七年级数学角的重点习题

合集下载

七年级数学角练习题

七年级数学角练习题

4.3角练习题一、你能判断下列各题的对错吗?1、由同一个端点出发的两条射线叫角。

()2、角的大小与角的两边张开的程度有关,与边长无关。

()3、直线AB与CD相交与点O,可以用三个大写字母表示的角只有四个。

()4、如图,∠1也可以用∠BAC或∠A表示。

()5、直线是平角。

()6、六点钟整,时针与分针组成的角是平角。

()二、你能把正确结论填在题中横线上吗?1、图中的锐角共有__________个.2、1周角= 1平角= 度。

3、8°36′= °,33.4°= °′。

4、45.3°-18°32′= 度分。

5、用量角器量出角的大小,并写出角的种类.∠AOB=,是________角.6、图中有____________个角,它们分别是______________.三、你能把唯一正确结论的代号填入题后括号内吗?1、一个角等于它的补角的5倍,则这个角的补角的余角是()A.30°B.60°C.45°D.50°2、下列叙述中正确的是()A.平角是一条直线B.平角就是两个直角C.两边成一直线的角是平角D.互补的角就是平角3、在6点10分时,钟表上时针和分针的夹角为()A. 120°B. 125°C. 130°D. 135°4、下列六个角:平角, 直角, 平角, 直角, 平角, 平角,其中互为补角的对数为 ( )A.0B.1C.2D.3 5、一个角的余角是它补角的, 这个角的补角是 ( )A.30°B.60°C.120°D.150°6、如果从A 看B 的方向为北偏东25°,那么从B 看A 的方向为( )A . 南偏东65° B. 南偏西65° C. 南偏东25° D.南偏西25°7、小明的家在车站O 的东偏北18°方向300米A 处,学校B 在车站O 的南偏西10°方向200米B 处,小明上学经车站所走的角∠AOB=( )A. 28°B. 108°C. 72°或 36°D.36°或108°8、下列描述正确的是( )A.若∠1+∠2+∠3=180°,则∠1,∠2,∠3互补。

