材料力学 第八章 - 弯曲变形要点

合集下载

材料力学(赵振伟)梁的弯曲变形2

材料力学(赵振伟)梁的弯曲变形2

3. 应用叠加原理的若干情况 1 ) 荷载的分解或重组
q m
q
L/2 L/2
L
F
q
q
m L/2 L/2
F

q0
EI
A 求图示自由端的挠度。
L2
L2
q0
L
w1
q0
w3
B
w2
L2
L2
w1
q0 L4 8EI
w2
q0 L 24
8EI
q0 L4 128EI
w3
B
L 2
q0 L 23
6EI
L 2
q0 L4 96EI
wA
w1
w2
w3
41q0 L4 384EI
2) 逐段刚化法
依据: 若结构可分为若干部分,且各部分在荷载作用下的 变形不是相互独立的,那么,结构中 A 点的位移是各个部 分在这一荷载作用下的变形在 A 点所引起的位移的叠加。
A EI a
变形刚体
F
F
Fa 2
B
C
a/2
wwww1122
B (F1, F2,, Fn ) B1(F1) B2 (F2 ) Bn(Fn )
yB (F1, F2,, Fn ) yB1(F1) yB2 (F2 ) yBn(Fn )
叠加法的特征: 1、梁在简单载荷作用下挠度、转角应为已知或有变形表可查; 2、叠加法适用于求梁个别截面的挠度或转角值。
分析和讨论
q
在下列不同的支承方 式中,哪一种刚度最高?
q
q
分析和讨论
q
梁由混凝土材料制成,如果横截面从左图改为右图,能 够改善强度吗?能够改善刚度吗?
梁的材料由普通钢改为优质钢,能够改善强度吗? 梁的材料由普通钢改为优质钢,能够改善刚度吗?

材料力学-弯曲变形

材料力学-弯曲变形

(向下)
qB
qmax
w(l)
Pl 2 2EI
(顺时针)
例题2
图示的等截面简支梁长为l,抗弯刚度为
EI,在右端受有集中力偶M0的作用,求梁任
一截面的转角和挠度。
y
解:
由整体平衡得 FAx=0, FAy= FBy= M0/l 从而,截面的弯矩为
M(x)= xFAy= xM0/l
FAx A x o
FAy
横截面变形:
线位移:长度变化
水平方向—小变形假定,挠曲轴平坦,忽略不计 垂直方向—挠度 w= w(x)
转角:角度变化
横截面相对于原位置转过的夹角,
一般用q (x)表示截面转角,并且以逆时针为正
q'
对于细长梁,略去剪力对变形影响 平截面假设成立: 变形的横截面与挠曲轴垂直
q q tan q dw
(l 2
a2)
y
例题3
P x
A
C
于是,梁的挠曲线方程为 FAx
l
w
w1 w2
(x) (x)
0 xa a xb
FAy
a
b
Pb
6 EIl
Pa
6 EIl
x3 (b2 l2 )x (l x)3 (a2 l2
)(l
x)
0 xa a xl
转角方程为
q w ww12((xx))
0 xa a xb
Pb 2EIl
x2
C1
ቤተ መጻሕፍቲ ባይዱdx
Pb 6EIl
x3
C1x
D1
同理,对CB段
w2
w2dx C2
Pa EIl
(l
x)dx
C2

