有理数,则代数式( 2)找出全部切合条件的整数x,使得 | x+5|+| x﹣ 2| =7的最大值是.建立的整数是.23+=0,则( 3)由以上研究猜想,关于任何有理数x, | x﹣ 3|+| x.已知的值为.﹣ 6| 能否有最小值?假如有,写出最小值;假如没有,24.计算: | ﹣ 5+3| 的结果是.说明原因.25.已知 | x| =3,则 x 的值是.29.计算:已知 | x| =,| y| =,且 x< y<0,求 6÷( x 26.计算: | ﹣ 3| =.三.解答题(共 14 小题)﹣ y)的值.30.求以下各数的绝对值.2,﹣,3,0,﹣4.27.阅读以下资料并解决相关问题:我们知道, | m| =.此刻我们能够用这一结论来31.联合数轴与绝对值的知识回答以下问题:化简含有绝对值的代数式,如化简代数式| m+1|+| m﹣( 1)研究:①数轴上表示 5 和 2的两点之间的距离2| 时,可令 m+1=0 和 m﹣ 2=0,分别求得 m=﹣ 1, m=2是;②数轴上表示﹣ 2 和﹣ 6的两点之间的距离(称﹣ 1, 2 分别为 | m+1| 与 | m﹣2| 的零点值).在实数是;③数轴上表示﹣ 4 和 3的两点之间的距离范围内,零点值m=﹣ 1 和 m=2 可将全体实数分红不重是;复且不遗漏的以下 3 种状况:(1) m<﹣ 1;( 2)﹣ 1≤( 2)概括:一般地,数轴上表示数m 和数 n 的两点之m< 2;( 3)m≥ 2.进而化简代数式 | m+1|+| m﹣ 2| 可分间的距离等于 | m﹣ n| .以下 3 种状况:( 1)当 m<﹣ 1 时,原式 =﹣( m+1)﹣( 3)应用:①假如表示数 a 和 3 的两点之间的距离是 7,( m﹣ 2) =﹣ 2m+1;( 2)当﹣ 1≤ m< 2 时,原式 =m+1则可记为: | a﹣ 3| =7,那么 a=;②若数轴上表﹣( m﹣ 2)=3;(3)当 m≥ 2 时,原式 =m+1+m﹣ 2=2m示数 a 的点位于﹣ 4 与 3 之间,求 | a+4|+| a﹣ 3| 的值;﹣ 1.③当 a 取何值时, | a+4|+|a﹣1|+| a﹣ 3| 的值最小,最综上议论,原式 =小值是多少?请说明原因.32.计算: | x+1|+| x﹣ 2|+|x﹣ 3| .经过以上阅读,请你解决以下问题:状元私塾内部资料——全体都有-针对性练习33.已知数轴上三点A, O, B 表示的数分别为﹣3, 0,1,点 P 为数轴上随意一点,其表示的数为x.( 1)假如点 P 到点 A,点 B 的距离相等,那么x=;(2)当 x=时,点P到点A,点B的距离之和是6;(3)若点 P 到点 A,点 B 的距离之和最小,则x 的取值范围是;( 4)在数轴上,点M , N 表示的数分别为x1,x2,我们把x1, x2之差的绝对值叫做点M ,N 之间的距离,即MN= | x1﹣ x2| .若点 P 以每秒 3 个单位长度39.若 a> b,计算:( a﹣ b)﹢ | a﹣ b| .40.当 a≠ 0 时,请解答以下问题:( 1)求的值;(2)若 b≠ 0,且,求的值.的速度从点 O 沿着数轴的负方向运动时,点 E 以每秒1个单位长度的速度从点 A 沿着数轴的负方向运动、点F 以每秒 4 个单位长度的速度从点 B 沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P 到点 E,点 F 的距离相等.34.阅读下边资料:如图,点A、 B 在数轴上分别表示有理数 a、b,则 A、B 两点之间的距离能够表示为| a﹣b| .依据阅读资料与你的理解回答以下问题:( 1)数轴上表示 3 与﹣ 2 的两点之间的距离是.( 2)数轴上有理数 x 与有理数 7 所对应两点之间的距离用绝对值符号能够表示为.(3)代数式 | x+8| 能够表示数轴上有理数 x 与有理数所对应的两点之间的距离;若 | x+8| =5 ,则x=.( 4)求代数式| x+1008|+| x+504|+| x﹣ 1007| 的最小值.35.已知 | a| =8, | b| =2,| a﹣ b| =b﹣ a,求 b+a 的值.36.如图 ,数轴上的三点A,B, C 分别表示有理数a, b,c,化简 | a﹣ b| ﹣ | a+c|+| b﹣ c| .37.若 ab> 0,化简:+.38.若 a、b 都是有理数,试比较| a+b| 与 | a|+| b| 大小.状元私塾内部资料——全体都有 -针对性练习当 x≥5 时,原式 =2x﹣ 9>1.参照答案与试题分析故代数式的最小值是 1.一.选择题(共16 小题)28.解:( 1)原式 =| 5+2| =71. D. 2. B. 3. D. 4. D. 5. B. 6. B.7. B故答案为: 7;. 8. A. 9. A.10. A. 11. C. 12.A.( 2)令 x+5=0 或 x﹣ 2=0 时,则 x=﹣ 5 或 x=213. D. 14.C.15.C.16. A.当 x<﹣ 5 时,二.填空题(共10 小题)∴﹣( x+5)﹣( x﹣ 2) =7,﹣ x﹣5﹣ x+2=7,17..x=5(范围内不建立)当﹣ 5<x< 2 时,18. 6 或﹣ 6.∴( x+5)﹣( x﹣ 2) =7,19. 2,2.x+5﹣ x+2=7, 7=7,20.4,﹣ 4.∴ x=﹣ 4,﹣ 3,﹣ 2,﹣ 1,0, 121.2018.当 x>2 时,22.1.∴( x+5) +( x﹣ 2) =7,23.﹣ 1.x+5+x﹣ 2=7,24.2.2x=4, x=2,25.± 3.x=2(范围内不建立)26. =3.∴综上所述,切合条件的整数x 有:﹣ 5,﹣ 4 ,﹣ 3,三.