初中数学青岛版七年级下册第8章8.1角的表示练习题-普通用卷

初中数学青岛版七年级下册第8章8.1角的表示练习题-普通用卷

初中数学青岛版七年级下册第8章8.1角的表示练习题一、选择题1.下午3:30时,钟表上的时针与分针间的夹角是()A. 40°B. 50°C. 60°D. 75°2.在上午9时到10时之间,时钟的分针与时针会重合一次,这次的重合时间是()A. 9:48~9:49B. 9:49∼9:50C. 9:50~9:51D. 9:51~9:523.在8:30这一时刻,时钟上的时针和分针之间的夹角为()A. 85°B. 75°C. 70°D. 60°4.若A在B的北偏西30º方向,那么B在A的()方向A. 北偏西30°B. 北偏西60°C. 南偏东30°D. 南偏东60°5.如图,有A,B,C三个地点,且AB⊥BC,从A地测得B地在A地的北偏东43°的方向上,那么从B地测得C地在B地的()A. 南偏西43°B. 南偏东43°C. 北偏东47°D. 北偏西47°6.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A. 80°B. 100°C. 120°D. 140°7.如图,在灯塔O处观测到轮船A位于北偏东70°的方向,轮船B位于南偏东30°的方向,那么∠AOB的大小为()A. 100°B. 40°C. 80°D. 60°8.学校,电影院,公园在平面图上的标点分别是A,B,C,电影院在学校的正东方向,公园在学校的南偏西25º方向,那么平面图上的∠CAB等于()A. 25ºB. 155ºC. 115ºD. 65º9.下列说法中正确的个数是()①由两条射线组成的图形叫做角;②角的大小与边的长短无关,只与两条边张开的角度有关;③角的两边是两条射线;④把一个角放到一个放大10倍的放大镜下观看,角度数也扩大为原来的10倍.A. 1个B. 2个C. 3个D. 4个10.下列图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的图形是()A. B.C. D.11.甲看乙的方向为北偏东35°,那么乙看甲的方向是()A. 南偏西35°B. 南偏东35°C. 南偏东55°D. 南偏西55°12.如图,能用∠AOB、∠O、∠1三种方法表示同一个角的图形是A. B.C. D.二、填空题13.图中一共有______个角.14.钟表上的时间指示为两点半,此时时针与分针所成的角(小于平角)的度数为______.15.如图所示,射线OA表示______ 28°方向,射线OB表示______ 方向,∠AOB=______ °.16.时钟的时间是3点30分,时钟面上的时针与分针的夹角是______.三、解答题17.观察下图,回答下列问题:(1)在图①中有几个角?(2)在图②中有几个角?(3)在图③中有几个角?(4)以此类推,如图④所示,若一个角内有n条射线,此时共有多少个角?18.按照上北下南,左西右东的规定画出表示东南西北的十字线,然后在图上画出表示下列方向的射线:(1)北偏西60∘;(2)南偏东30∘;(3)北偏东45∘;(4)西南方向19.(1)请在给定的图中按照要求画图:①画射线AB;②画平角∠BAD;③连接AC;(2)设点B、C分别表示两个村庄,它们之间要铺设燃气管道.若节省管道,则沿着线段BC铺设.这样做的数学依据是:_________________________20.钟面角是指时钟的时针与分针所成的角.(1)钟面时刻3:00时,钟面角为90°,请举一例:钟面时刻为____,钟面角为90°;(2)6:00至7:00之间,哪些时刻钟面角为90°?答案和解析1.【答案】D【解析】【分析】本题考查了钟面角,确定时针与分针相距的大格数是解题关键.根据时针与分针相距的大格数乘每个大格的度数,可得答案.【解答】解:下午3:30时时针与分针相距2+12=52个大格,每个大格是30∘,下午3:30时,钟表上的时针与分针间的夹角是30×52=75∘.故选D . 2.【答案】B【解析】【分析】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,时钟的时针每小时转过的角是一份,即30°;分针每分钟转过的角是15分,即15×30°=6°;九点钟,时针和分针呈270°,时针1分钟走0.5°,分针一分钟走6°设九点x 分,重合,则有0.5x +270=6x ,即可解答.【解答】解:九点钟,时针和分针呈270°,时针1分钟走0.5°,分针一分钟走6°设九点x 分重合,则有0.5x +270=6x ,x =49111,故选B . 3.【答案】B【解析】解:8:30,时针指向8与9之间,分针指向6,钟表12个数字,每相邻两个数字之间的夹角为30°,∴此时刻分针与时针的夹角正好是2×30°+15°=75°.故选:B.画出图形,利用钟表表盘的特征解答.本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:°,并且利用起点时间时针和分针的位置关系建立角的图形.分针每转动1°时针转动1124.【答案】C【解析】【分析】本题主要考查了方向角的定义,在叙述方向角时一定要注意以哪个图形为参照物是本题的关键.根据A在B的北偏西30º方向,是以B为标准,反之A看B的方向是以A为标准,从而得出答案.【解答】解:如图,A在B的北偏西30º方向,,那么A看B的方向是南偏东30°.故选:C.5.【答案】D【解析】解:∵AF//DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=47°,∴C地在B地的北偏西47°的方向上.故选:D.根据方向角的概念,和平行线的性质求解.本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.6.【答案】D【解析】本题考查方向角,解决此题时,能准确找到方向角是解题的关键.∠BAC等于三个角的和,求出各角的度数,相加即可.【解答】解:由题意,∠BAC=(90°−60°)+90°+20°=140°.故选D.7.【答案】C【解析】解:∵在灯塔O处观测到轮船A位于北偏东70°的方向,同时轮船B在南偏东30°的方向,∴∠AOB=(90°−70°)+(90°−30°)=20°+60°=80°,故选:C.