《材料力学》课件8-2两相互垂直平面内的弯曲

《材料力学》课件8-2两相互垂直平面内的弯曲

弯曲变形的分布
弯曲变形的分布规律
两相互垂直平面内的弯曲变形分布规律与受力情况、材料性质和结构特点等因 素有关。通过分析这些因素,可以确定变形在两个相互垂直平面内的分布情况 。
变形分布对结构性能的影响
弯曲变形的分布情况直接影响到结构的承载能力和稳定性。因此,在设计过程 中,需要充分考虑变形分布的影响,以优化结构性能。
THANKS
感谢观看
案例三:机械零件的弯曲分析
总结词
机械零件的弯曲分析是机械工程中常见的分析类型,主 要关注的是零件在不同工况下的变形和应力分布。
详细描述
在机械零件设计中,两相互垂直平面内的弯曲分析是评 估零件性能的重要手段。通过弯曲分析,可以优化零件 的结构设计,提高零件的刚度和强度,降低应力集中和 疲劳失效的风险,从而提高机械设备的可靠性和稳定性 。
弯曲强度的分布
弯曲强度的分布规律
在两相互垂直平面内的弯曲中,弯曲强度在截面上呈线性分布,即离中性轴越远,弯曲 强度越大。
弯曲强度分布的影响因素
弯曲强度分布受到多种因素的影响,如截面形状、材料性质、弯矩大小等。例如,对于 矩形截面,其弯曲强度分布与弯矩的分布密切相关。
弯曲强度的应用
结构设计中的应用
案例二:建筑结构的弯曲分析
要点一
总结词
要点二
详细描述
建筑结构的弯曲分析主要关注的是在不同载荷和环境因素 下结构的稳定性。
建筑结构的弯曲分析需要考虑的因素包括结构形式、材料 特性、支撑条件、外部载荷等。通过弯曲分析,可以预测 建筑在不同工况下的变形和应力分布,从而优化建筑设计 ,提高建筑的稳定性和安全性。
03
两相互垂直平面内的弯曲的应力 分析
弯曲应力的计算
弯曲应力的计算公式

材料力学—弯曲变形

材料力学—弯曲变形

判断方法:(两种方法)
左上右下为正
使研究对象顺时针转动为正
具体计算时:(黑色表示外力,蓝色表示内力)
S
F
S
F
S
F
S
F
F
判断方法:(两种方法)
左顺右逆为正 上凹下凸为正
具体计算时:(黑色表示外力,红色表示内力)
正: 负:
M
直接求解剪力和弯矩的法则:
1、 任意截面上的剪力=[∑一侧横向力代数值] 横向力:包含载荷、约束力、分布力、集中力 代数值:左上右下为正,反之为负
2、 任意截面上的弯矩=[∑一侧外力对截面形心之矩的代数值] 外力:包含载荷、约束力、分布力、集中力、集中力偶 代数值:左顺右逆为正,反之为负 截面形心:所求截面的截面形心
绘制剪力弯矩图的方法(从左往右绘制):
q F F S s +=12所围成的面积 S F M M +=12所围成的面积。

《材料力学》课程讲解课件第八章组合变形

《材料力学》课程讲解课件第八章组合变形

强度条件(简单应力状态)——
max
对有棱角的截面,最大的正应力发生在棱角点处,且处于单向应力状态。
max
N A
M zmax Wz
M ymax Wy
x
对于无棱角的截面如何进行强度计算——
1、确定中性轴的位置;
y
F z
M z F ey M y F ez
ez F ey z
y
zk yk z
y
x
1、荷载的分解
F
Fy F cos
Fz F sin
z
2、任意横截面任意点的“σ”
x
F
y
(1)内力: M z (x) Fy x F cos x
M y (x) Fz x F sin x
(2)应力:
Mz k
M z yk Iz
My k
M y zk Iy
(应力的 “+”、“-” 由变形判断)
F
1, 首先将斜弯曲分解
为两个平面弯曲的叠加 Fy F cos
z
L2
L2
Fz F sin
z
2, 确定两个平面弯曲的最大弯矩
y
Mz
Fy L 4
M
y
Fz L 4
3, 计算最大正应力并校核强度
max
My Wy
Mz Wz
217.8MPa
查表: Wy 692.2cm3
4, 讨论 0
y
Wz 70.758cm3
的直径为d3,用第四强度理论设计的直径为d4,则d3 ___=__ d4。
(填“>”、“<”或“=”)
因受拉弯组合变形的杆件,危险点上只有正应力,而无切应力,
r3 1 3 2 4 2
r4

材料力学-第八章叠加法求变形(3-4-5)

材料力学-第八章叠加法求变形(3-4-5)

C
刚化
P
EI=
C
θc1
fc1
pa3 3EI
fc1
c1
pa2 2EI
2)AB部分引起的位移fc2、 θc2
P
A
θ B B2
C
fc2 刚化
EI=
B2
PaL 3EI
fc2 B2 a
PaL a 3EI
c c1 B2
θB2
P Pa
c
Pቤተ መጻሕፍቲ ባይዱ 2 2EI
PaL 3EI
fc fc1 fc2
fc
pa3 3EI
MPa,[]=100
MPa,E=210
GPa,
w l
1 400