解答题(共14 小题)﹣ 2,﹣ 1, 0, 1, 2;27.【解答】( 1)令 x﹣ 5=0, x﹣ 4=0,故答案为:﹣ 5,﹣ 4,﹣ 3,﹣ 2,﹣ 1,0, 1, 2;解得: x=5 和 x=4,( 3)由( 2)的研究猜想,关于任何有理数x,| x﹣3|+| x 故 | x﹣ 5| 和| x﹣ 4| 的零点值分别为 5 和 4;﹣ 6| 有最小值为 3.( 2)当 x<4 时,原式 =5﹣ x+4﹣ x=9﹣ 2x;29.解:∵ | x| = , | y| =,且 x< y< 0,当4≤ x< 5 时,原式 =5﹣ x+x﹣4=1;∴ x=﹣, y=﹣,当 x≥ 5 时,原式 =x﹣ 5+x﹣ 4=2x﹣ 9.∴ 6÷( x﹣ y) =6÷(﹣ + ) =﹣36.综上议论,原式 =.30.【解答】解: | 2| =2, | ﹣| = ,( 3)当 x<4 时,原式 =9﹣ 2x>1;| 3 | =3 , | 0| =0, | ﹣4| =4.当 4≤ x< 5 时,原式 =1;31.解:研究:①数轴上表示 5 和 2 的两点之间的距状元私塾内部资料——全体都有 -针对性练习离是 3,∵点 P 到点 E,点 F 的距离相等,②数轴上表示﹣ 2 和﹣ 6 的两点之间的距离是4,∴ | ﹣3t ﹣(﹣ 3﹣ t ) | =| ﹣ 3t﹣( 1﹣ 4t) | ,③数轴上表示﹣ 4 和 3 的两点之间的距离是7;∴﹣ 2t+3=t ﹣1 或﹣ 2t+3=1﹣ t ,( 3)应用:①假如表示数 a 和 3 的两点之间的距离是7,解得 t= 或 t=2 .则可记为: | a﹣ 3| =7,那么 a=10 或 a=﹣ 4,故答案为:(1)﹣1;( 2)﹣ 4 或 2;(3)﹣3≤ x≤ 1;( 4)②若数轴上表示数 a 的点位于﹣ 4 与 3 之间,或 2.| a+4|+| a﹣ 3| =a+4﹣ a+3=7,a=1 时, | a+4|+|a﹣ 1|+| a﹣ 3| 最小 =7,34.解:( 1) | 3﹣(﹣ 2) | =5,| a+4|+| a﹣ 1|+|a﹣ 3| 是 3 与﹣ 4 两点间的距离.( 2)数轴上有理数 x 与有理数7 所对应两点之间的距32.解: x<﹣ 1 时, | x+1|+| x﹣ 2|+| x﹣ 3| =﹣( x+1)离用绝对值符号能够表示为| x﹣ 7| ,﹣( x﹣ 2)﹣( x﹣3 )=﹣ x﹣1﹣ x+2﹣ x+3=﹣ 3x+4;﹣1≤ x≤ 2 时,| x+1|+| x﹣ 2|+| x﹣ 3| =( x+1)﹣( x﹣2)﹣( x﹣ 3)=x+1﹣ x+2﹣ x+3=﹣ x+6;2<x≤ 3 时, | x+1|+| x﹣ 2|+| x﹣ 3| =( x+1)+( x﹣ 2)﹣(x﹣ 3) =x+1+x﹣ 2﹣x+3=x+2;x> 3 时, | x+1|+| x﹣ 2|+| x﹣ 3| =( x+1) +(x﹣ 2) +( x﹣3) =x+1+x﹣ 2+x﹣3=3x﹣ 4.33.解:( 1)由题意得,| x﹣(﹣ 3) | =| x﹣ 1| ,解得x=﹣ 1;(2)∵ AB=| 1﹣(﹣ 3) | =4,点 P 到点 A,点 B 的距离之和是 6,∴点 P 在点 A 的左侧时,﹣ 3﹣ x+1 ﹣x=6,解得 x=﹣4 ,点 P 在点 B 的右侧时, x﹣ 1+x﹣(﹣ 3)=6,解得 x=2,综上所述, x=﹣ 4 或 2;( 3)由两点之间线段最短可知,点P 在 AB 之间时点P到点 A,点 B 的距离之和最小,因此 x 的取值范围是﹣3≤ x≤1;(4)设运动时间为 t ,点 P 表示的数为﹣ 3t,点 E 表示的数为﹣ 3﹣t ,点 F 表示的数为 1﹣ 4t,( 3)代数式 | x+8| 能够表示数轴上有理数x 与有理数﹣ 8所对应的两点之间的距离;若| x+8| =5,则x=﹣3或﹣13,( 4)如图,| x+1008|+| x+504|+| x﹣ 1007| 的最小值即| 1007 ﹣(﹣1008) | =2015.故答案为: 5, | x﹣ 7| ,﹣ 8, =﹣ 3 或﹣ 13.35.解:∵ | a| =8, | b| =2,∴ a=±8 ,b=± 2,∵| a﹣ b| =b﹣ a,∴ a﹣b≤0.①当 a=8, b=2 时,由于 a﹣ b=6> 0,不符题意,舍去;②当 a=8, b=﹣ 2 时,由于 a﹣ b=10> 0,不符题意,舍去;③当 a=﹣ 8, b=2 时,由于 a﹣ b=﹣ 10<0,符题意;因此 a+b=﹣ 6;④当 a=﹣ 8, b=﹣2 时,由于a﹣b=﹣6<0,符题意,因此 a+b=﹣ 10.综上所述 a+b=﹣10 或﹣ 6.36.解:由数轴得,c> 0, a< b< 0,状元私塾内部资料——全体都有-针对性练习因此 a﹣b<0, a+c< 0, b﹣ c< 0.∴原式 =b﹣ a+a+c+c﹣ b=2c.37.解:∵ ab> 0,∴①当 a> 0, b> 0 时,+=1+1=2.②当 a<0,b<0 时,+=﹣1﹣ 1=﹣ 2.综上所述:+=2 或﹣ 2.38.解:①当a, b 同号时, | a+b| =| a|+| b| ,②当 a,b 中起码有一个0 时, | a+b| =| a|+| b| ,③当 a,b 异号时, | a+b| < | a|+| b| ,综上所述 | a+b| ≤ | a|+| b| .39.解:∵ a> b,∴ a﹣ b> 0,∴( a﹣b )﹢ | a﹣ b| =( a﹣b )+( a﹣b )=2a﹣2b.40.解:(1)当 a> 0 时,=1;当 a< 0 时,=﹣ 1;( 2)∵,∴ a,b异号,当 a> 0,b <0 时,=﹣ 1;当 a< 0,b >0 时,=﹣ 1;。