根据在灯塔O处观测到轮船A位于北偏东70°的方向,同时轮船B在南偏东30°的方向,可知∠AOB为90°减去70°与90°减去30°的和,从而可以解答本题.本题考查了方向角,解题的关键利用数形结合的思想,可以由题目中的信息得到所求角的度数.8.【答案】C【解析】【分析】本题考查了方向角.解答此类题需要从运动的角度,正确画出方向角,找准中心是做这类题的关键.根据方向角的概念,正确画出方位图表示出方向角,即可求解.【解答】解:从图中发现平面图上的∠CAB=∠1+∠2=115°.故选C.【解析】【分析】此题主要考查了角的概念,熟练根据角的组成分析得出是解题关键.根据角的定义分别分析得出答案即可.【解答】①角是由两条有公共端点的两条射线组成的图形,故①错误;②角的大小与边的长短无关,只与两条边张开的角度有关,故②正确;③角的两边是两条射线,故③正确;④把一个角放到一个放大10倍的放大镜下观看,角的度数不变,故④错误,故正确的有2个,故选:B.10.【答案】B【解析】解:A、不能用∠1,∠AOB,∠O三种方法表示同一个角,故A选项错误;B、能用∠1,∠AOB,∠O三种方法表示同一个角,故B选项正确;C、不能用∠1,∠AOB,∠O三种方法表示同一个角,故C选项错误;D、不能用∠1,∠AOB,∠O三种方法表示同一个角,故D选项错误;故选:B.根据角的表示方法和图形逐个判断即可.本题考查了角的概念.解题的关键是掌握角的表示方法的运用.11.【答案】A【解析】【分析】本题考查了方向角的知识,属于基础题,解答此类题需要从运动的角度,正确画出方位角,找准中心是解答这类题的关键,根据方位角的概念,画图正确表示出方位角,即可求解.【解答】解:如图:由题意可知∠1=35°,∵AB//CD,∴∠1=∠2,由方向角的概念可知乙在甲的南偏西35°.故选A.12.【答案】D【解析】【分析】本题考查了角的表示方法的应用,掌握角的表示方法是解题的关键.根据角的四种表示方法和具体要求回答即可.【解答】解:A.以O为顶点的角不止一个,不能用∠O表示,故A选项错误;B.以O为顶点的角不止一个,不能用∠O表示,故B选项错误;C.以O为顶点的角不止一个,不能用∠O表示,故C选项错误;D.能用∠1,∠AOB,∠O三种方法表示同一个角,故D选项正确.故选D.13.【答案】6【解析】解:图中的角有:∠AOB、∠AOC、∠AOD、∠BOC、∠BOD、∠COD这6个,故答案为:6.根据角的定义得出图中的角即可.本题主要考查角,熟练掌握角的定义是解题的关键.14.【答案】105°【解析】解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上2点30分,时针与分针的夹角可以看成3×30°+0.5°×30=105°,故答案为:105°.因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:)°,并且利用起点时间时针和分针的位置关系建立角的图形.分针每转动1°时针转动(11215.【答案】北偏东东南107【解析】解:射线OA表示北偏东28°方向,射线OB表示东南方向,∠AOB=(90°−28°)+45°=107°.故答案是:北偏东,东南,107.根据方向角的定义即可解答.本题考查了方向角的定义,理解定义是关键.16.【答案】75°【解析】解:根据钟面上的圆心角的度数规律得,每个大格,即两个相邻数字与圆心所成的圆心角为30°,每个小格所对应的圆心角为6°3点30分时,分针指向6的位置,时针指向3与4中间的位置,因此夹角为2.5个大格所对应的度数,因此2.5×30°=75°,故答案为75°.钟面上每一个小格所对应的圆心角为360°÷60=6°,每两个相邻数字之间所对应的圆心角为6°×5=30°,再根据3点30分时,时针、分针的位置确定几个大格,几个小格,从而确定度数.考查钟面角的特征,明确钟面上的一个小格、一个大格所对应的圆心角的度数是解决问题的关键.17.【答案】解:由分析知:=1(个);(1)①图中有2条射线,则角的个数为:2×(2−1)2=3(个);(2)②图中有3条射线,则角的个数为:3×(3−1)2=6(个);(3)③图中有4条射线,则角的个数为:4×(4−1)2(4)由前三问类推,角内有n条射线时,图中共有(n+2)条射线,则角的个数为(n+1)(n+2)2个.【解析】解答此题首先要弄清楚题目的规律:当图中有n条射线时,每条射线都与(n−1)条射线构成了(n−1)个角,则共有n(n−1)个角,由于两条射线构成一个角,因此角的总数为:n(n−1),可根据这个规律,直接求出(1)(2)(3)的结论;2在解答(4)题时,首先要弄清图中共有多少条射线,已知角内共n条射线,那么图中共有(n+2)条射线,代入上面的规律,即可得到所求的结论.解答此类规律型问题,一定要弄清题目的规律,可以从简单的图形入手进行总结,然后得到一般化结论再进行求解.18.【答案】【解析】略19.【答案】解:①如图所示:②③如图所示:(2)两点之间,线段最短.【解析】【分析】此题考查的是射线、角和线段的画法以及线段的性质,正确理解射线,线段和角的定义是关键.(1)根据射线,角的定义和线段画法作图即可;(2)根据线段性质可得结论.【解答】(1)见答案;(2)设点B 、C 分别表示两个村庄,它们之间要铺设燃气管道.若节省管道,则沿着线段BC 铺设.这样做的数学依据是:两点之间,线段最短.故答案为:两点之间,线段最短.20.【答案】解:(1)9:00(答案不唯一);(2)解:设6点x 分时,钟面角为90°,则6点半前时,30°×(6+x 60)−6°x =90°,解这个方程,得x =18011, 6点半后时,6°x −30°×(6+x 60)=90°,解这个方程,得x =54011. 答:6点18011分或者6点54011分时,钟面角为90°.【解析】【分析】本题考查了一元一次方程的应用,钟面角,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.(1)根据钟面上两格之间为30°进行解答.(2)根据分针1分钟转动6°,时针1分钟转动0.5°,根据角度之间的等量关系:角度差是90°列出方程即可求解.【解答】解:(1)如图所示,9:00时,钟面角为90°.故答案是9:00(答案不唯一);(2)见答案.。