例题 5-7
解:一般情况下,梁的强度由正应力控制,选择梁横 截面的尺寸时,先按正应力强度条件选择截面尺寸, 再按切应力强度条件进行校核,最后再按刚度条件 进行校核。如果切应力强度条件不满足,或刚度条 件不满足,应适当增加横截面尺寸。
[例8-3]如图用叠加法求 wC、A、B
解:1.求各载荷产生的位移 2.将同点的位移叠加
=
wC
5qL4 384EI
A
qL3 24EI
B
qL3 24EI
+
PL3 48EI
PL2
16EI PL2
16EI
+
ML2 16EI
ML 3EI
ML 6EI
例题 5-4
试按叠加原理求图a所示简支梁的跨中截面的
16EI
1 qa4 24 EI
()
例题 5-5
图b所示悬臂梁AB的受力情况与原外伸梁AB
段相同,但要注意原外伸梁的B截面是可以转动的,

工程力学(材料力学)8 弯曲变形与静不定梁

工程力学(材料力学)8 弯曲变形与静不定梁

B
ql4 RBl3 0
8EI 3EI
q 约束反力为
B
RB
3 8
ql
RB
用变形比较法求解静不定梁的一般步骤:
(1)选择基本静定系,确定多余约束及反力。 (2)比较基本静定系与静不定梁在多余处的变形、确定 变形协调条件。 (3)计算各自的变形,利用叠加法列出补充方程。 (4)由平衡方程和补充方程求出多余反力,其后内力、 强度、刚度的计算与静定梁完全相同。
教学重点
• 梁弯曲变形的基本概念; • 挠曲线的近似微分方程; • 积分法和叠加法计算梁的变形; • 梁的刚度条件。
教学难点
• 挠曲线近似微分方程的推导过程; • 积分法和叠加法计算梁的变形; • 变形比较法求解静不定梁。
第一节 弯曲变形的基本概念
齿轮传动轴的弯曲变形
轧钢机(或压延机)的弯曲变形
例13-4 用叠加法求图示梁的 yC、A、B ,EI=常量。
M
P
解 运用叠加法
A
C
l/2
l/2
A
=
q
5ql4 Pl3 ml2
B
yC
384EI
48EI
16EI
A
ql3 24EI
Pl 2
16EI
ml 3EI
B
B
ql3 24EI
Pl2 16EI
ml 3EI
M
+
q
A
+
BA
B
二、梁的刚度条件
y max y,
A
max
A ql3
B
24EI
RA
q
A
θB
l
B θB RB
在梁跨中点 l /2 处有 最大挠度值

材料力学-弯曲变形(内力)ppt课件

材料力学-弯曲变形(内力)ppt课件

2021/4/23
任务一 计算梁的弯曲变形内力
❖ 知识目标 ❖ 能力目标 ❖ 任务描述 ❖ 任务分析 ❖ 相关知识 ❖ 任务实施 ❖ 任务拓展 ❖ 思考与练习
弯曲变形
3333
机械基础-材料力学-弯曲变形
20212/0241//42/233
任务拓展-做剪力图和弯矩图
弯曲变形
FRA
MO
a
b
A
C
x1
x2
桥梁
弯曲变形
55
机械基础-材料力学-弯曲变形
20212/0241//42/233
厂房吊运物料
弯曲变形
6
机械基础-材料力学-弯曲变形
2021/4/23
任务一 计算梁的弯曲变形内力
弯曲变形
❖ 知识目标 ❖ 能力目标 ❖ 任务描述 ❖ 任务分析 ❖ 相关知识 ❖ 任务实施 ❖ 任务拓展 ❖ 思考与练习
任务一 计算梁的弯曲变形内力
弯曲变形
❖ 知识目标 ❖ 能力目标 ❖ 任务描述 ❖ 任务分析 ❖ 相关知识 ❖ 任务实施 ❖ 任务拓展 ❖ 思考与练习
✓ 分析梁的变形。 ✓ 分析梁发生弯曲变形时受的内力。 ✓ 求出梁弯曲时的内力。
99
机械基础-材料力学-弯曲变形
20212/0241//42/233
相关知识
解:1、求支座反力
F x0, F A x0
MA0, FBF l a
MB0, FAyFb
l
弯曲变形
F
a
b
A
B
x
l
FAx
A FAy
F B
FB
21
机械基础-材料力学-弯曲变形
2021/4/23
相关知识-剪力和弯矩
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档