初一七年级数学绝对值练习题及答案解析完整版

初一七年级数学绝对值练习题及答案解析完整版

初一七年级数学绝对值练习题及答案解析Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】知识点回顾:1、一般的,数轴上表示数a的点与原点的距离叫做绝对值,记做a。

2、由绝对值的定义可知:①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0.3、两个数比较大小的方法:1)数学中规定:在数轴上表示有理数,它们从左往右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

2)一般地①正数大于0,0大于负数,正数大于负数。

②两个负数,绝对值大的反而小。

小试牛刀:1.-8的绝对值是,记做。

2.绝对值等于5的数有。

3.若︱a︱=a,则a。

4.的绝对值是2004,0的绝对值是。

5一个数的绝对值是指在上表示这个数的点到的距离。

6.如果x<y<0,那么︱x︱︱y︱。

7.︱x-1︱=3,则x =。

8.若︱x+3︱+︱y-4︱=0,则x+y=。

9.有理数a,b在数轴上的位置如图所示,则ab,︱a︱︱b︱。

10.︱x︱<л,则整数x=。

11.已知︱x︱-︱y︱=2,且y=-4,则x=。

12.已知︱x︱=2,︱y︱=3,则x+y=。

13.已知︱x+1︱与︱y-2︱互为相反数,则︱x︱+︱y︱=。

14. 式子︱x+1︱的最小值是,这时,x值为。

15. 下列说法错误的是()A一个正数的绝对值一定是正数B一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1) 绝对值是它本身的数有两个,是0和1(2) 任何有理数的绝对值都不是负数(3) 一个有理数的绝对值必为正数(4) 绝对值等于相反数的数一定是非负数A3B2C1D017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a+b+c 等于()A -1B0C1D2拓展提高:18.如果a ,b 互为相反数,c,d 互为倒数,m 的绝对值为2,求式子 a b a b c ++++m -cd 的值。

七年级数学绝对值典型例题

七年级数学绝对值典型例题

七年级数学绝对值典型例题
一、绝对值的基本概念例题
1. 例1:求下列数的绝对值: -5,0,3
解析:
根据绝对值的定义,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