七年级下数学《同位角、内错角、同旁内角》练习题 (43)

七年级下数学《同位角、内错角、同旁内角》练习题 (43)

七年级下数学《同位角、内错角、同旁内角》练习题
1.如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是①②(填序号).
【分析】准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.【解答】解:①∠A与∠1是同位角,此结论正确;
②∠A与∠B是同旁内角,此结论正确;
③∠4与∠1不是内错角,此结论错误;
④∠1与∠3是内错角,此结论错误;
故答案为:①②.
【点评】此题主要考查了三线八角,在复杂的图形中识别同位角、内错角、同旁内角时,应当沿着角的边将图形补全,或者把多余的线暂时略去,找到三线八角的基本图形,进而确定这两个角的位置关系.
1。

七年级数学下册角度习题新人教版

七年级数学下册角度习题新人教版

七年级数学下册角度习题新人教版介绍
本文档提供了七年级数学下册角度题的解答,教材为新人教版。

通过这些题的练,学生能够深入理解角度的概念和属性,并提高解
题能力。

题列表
第一节:角的定义和角的度量
1. 角的定义是什么?
2. 如何度量一个角的大小?
第二节:角的分类
1. 从几个方面可以对角进行分类?
2. 什么是锐角、直角和钝角?
第三节:角的比较和判断
1. 如何比较两个角的大小?
2. 怎样判断一个角是锐角、直角还是钝角?第四节:角的平分线
1. 什么是角的平分线?
2. 如何求角的平分线?
第五节:角的度数
1. 角的度数有哪些基本性质?
2. 如何计算两个角的和?
第六节:角的辨认与转化
1. 如何辨认角?
2. 如何将角转化为相应的度数和弧度?
第七节:角的运算
1. 怎样进行角的加法运算?
2. 如何进行角的乘法运算?
结论
通过完成以上习题,七年级学生可以充分掌握角的概念、属性和运算方法,为进一步学习数学打下坚实基础。

七年级数学期末动点动线动角专题复习题

七年级数学期末动点动线动角专题复习题

七年级数学期末动点动线动角专题复习题1.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2022次相遇在边上.2.阅读下面材料:数学课上,老师给出了如下问题:如图1,∠AOB=80°,OC平分∠AOB,若∠BOD=20°,请你补全图形,并求∠COD 的度数.以下是小明的解答过程:解:如图2,因为OC平分∠AOB,∠AOB=80°,所以∠BOC=∠AOB=°.因为∠BOD=20°,所以∠COD==°.小静说:“我觉得这个题有两种情况,小明考虑的是OD在∠AOB外部的情况,事实上,OD还可能在∠AOB的内部”.完成以下问题:(1)请你将小明的解答过程补充完整;(2)根据小静的想法,请你在图3中画出另一种情况对应的图形,并求出此时∠COD 的度数.3.已知:如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒2°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒4°的速度旋转,如图2,设旋转时间为t(0秒≤t≤90秒).(1)用含t的代数式表示∠MOA的度数.(2)在运动过程中,当∠AOB第二次达到60°时,求t的值.(3)在旋转过程中是否存在这样的t,使得射线OB是由射线OM、射线OA、射线ON 中的其中两条组成的角(指大于0°而不超过180°的角)的平分线?如果存在,请直接写出t的值;如果不存在,请说明理由.4.点O为直线l上一点,射线OA、OB均与直线l重合,如图1所示,过点O作射线OC和射线OD,使得∠BOC=100°,∠COD=90°,作∠AOC的平分线OM.(1)求∠AOC与∠MOD的度数;(2)作射线OP,使得∠BOP+∠AOM=90°,请在图2中画出图形,并求出∠COP的度数;(3)如图3,将射线OB从图1位置开始,绕点O以每秒5°的速度逆时针旋转一周,作∠COD的平分线ON,当∠MON=20°时,求旋转的时间.5.如图1,∠AOB=α,∠COD=β,OM,ON分别是∠AOC,∠BOD的角平分线.(1)若∠AOB=50°,∠COD=30°,当∠COD绕着点O逆时针旋转至射线OB与OC 重合时(如图2),则∠MON的大小为;(2)在(1)的条件下,继续绕着点O逆时针旋转∠COD,当∠BOC=10°时(如图3),求∠MON的大小并说明理由;(3)在∠COD绕点O逆时针旋转过程中,∠MON=.(用含α,β的式子表示).6.已知:如图1,点O是直线AB上的一点.(1)如图1,当∠AOD是直角时,3∠AOC=∠BOD,求∠COD的度数;(2)若∠COD保持在(1)中的大小不变,它绕着点O顺时针旋转(OD与OB重合即停止),如图2,OE、OF分别平分∠AOC、∠BOD,则在旋转过程中∠EOF的大小是否变化?若不变,求出∠EOF的大小;若改变,说明理由;(3)若∠COD从(1)中的位置开始,边OC、边OD分别绕着点O以每秒20°、每秒10°的速度顺时针旋转(当其中一边与OB重合时都停止旋转),OM、ON分别平分∠BOC、∠BOD.求:①运动多少秒后,∠COD=10°;②运动多少秒后,∠COM=∠BON.1.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图1,若∠COF=34°,则∠BOE=;(2)如图1,若∠BOE=m°,则∠COF的度数是;(用含m的代数式表示);(3)当∠COE绕点O逆时针旋转到如图2的位置时,∠BOE与∠COF的数量关系是什么?请说明理由.2.如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.3.乐乐对几何中角平分线部分的学习兴趣浓厚,请你和乐乐一起探究下面问题吧.已知∠AOB=100°,射线OE、OF分别是∠AOC和∠COB的平分线.(1)如图1,若射线OC在∠AOB的内部,且∠AOC=30°,求∠EOF的度数;(2)如图2,若射线OC在∠AOB的内部绕点O旋转,则∠EOF的度数;(3)若射线OC在∠AOB的外部绕点O旋转(旋转中∠AOC,∠BOC,均指小于180°的角),其余条件不变,请借助图3探究∠EOF的大小,请直接写出∠EOF的度数.(不写探究过程)4.如图,一副三角板中各有一个顶点在直线MN的点O处重合,三角板AOB的边OA落在直线MN上,三角板COD绕着顶点O任意旋转.两块三角板都在直线MN的上方,作∠BOD的平分线OP,且∠AOB=45°,∠COD=60°.(1)当点C在射线ON上时(如图1),∠BOP的度数是.(2)现将三角板COD绕着顶点O旋转一个角度x°(即∠CON=x°),请就下列两种情形,分别求出∠BOP的度数(用含x的式子表示)①当∠CON为锐角时(如图2);②当∠CON为钝角时(如图3).5.已知直线AB过点O,∠COD=90°,OE是∠BOC的平分线.(1)操作发现:①如图1,若∠AOC=40°,则∠DOE=°.②如图1,若∠AOC=50°,则∠DOE=°.③如图1,若∠AOC=α,则∠DOE=.(用含α的代数式表示)(2)操作探究:将图1中的∠COD绕顶点O顺时针旋转到图2的位置,其他条件不变,③中的结论是否成立?试说明理由.(3)拓展应用:将图2中的∠COD绕顶点O逆时针旋转到图3的位置,其他条件不变,若∠AOC=α,则∠DOE=.(用含α的代数式表示)6.如图,OC是∠AOB内一条射线,OD、OE别是∠AOC和∠BOC的平分线.(1)如图①,当∠AOB=80°时,则∠DOE的度数为°;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠BOE、∠EOD、∠DOA三角之间有怎样的数量关系?并说明理由;(3)当射线OC在∠AOB外如图③所示位置时,(2)中三个角:∠BOE、∠EOD、∠DOA 之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC在∠AOB外如图④所示位置时,∠BOE、∠EOD、∠DOA之间数量关系是.7.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图1,若∠COF=34°,则∠BOE=;(2)如图1,若∠BOE=80°,则∠COF=;(3)若∠COF=m°,则∠BOE=度;∠BOE与∠COF的数量关系为.(4)当∠COE绕点O逆时针旋转到如图2的位置时,(3)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.。