对于公式,因为公式是负数,所以公式。

对于公式,根据定义公式。

对于公式,因为3是正数,所以公式。

2. 例2:已知公式,求公式的值。

解析:
因为公式,根据绝对值的定义,公式可能是公式或者公式,即公式或公式。

二、绝对值在数轴上的应用例题
1. 例3:在数轴上表示数公式的点到原点的距离是3,求公式的值。

解析:
由于数公式的点到原点的距离是3,根据绝对值的几何意义(数轴上表示数公式的点与原点的距离叫做数公式的绝对值),可知公式。

所以公式或公式。

2. 例4:数轴上公式点表示的数为公式,公式点表示的数为公式,求公式、公式两点间的距离。

解析:
根据数轴上两点间的距离公式公式(设两点表示的数分别为公式,公式)。

这里公式,公式,则公式、公式两点间的距离公式。

三、绝对值的性质应用例题
1. 例5:若公式,则公式与公式有什么关系?
解析:
由公式,根据绝对值的性质,公式或公式。

例如公式,这里公式。

2. 例6:已知公式,求公式、公式的值。

解析:
因为绝对值是非负数,即公式,公式。

要使公式成立,则公式且公式。

当公式时,公式,解得公式;当公式时,公式,解得公式。

(完整版)初一数学绝对值经典练习题

(完整版)初一数学绝对值经典练习题

绝对值经典练习1、判断题:⑴、|-a|=|a|.⑵、-|0|=0.⑶、|-312|=-312.⑷、-(-5)-(-5)››-|-5|.⑸、如果a=4,a=4,那么那么那么|a|=4.|a|=4.⑹、如果、如果|a|=4,|a|=4,|a|=4,那么那么a=4.⑺、任何一个有理数的绝对值都是正数、任何一个有理数的绝对值都是正数..⑻、绝对值小于3的整数有2, 1, 0.⑼、-a 一定小于0.⑽、如果、如果|a|=|b|,|a|=|b|,|a|=|b|,那么那么a=b.⑾、绝对值等于本身的数是正数、绝对值等于本身的数是正数..⑿、只有1的倒数等于它本身的倒数等于它本身..⒀、若、若|-X|=5|-X|=5|-X|=5,则,则X=-5.⒁、数轴上原点两旁的点所表示的两个数是互为相反数、数轴上原点两旁的点所表示的两个数是互为相反数..⒂、一个数的绝对值等于它的相反数,那么这个数一定是负数、一个数的绝对值等于它的相反数,那么这个数一定是负数..2、填空题:⑴、当a_____0时,时,-a -a -a››0;⑵、当a_____0时,1a ‹0;⑶、当a_____0时,时,--1a ›0;⑷、当a_____0时,时,|a||a||a|››0;⑸ 、当a_____0时,时,-a -a -a››a; ⑹ 、当a_____0时,时,-a=a;-a=a; ⑺ 、当a ‹0时,时,|a|=______;|a|=______;⑻ 、绝对值小于4的整数有的整数有_______________________________________________________________________________________;; ⑼ 、如果m ‹n ‹0,0,那么那么那么|m|____|n|;|m|____|n|; ⑽ 、当k+3=0时,时,|k|=_____;|k|=_____;⑾ 、若a 、b 都是负数,且都是负数,且|a||a||a|››|b|,|b|,则则a____b; ⑿ 、|m-2|=1,|m-2|=1,则则m=_________; ⒀ 、若、若|x|=x,|x|=x,|x|=x,则则x=________;⒁ 、倒数和绝对值都等于它本身的数是、倒数和绝对值都等于它本身的数是__________;__________;⒂ 、有理数a 、b 在数轴上的位置如图所示,则在数轴上的位置如图所示,则|a|=___;|b|=____;|a|=___;|b|=____; ⒃ 、-223的相反数是的相反数是_____________________,倒数是,倒数是,倒数是__________________,绝对值是,绝对值是,绝对值是_____________________;;⒄ 、绝对值小于10的整数有的整数有_______________个,其中最小的一个是个,其中最小的一个是个,其中最小的一个是_______________;; ⒅ 、一个数的绝对值的相反数是、一个数的绝对值的相反数是-0.04-0.04-0.04,这个数是,这个数是,这个数是_____________________;; ⒆ 、若a 、b 互为相反数,则互为相反数,则|a|____|b|;|a|____|b|; ⒇ 、若、若|a|=|b|,|a|=|b|,|a|=|b|,则则a 和b 的关系为的关系为__________.