人教版七年级数学下册5-1-3 同位角、内错角、同旁内角 习题(含答案及(2)

人教版七年级数学下册5-1-3 同位角、内错角、同旁内角 习题(含答案及(2)

5.1.3 同位角、内错角、同旁内角学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.如图,是同位角关系的是( )A.∠3和∠4B.∠1和∠4C.∠2和∠4D.不存在2.如图,与∠1互为同旁内角的角共有()个.A.1 B.2 C.3 D.43.已知∠1与∠2是同旁内角,若∠1=60°,则∠2的度数是( )A.60°B.120°C.60°或120°D.不能确定4.如图,按各组角的位置判断错误的是()A.∠1与∠4是同旁内角B.∠3与∠4是内错角C.∠5与∠6是同旁内角D.∠2与∠5是同位角5.如图,直线a,b被直线c所截,则下列说法中错误的是( )A.∠1与∠2是邻补角B.∠1与∠3是对顶角C.∠2与∠4是同位角D.∠3与∠4是内错角6.如图,与∠4是同旁内角的是( )A.∠1B.∠2C.∠3D.∠57.如图,能与∠a构成同旁内角的角有()A.5个B.4个C.3个D.2个二、填空题1.若平面上4条直线两两相交且无三线共点,则共有同旁内角________对.2.如图,与∠1是同位角的角是___,与∠1是内错角的角是___,与∠1是同旁内角的角是___.3.如图,如果∠2=100°,那么∠1的同位角等于______,∠1的内错角等于_____,∠1的同旁内角等于____.三、解答题1.如图,由∠1=∠2能判断AB∥DF吗?若不能判断AB∥DF,你认为还需要再添加一个什么样的条件?并说明理由.参考答案一、单选题1.B解析:根据同位角的性质可得选项A中的∠1和∠2不是同位角;选项B中的∠1和∠3不是同位角;选项C中的∠1和∠4是同位角;选项D中的∠2和∠3不是同位角.故选B.2.C解析:根据AB和AC被BC所截得出∠2,根据BC和AC被AB所截得出∠CAB,根据DE和BC被AB所截得出∠EAB,即可得出答案.详解:与∠1互为同旁内角的是:∠CAB、∠2、∠EAB,共3个.故选C.点睛:本题考查了对同旁内角的定义的理解和运用,关键是能找出符合条件的所有情况,题目比较好,是一道比较容易出错的题目.3.D分析:同旁内角只有在两条线平行的情况下才是互补的.详解:两直线平行线,同旁内角互补.但是在不知道直线平行的情况下,同旁内角的关系是不确定的. 点睛:本题考查了平行线的性质,熟悉掌握平行线的性质是解题的关键.4.C解析:试题分析:A、∠1和∠A是同旁内角,说法正确;B、∠3和∠4是内错角,说法正确;C、∠5和∠6不是两条直线被第三条直线截成的角,说法错误;D、∠2和∠5是同位角,说法正确.故选C.考点:1.同位角2.内错角3.同旁内角.5.D详解:解:∠3与∠4是同旁内角.故选:D6.C解析:根据同位角、内错角、同旁内角、对顶角的定义逐个判断即可.详解:A、∠1和∠4是内错角,不是同旁内角,故本选项错误;B、∠2和∠4是同位角,不是同旁内角,故本选项错误;C、∠3和∠4是同旁内角,故本选项正确;D、∠4和∠5是邻补角,不是同旁内角,故本选项错误;故选C.点睛:本题考查了同位角、内错角、同旁内角、对顶角的定义的应用,能熟记同位角、内错角、同旁内角、对顶角的定义是解此题的关键,注意:数形结合思想的应用.7.A解析:如图有5个同旁内角,故选A.点睛:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”,否则同位角,内错角不一定相等,同旁内角不一定互补.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.二、填空题1.24解析:根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.详解:解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和E有2对;A 和F有2对.B和C有2对;B和D有2对;B和E有2对;B和F没有同旁内角.C和D有2对,C和E没有同旁内角,C和F有2对.D和E有2对;D和F有2对.E和F有2对.共有2×12=24对.故答案是:24.点睛:本题主要考察三线八角中的同旁内角,正确理解同旁内角和准确的分类是解题的关键.2.∠4 ∠2 ∠5解析:根据同位角、内错角和同旁内角的特征(同位角形如“F”,内错角形如“Z”,同旁内角形如“U”)判断即可.详解:∠1与∠4的两条边组成“F”形的图案,故∠1的同位角是∠4;∠1与∠2的两条边组成“Z”形的图案,故∠1的内错角是∠2;∠1与∠5的两条边组成“U”形的图案,故∠1的同旁内角是∠5.故答案是:∠4;∠2;∠5点睛:本题主要考察三线八角中三种角的找法,正确区分同位角、内错角和同旁内角的特点是解题的关键.3.80° 80° 100°解析:试题根据图形可知,∠1的同位角与∠2互补,则∠1的同位角等于80°,∠1的内错角与∠2互补,则∠1的内错角等于80°,∠1的同旁内角与∠2是对顶角,则∠1的同旁内角等于100°.故答案为80°;80°;100°.三、解答题1.不能,理由见解析.解析:分析:∠1=∠2不是AB,DF两条直线的内错角或同位角,不符合平行线的判定条件;如果∠CBD=∠EDB,则∠CBD+∠1=∠EDB+∠2,即∠ABD=∠FDB,满足AB∥DF的条件.详解:不能,添加条件:∠CBD=∠EDB,∵∠CBD=∠EDB,∠1=∠2,∴∠CBD+∠1=∠EDB+∠2,即∠ABD=∠FDB,∴AB∥DF.点睛:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.。

七年级上册数学同步练习题库:角(简答题:一般)

七年级上册数学同步练习题库:角(简答题:一般)

角(简答题:一般)1、如图,AOB为直线,OC平分∠AOD,∠BOD=42°,求∠A OC的度数.2、如图,在△ABC中,AC∥DE,DC∥FE,CD平分∠BCA,求证:EF平分∠BED3、如图在ABCD中,已知CD=8,AD=5,AE平分∠BAD交DC于E,交BC的延长线于F,求CF的长.4、小亮利用星期天搞社会调查活动,早晨8:00出发,中午12:30到家,问小亮出发时和到家时时针和分针的夹角各为多少度.5、若时钟由2点30分走到2点55分,问时针、分针各转过多大的角度?6、如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数.7、点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.图1 图2(1)如图1,将三角板MON的一边ON与射线OB重合时,则∠MOC=;(2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的平分线,求∠BON和∠CON的度数.8、如图,已知AC=AB,AE=AD,CE=BD,B,E,D三点在同一条直线上.(1)求证:∠1=∠2.(2)求证:AE平分∠CE D.(3)若CE∥AD,求∠1的度数.9、已知:如图:AD是△ABC的角平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,EG∥AD.求证:∠AFG=∠G.10、(本题10分)如图,AB交CD于点O,OE⊥AB.(1)若∠EOD=20°,求∠AOC的度数;(2)若∠AOC:∠BOC=1:2,求∠EOD的度数.11、如图(1),将两块直角三角板的直角顶点C叠放在一起.(1)试判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想∠ACB与∠DCE的数量关系,并说明理由;(4)若改变其中一个三角板的位置,如图(2),则第(3)小题的结论还成立吗?(不需说明理由)12、如图,∠AOB=35°,∠BOC=90°,OD是∠AOC的平分线,求∠BOD的度数.13、如图,O为直线AB上一点,OD平分∠AOC,OE平分∠COB,①问:DO与OE有何关系?并说明你的理由.②图中有几对互余的角?试写出所有你认为互余的角.14、如图,O是直线AB上一点,OC为任意一条射线,OD平分∠BOC,OE平分∠AOC.(1)指出图中∠AOD与∠BOE的补角;(2)试判断∠COD与∠COE具有怎样的数量关系.并说明理由.15、O为直线DA上一点,OB⊥OF,EO是∠AOB的平分线.(1)如图(1),若∠AOB=130°,求∠EOF的度数;(2)若∠AOB=α,90°<α<180°,求∠EOF的度数;(3)若∠AOB=α,0°<α<90°,请在图(2)中画出射线OF,使得(2)中∠EOF的结果仍然成立.16、(2015秋•常州期末)已知:点O为直线AB上一点,∠COD=90°,射线OE平分∠AOD.(1)如图①所示,若∠COE=20°,则∠BOD= °.(2)若将∠COD绕点O旋转至图②的位置,试判断∠BOD和∠COE的数量关系,并说明理由;(3)若将∠COD绕点O旋转至图③的位置,∠BOD和∠COE的数量关系是否发生变化?并请说明理由.(4)若将∠COD绕点O旋转至图④的位置,继续探究∠BOD和∠COE的数量关系,请直接写出∠BOD和∠COE之间的数量关系:.17、如图,两直线AB,CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7,(1)求∠DOE的度数;(2)若OF⊥OE,求∠COF的度数.18、(本题满分10分)如果两个角的差的绝对值等于,就称这两个角互为反余角,其中一个角叫做另一个角的反余角.例如:,,,则和互为反余角,其中是的反余角,也是的反余角.(1)如图,为直线上一点,于点,于点,的反余角是,则的反余角是.(2)若一个角的反余角是它的补角的,求这个角.19、一个角的补角比它的余角的4倍少,求这个角的度数.20、如图,直线AB、CD相交于点O,射线OM,ON分别平分∠AOC,∠AOD,,求的度数.21、如图,已知CO⊥AB于点O,∠AOD=5∠DOB,求∠COD的度数.22、请估计下面角的大小,然后再用量角器测量.23、三角板如下图所示放置,在图上加弧线的角为多少度?24、两角差是36°,且它们的度数比是3∶2,则这两角的和是多少?解法一:设这两角度数分别为(3x)°和(2x)°,则根据题意列方程为:_______________,解方程,得:x="____________," ∴3x+2x=______________.解法二:设这两个角的度数和为x°,则这两个角分别为_______和_______,根据题意列方程为:_______________________________,解方程得:x =______________,∴这两角的和是____________°.25、已知下列条件,求角的度数。

初一下册数学角度几何解析题以及练习题(附答案)-七年级下册几何求角度数

初一下册数学角度几何解析题以及练习题(附答案)-七年级下册几何求角度数

七年级下册数学几何解析题以及练习题(附答案)宇文皓月9.(2011·扬州)如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =________.答案 105°解析 如图,∵(60°+∠CAB )+(45°+∠ABC )=180°,∴∠CAB +∠ABC =75°,在△ABC 中,得∠C =105°.12.如图所示,在△ABC 中,∠A =80°,∠B =30°,CD 平分∠ACB ,DE ∥AC .(1)求∠DEB 的度数;(2)求∠EDC 的度数.解 (1)在△ABC 中,∠A =80°,∠B =30°,∴∠ACB =180°-∠A -∠B =70°.∵DE ∥AC ,∴∠DEB =∠ACB =70°.(2)∵CD 平分∠ACB ,∴∠DCE =12∠ACB =35°. ∵∠DEB =∠DCE +∠EDC ,∴∠EDC =70°-35°=35°.13.已知,如图,∠1=∠2,CF ⊥AB 于F ,DE ⊥AB 于E ,求证:FG ∥BC .(请将证明弥补完整)证明 ∵CF ⊥AB ,DE ⊥AB (已知),∴ED∥FC( ).∴∠1=∠BCF( ).又∵∠1=∠2(已知),∴∠2=∠BCF(等量代换),∴FG∥BC( ).解在同一平面内,垂直于同一直线的两条直线互相平行;两直线平行,同位角相等;内错角相等,两直线平行.14.如图,已知三角形ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一平角,依辅助线分歧而得多种证法,如下:证法1:如图甲,延长BC到D,过C画CE∥BA.∵BA∥CE(作图所知),∴∠B=∠1,∠A=∠2(两直线平行,同位角、内错角相等).又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).如图乙,过BC上任一点F,画FH∥AC,FG∥AB,这种添加辅助线的方法能证明∠A+∠B+∠C=180°吗?请你试一试.解∵FH∥AC,∴∠BHF=∠A,∠1=∠C.∵FG∥AB,∴∠BHF=∠2,∠3=∠B,∴∠2=∠A.∵∠BFC=180°,∴∠1+∠2+∠3=180°,即∠A+∠B+∠C=180°.15.(2010·玉溪)平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD.又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.解(1)不成立,结论是∠BPD=∠B+∠D.延长BP交CD于点E,∵AB∥CD,∴∠B=∠BED.又∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)设AC与BF交于点G.由(2)的结论得:∠AGB=∠A+∠B+∠E.又∵∠AGB =∠CGF ,∠CGF +∠C +∠D +∠F =360°,∴∠A +∠B +∠C +∠D +∠E +∠F =360°. 14.把一副经常使用的三角板如图所示拼在一起,那么图中∠ADE 是度. 2.如图,在△ABC 和△ABD 中,现给出如下三个论断:①AD =BC ;②∠C =∠D ;③∠1=∠2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优秀资料 欢迎下载!
七年级数学角的重点练习题