__________.3、 选择题:⑴ 、下列说法中,错误的是、下列说法中,错误的是__________A .+5的绝对值等于5 B.B.绝对值等于绝对值等于5 的数是5 C .-5的绝对值是5 D.+5D.+5、、-5的绝对值相等 ⑵、如果⑵、如果|a|=||a|=| 1b|,|,那么那么a 与b 之间的关系是 A.a 与b 互为倒数 B.a与b互为相反数C.a〮b=-1 D.a〮b=1或a〮b=-1 ⑶、绝对值最小的有理数是⑶、绝对值最小的有理数是_______ _______A .1 B.0 C.-1 D.D.不存在不存在 ⑷、如果a+b=0,a+b=0,下列格式不一定成立的是下列格式不一定成立的是下列格式不一定成立的是_______ _______A .a=1bB.|a|=|b|C.a=-bD.a ≤0时,b ≤0⑸、如果a <0,那么那么_______ _______A .|a||a|‹‹0 B.-(-a)B.-(-a)››0 C.|a|C.|a|››0 D.-a D.-a‹‹0⑹、有理数a 、b 在数轴上的对应点的位置,分别在原点的两旁,那么在数轴上的对应点的位置,分别在原点的两旁,那么|a||a||a|与与|b|之间的大小关系是之间的大小关系是_______ _______A .|a||a|››|b| B.|a|B.|a|‹‹|b| C.|a|=|b| D.D.无法确定无法确定 ⑺、下列说法正确的是⑺、下列说法正确的是________ ________A .一个数的相反数一定是负数 B.B.两个符号不同的数叫互为相反数两个符号不同的数叫互为相反数 C .|-(+x)|=x D.-|-2|=-2 ⑻、绝对值最小的整数是⑻、绝对值最小的整数是_______ _______A .-1 B.1 C.0 D.D.不存在不存在⑼、下列比较大小正确的是⑼、下列比较大小正确的是_______ _______ A .−56<−45 B.-(-21)B.-(-21)‹‹+(-21) C.-|-1012|›823 D.-|-723|=-(-723) ⑽、绝对值小于3的负数的个数有的负数的个数有______ ______A.2B.3C.4D.D.无数无数⑾、若a 、b 为有理数,那么下列结论中一定正确的是为有理数,那么下列结论中一定正确的是_____ _____A .若a ‹b,b,则则|a||a|‹‹|b| B.B.若若a ›b,b,则则|a||a|››|b| C.C.若若a=b,a=b,则则|a|=|b| D.D.若若a ≠b,b,则则|a||a|≠≠|b|4、计算下列各题:⑴ 、|-8|-|-5| ⑵、(-3-3))+|-3| ⑶、⑶、|-9||-9|×(+5+5)) D 、15÷|-3|5、填表a13−1212 -a -5 7 +14 -(0.1) |a|126、比较下列各组数的大小:⑴ 、-3与-12; ⑵、-0.5与|-2.5|; ⑶、0与-|-9|; ⑷、|-3.5|与-3.57、把下列各数用“‹”连接起来:⑴、 5, 0, |-3|, -3, |- 13|, -(-8), -[−(−8)]; ⑵ 、 123, -512, 0, -614;⑶ 、|-5|, -6, -(-5), -(-10), -|-10|⑷ (|∆|+|∆|)×(-O)=-10,求O、∆,其中O 和∆表示整数.8、比较下列各组数的大小:⑴、-(-912)与-(-812); ⑵、|-572|与50% ⑶、-π与-3.14 ⑷、- 311与-0.273绝对值经典练习答案:1.⑴、√ ⑵、√ ⑶、× ⑷、√ ⑸、√ ⑹、× ⑺、× ⑻、× ⑼、× ⑽、× ⑾、× ⑿、× ⒀、× ⒁、× ⒂、×2.2.⑴‹⑴‹ ⑵‹ ⑶‹ ⑷≠ ⑸‹ ⑹= ⑺-a ⑻±⑻±11,±2,±3,0⑼、>⑽>⑽3 3 ⑾‹ ⑿3或1 ⒀≧⒀≧0 0 ⒁1 ⒂-a -a、、b ⒃223 −38 223 ⒄19 -9 ⒅±⒅±0.04 0.04 ⒆= ⒇相等或互为相反数3.3.⑴⑴B ⑵D ⑶B ⑷A ⑸C ⑹D ⑺D ⑻C ⑼A ⑽D ⑾C4.4.⑴⑴3 ⑵0 ⑶45 ⑷5 5 a 5 0 -7- 14 0.1 -a-130 12 -12 |a| 13 5712140.16.⑴‹ ⑵‹ ⑶› ⑷›7.7.⑴⑴[−(−8)]‹-3-3‹‹0‹|- 13|‹|-3||-3|‹‹5‹-(-8-8)); ⑵-614‹-512‹0‹123;⑶-|-10|-|-10|‹‹-6-6‹‹-|-5|-|-5|‹‹|-5||-5|‹‹-(-10-10)); ⑷5, 5, 1或1, 1, 5或-1-1,, -1-1,, 5或-5-5,, -5-5,, 1 8.⑴› ⑵‹ ⑶‹ ⑷›。