1、如图,OD、OE分别是∠AOC和∠BOC的平分线,∠AOD=40°,∠BOE=25°,求∠AOB的度数.


解:∵OD平分∠AOC,OE平分∠BOC,
∴∠AOC=2∠AOD,
∠BOC=2∠______.
∵∠AOD=40°,∠BOE=25°,
∴∠BOC=______,
∠AOC=______.
∴∠AOB=____
2、如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD.

3、已知:如图∠ABC=30°,∠CBD=70°BE是∠ABD的平分线,求∠DBE的度数。
4、如图,①∠AOC=60°,∠AOB和∠COD都是直角,则∠AOD+∠BOC= ;
②若∠AOC=30°,∠AOB=90°,∠COD=90°,则∠AOD+∠BOC= ;
③∠AOB和∠COD都是直角,试猜想∠AOD和∠BOC这两个角在数量上存在怎样的关系?并说明理由;
④当∠COD绕点O旋转到图(2)的位置,你原来的猜想的结论还正确吗?为什

5、.如图,AO⊥BO,直线CD经过点O,∠AOC=30°,求∠BOD的度数.
6、如图,点A、O、E在同一直线上,∠AOB=40°,∠EOD=28°46’,OD平分∠COE,求∠COB的度数
优秀资料 欢迎下载!
EDCBA
O

7、如图,已知直线AB和CD相交于O点,COE∠是直角,OF平分AOE∠,34COF∠,求BOD∠
的度数.

8、如图,点O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线,若∠AOD=14°, 求∠DOE、
∠BOE的度数.

9、如图10,将长方形纸片沿AC对折,使点B落在B′,CF平分∠B′CE,求∠ACF的
度数.

10、如图14,将一副三角尺的直角顶点重合在一起.
(1)若∠DOB与∠DOA的比是2∶11,求∠BOC的度数.

(2)若叠合所成的∠BOC=n°(011、如图,已知∠AOB=90°,OM,ON分别平分∠AOC和∠BOC,
(1) 若∠AOC=30°,求∠MON的度数,
(2) 若∠BOC=50°,求∠MON的度数,
(3) 由(1)(2)你发现了什么,请写出结论,并说明理由。

图10
A
CB
E

F
B
'

A
B
C
N

M
O
优秀资料 欢迎下载!
12、 如图,已知∠AOB=90°,OM,ON分别平分∠AOC和∠BOC,
(1) 若∠AOC=40°,求∠MON的度数,
(2) 若∠AOC=α,求∠MON的度数,
(3) 若∠BOC=β,求∠MON的度数,
(4) 由(1)(2)(3)的结果,你发现了什么规律,请写出结论,并说
明理由。

13、已知∠AOB=α,过O任作一射线OC,OM平分∠AOC,ON平分∠BOC,
(1) 如图,当OC在∠AOB内部时,试探寻∠MON与α的关系;
(2) 当OC在∠AOB外部时,其它条件不变,上述关系是否成立?画出相应图形,并说明理由。

14、已知:如图,O是直线AB上一点,AOC=BOD,射线OE平分BOC,
EOD=42,求EOC的大小

15、12AOBAOCAODAOCBOCBOD如图,已知是的余角,是的补角,且,
AOCBOD求、的度数。

16、如图,从点O引出6条射线OA,OB,OC,OD,OE,OF,且∠AOB100,OF平分∠BOC,∠AOE∠DOE,∠EOF140,
求∠COD度数。

O
A

B
C
D

A
B
C
N

M
O

B
ACNMO

O A B
C
D

E
优秀资料 欢迎下载!
17、如图,∠AOB的平分线为OM,ON为∠MOA内的一条射线,OG为∠AOB外的一条射线,某同学经过认真的分析,得
出一个关系式是∠MON=21(∠BON-∠AON),你认为这个同学得出的关系式是正确的吗?若正确,请把得出这个结论的
过程写出来。

相关文档
最新文档