初一数学绝对值练习题

初一数学绝对值练习题

初一数学绝对值练习题一、填空题1. 若 |x 3| = 5,则 x 的值为 _______ 或 _______。

2. 若 |2a + 1| = 3,则 a 的值为 _______ 或 _______。

3. 若 |x| = 0,则 x 的值为 _______。

4. 若 |x + 2| = |x 2|,则 x 的值为 _______。

5. 若 |x| |y| = 5,且 x 和 y 同号,则 x 和 y 的可能取值为 _______ 和 _______。

二、选择题6. 下列哪个式子的值一定大于0?A. |x| 1B. |x| + 1C. |x| xD. |x| + x7. 若 |a 2| = 3,则 a 的值可能是:A. 5B. 1C. 0D. 28. 下列哪个等式是错误的?A. |x| = |x|B. |x + y| = |x| + |y|C. |x y| = |y x|D. |x| |y| = |x y|三、解答题9. 解绝对值方程:|2x 5| = 3。

10. 解绝对值方程组:|x + 1| + |y 2| = 5,|x 3| |y + 1| = 2。

11. 已知 |x 4| < 3,求 x 的取值范围。

12. 已知 |x + 2| > 5,求 x 的取值范围。

13. 已知 |x| + |y| = 5,且 x、y 为整数,求所有可能的整数解。

四、应用题14. 小明和小华在一条笔直的公路上行走,公路上有一个邮筒。

小明从邮筒出发向正北方向走了200米,小华从邮筒出发向正南方向走了300米。

请问两人相距多少米?15. 某城市的出租车计费规则如下:起步价10元(包含3公里),超过3公里后,每公里收费2元。

若小明乘坐出租车行驶了x公里,且x > 3,求小明需要支付的车费。

五、判断题16. 若 |a| = |b|,则 a 一定等于 b。

()17. 绝对值相等的两个数一定相等或互为相反数。

初一数学绝对值练习题

初一数学绝对值练习题

初一数学绝对值练习题一、选择题:1. 绝对值的定义是:一个数的绝对值是其数值与0的距离,即|a|=______。

A. a(当a>0时)B. -a(当a<0时)A和B2. 计算|-5|的结果为:A. 5B. -5C. 0A3. 若|a|=3,则a可能的值是:A. 3B. -3C. 0A和B4. 绝对值的几何意义是表示数轴上一个数到原点的距离,若|-2|=2,则-2在数轴上的位置是:A. 原点B. 距离原点2个单位长度C. 距离原点3个单位长度B5. 已知|a+1|=4,那么a的值可能是:A. 3B. -5C. 5B二、填空题:6. 若|a|=5,则a的值是______。

答案:±57. 计算|-3.5|的结果为______。

答案:3.58. 若一个数的绝对值是它本身,则这个数是______。

答案:非负数9. 若|a-b|=b-a,则a和b的大小关系是______。

答案:a≤b10. 若|-x|=|x|,则x是______。

答案:非负数三、计算题:11. 计算|-7|+|-2|-|3|的值。

答案:7+2-3=612. 若|2x-3|=5,求x的值。

答案:x=4或x=-113. 已知|a|=2,|b|=3,且|a+b|=|a-b|,求a和b的值。

答案:a=2,b=3或a=-2,b=-3四、解答题:14. 一个数的绝对值是它到0的距离,如果一个数的绝对值是4,那么这个数可能是什么?答案:这个数可能是4或-4。

15. 已知|a|=2,|b|=1,且a+b=0,求a和b的值。

答案:由于a+b=0且|a|=2,|b|=1,可以推断出a=2,b=-1或a=-2,b=1。

16. 判断以下说法是否正确,并说明理由:(1)若|a|=|b|,则a=b。

(2)若|a|=|b|,则a=-b。

答案:(1)不正确,因为a和b可以是相反数,例如|-3|=|3|,但-3≠3。

(2)正确,因为如果a和b的绝对值相等,那么它们要么相等,要么互为相反数。

初一绝对值练习题

初一绝对值练习题

初一绝对值练习题一、选择题(每题2分,共20分)1. 绝对值函数\( f(x) = |x - 3| \)在点x=3处的值为:A. -3B. 0C. 3D. 62. 如果\( |a| = |b| \),那么a和b的关系是:A. 相等B. 互为相反数C. 无法确定D. 以上都不对3. 绝对值不等式\( |x - 5| < 2 \)的解集是:A. \( x < 3 \)B. \( 3 < x < 7 \)C. \( x > 7 \)D. \( x <7 \)4. 已知\( |x + 1| = 4 \),则x的值有:A. 1个B. 2个C. 3个D. 4个5. 绝对值函数\( f(x) = |x^2 - 4| \)在x=2时的值为:A. 0B. 4C. 8D. 无法确定二、填空题(每题2分,共20分)6. 若\( |x| = 5 \),则x等于_________。

7. 绝对值的几何意义是表示数轴上点到原点的距离,若\( |a| = 3 \),则a的点到原点的距离是_________。

8. 若\( |3x - 2| = 5 \),则3x - 2等于_________。

9. 若\( |-5| = |5| \),则\( |-5| \)等于_________。

10. 若\( |x + 2| = |x - 2| \),则x等于_________。

三、解答题(每题10分,共30分)11. 解绝对值方程\( |x - 1| = 2 \)。

12. 解绝对值不等式\( |x + 3| > 4 \)。

13. 已知\( |x - 4| + |x + 3| = 7 \),求x的取值范围。

四、应用题(每题15分,共30分)14. 某工厂生产的产品,如果每件产品重量超过标准重量1kg,记作+1kg;如果每件产品重量低于标准重量1kg,记作-1kg。

现在有5件产品,其重量差分别为-2kg,+3kg,-1kg,+2kg,+1kg。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值经典练习
1、判断题:
⑴、|-a|=|a|.
⑵、-|0|=0.
11|=-3.⑶、|-322-|-5|.-(-5)?⑷、|a|=4.a=4,那么⑸、如果那么
a=4.|a|=4,⑹、如果、任何一个有理数的绝对值都是正数.⑺
0.1, 、绝对值小于3的整数有2, ⑻
0.⑼、-a一定小于a=b.⑽、如果|a|=|b|,那么⑾、绝对值等于本身的数是正数.、只有1的倒数等于它本身.⑿X=-5.|-X|=5,则、若⒀
.、数轴上原点两旁的点所表示的两个数是互为相反数⒁、一个数的绝对值等于它的相反数,那么这个数一定是负数.⒂
2、填空题:
⑴、当a_____0时,-a?0;
1?0;、当a_____0时,⑵a1?、当a_____0时,-0;⑶a0;?|a|时,a_____0、当⑷.
a;-a?⑸、当a_____0时,时,-a=a;⑹、当a_____0时,|a|=______;⑺、当a?0
_____________________________;⑻、绝对值小于4的整数有|m|____|n|;0,、如果m?n?那么⑼|k|=_____;⑽、当k+3=0时,
|a|?|b|,则a____b;b⑾、若a、都是负数,且、|m-2|=1,则m=_________;⑿x=________;、若|x|=x,则⒀__________;⒁、倒数和绝对值都等于它本身的数是|a|=___;|b|=____;、b在数轴
上的位置如图所示,则⒂、有理数a2;______⒃、_______,倒数是,绝对值是-2_______的相反数是3;的整数有_____个,其中最小的一个是_____⒄、绝对值小于10;-0.04,这个数是_______⒅、一个数的绝对值的相反数是|a|____|b|;、b互为相反数,则⒆、若a b的关系为__________.、若|a|=|b|,则a和⒇3、选择题:
⑴、下列说法中,错误的是_____
A.+5的绝对值等于5 B.绝对值等于5 的数是5
C.-5的绝对值是5 D.+5、-5的绝对值相等
1⑵、如果|a|=| 之间的关系是与那么ab|,bB.a与b互为相反数互为倒数b与A.a
C.a?b=-1D.a?b=1或a?b=-1
⑶、绝对值最小的有理数是_______
A.1 B.0 C.-1 D.不存在
⑷、如果a+b=0,下列格式不一定成立的是_______
10b≤ D.a≤0时,B.|a|=|b| C.a=-b A.a= b_______
那么a<0,⑸、如果0
D.-a? C.|a|?0 A.|a|?0 B.-(-a)?0
|b|b在数轴上的对应点的位置,分别在原点的两旁,那么|a|与⑹、有理数a、_______
之间的大小关系是 D.无法确定 C.|a|=|b| |a|A.?|b| B.|a|?|b|
________
⑺、下列说法正确的是 B.两个符号不同的数叫互为相反数.一个数的相反数一定是负数AD.-|-2|=-2 C.|-(+x)|=x
_______
⑻、绝对值最小的整数是不存在 D. C.0 .A-1 B.1
_______
⑼、下列比较大小正确的是221452) 7 D.-|-7|=-(- A.? B.-(-21)?+(-21) C.-|-10|?8 ?<
335236______
的负数的个数有⑽、绝对值小于3 D.无数 B.3 A.2 C.4
_____
、ab为有理数,那么下列结论中一定正确的是⑾、若|b| |a|b,a B.若?则? |b| |a|b,aA.若?则?
|b|
≠|a|则b,≠a若D. |a|=|b| 则a=b,若C.
4、计算下列各题:
⑴、|-8|-|-5| ⑵、(-3)+|-3| ⑶、|-9|×(+5)D、15÷|-3|
5、填表
6、比较下列各组数的大小:
1-3.5
与⑷、|-3.5|0与-|-9|; ⑶、;⑵、-0.5与|-2.5|;-⑴、-3与27、把下列各数用“?”连接起来:
1|- |-3|,-3,5,0,⑴、; 8)](?,--8|,-()[?3121;-6-5,0,
⑵、1,432-|-10|
,,,-(-5)-(-10)-6|-5|⑶、,
.
表示整数=-10(-O),求O、?,其中O和?×?|⑷(|+|?|)8、比较下列各组数的大小:
1153-0.273 |-);⑵、与--⑴、(-9)与(-8-%50 ⑶、π与-3.14 ⑷、-与|117222
绝对值经典练习
答案:1.⑴、√⑵、√⑶、×⑷、√⑸、√⑹、×⑺、×⑻、×⑼、×⑽、×⑾、×⑿、×⒀、×⒁、×⒂、×
2.⑴? ⑵? ⑶? ⑷≠⑸? ⑹= ⑺-a ⑻±1,±2,±3,0⑼、>⑽3 ⑾? ⑿232⒇相等或互⒆=⒄19 -9 ⒅±0.04 -a3或1 ⒀≧0 ⒁1 ⒂、b ⒃2 2 ?383为相反数C A ⑽D ⑾A ⑸C ⑹D ⑺D ⑻C ⑼D
3.⑴B ⑵⑶B ⑷5 ⑷⑶45 ⑵
4.⑴3 0
5
6.⑴? ⑵? ⑶? ⑷?
1;(-8)?|?|-3|?5-??7.⑴(8)?-3?0|- ][?3211 ?0?;1-6⑵?-5342)
-10;?-|-10|?-6-|-5|?|-5|?-(⑶1 5 或-5,-5,-1 -15 1 11 5 5⑷,,或,,或,,⑴?8. ⑵?⑶?⑷?。

相关文档
最新文档