门限分位数自回归模型及在股市收益自相关分析中的应用
分位数回归分析

分位数回归分析简介分位数回归分析(Quantile Regression Analysis)是一种统计分析方法,用来研究因变量与一个或多个自变量之间关系的非线性问题。
相比于传统的OLS(Ordinary Least Squares)回归分析,分位数回归分析更加灵活,能够提供对不同分位数的因变量条件分布的估计。
分位数回归的定义在传统的OLS回归中,我们通过找到一条线性回归方程来描述自变量和因变量之间的关系。
但是,OLS回归假设因变量在各个条件上的分布是相同的,即在不同的自变量取值下,因变量的条件分布是相同的。
而在分位数回归中,我们允许因变量在不同条件下的分布产生变化,因此可以更准确地描述不同区间的因变量与自变量之间的关系。
分位数回归的目标是找到一组系数,用于描述自变量与因变量在给定分位数时的关系。
分位数回归通过最小化残差的绝对值之和来估计这组系数。
这种方法使得我们能够探索不同分位数下自变量和因变量之间的变化。
分位数回归的优势相比于OLS回归,分位数回归具有以下优势:1.非线性建模能力:分位数回归能够对因变量和自变量之间的非线性关系进行建模,从而更准确地描述实际数据的特征。
2.探索条件分布的能力:由于分位数回归允许因变量在不同条件下的分布变化,因此可以提供对不同分位数的条件分布的估计,进一步帮助我们理解数据的性质。
3.对异常值的鲁棒性:分位数回归对异常值更加鲁棒,因为它通过最小化残差的绝对值之和来估计系数,而不是最小二乘法中常用的最小化残差的平方和。
4.考虑不完全因果关系:分位数回归可以用来研究因变量对自变量的影响程度,考虑到因变量可能由其他未观测的变量影响,从而提供了一种更加全面的因果分析方法。
分位数回归的应用分位数回归广泛应用于各个领域,以下是一些常见的应用场景:1.收入和贫困研究:分位数回归可以用来研究不同收入水平下的贫困率变化,进一步探讨收入不平等的影响因素。
2.教育研究:分位数回归可以用来研究教育水平对工资收入的影响情况,从而分析教育对个体生活水平的提高程度。
stata 分位数向量自回归

在文章中,我会从概念和原理入手,逐步深入到应用和实践中,以便你能够更全面地理解stata分位数向量自回归的内容。
我将详细介绍分位数向量自回归的基本概念、数学原理和Stata软件中的操作步骤,并结合实际案例进行说明。
在文章的结尾,我会对分位数向量自回归进行总结和回顾,共享我的个人观点和理解,以便你能够全面、深刻和灵活地掌握这一主题。
1.分位数向量自回归的基本概念分位数向量自回归是指根据分位数来估计自回归模型的一种方法。
在时间序列数据中,我们通常会对数据进行分位数回归分析,以观察数据在不同分位数下的变化情况。
在分位数向量自回归中,我们会将自回归模型扩展到分位数上,以更全面地了解数据的变化规律。
2.分位数向量自回归的数学原理分位数向量自回归的数学原理涉及到分位数回归和向量自回归两个方面。
在分位数回归中,我们会利用分位数来估计自变量与因变量之间的关系,从而得到不同分位数下的回归系数。
而在向量自回归中,我们会考虑多个时间序列变量之间的相互影响和动态调整关系。
将这两个原理结合起来,就形成了分位数向量自回归的数学基础。
3.Stata软件中的分位数向量自回归操作步骤在Stata软件中,进行分位数向量自回归分析的操作步骤主要包括数据准备、模型设定、参数估计和结果解释等几个环节。
我们需要首先准备好时间序列数据,并进行数据格式的调整和转化。
设定分位数向量自回归模型的参数和变量,进行模型的估计和诊断,并最终解释回归结果和模型性能。
在Stata中,可以使用相关的命令和函数来实现这些操作,如qreg、xtset、estat等。
4.实际案例分析接下来,我会结合一个实际的案例来说明分位数向量自回归的分析过程和结果解释。
通过具体的数据和实例,你可以更清晰地理解分位数向量自回归的应用和意义。
在案例分析中,我会包括数据的描述和处理、模型的设定和参数估计,以及回归结果的解释和诊断。
总结和回顾在文章的结尾,我会对分位数向量自回归进行总结和回顾,将重点内容进行概括和归纳,以便你能够更全面地掌握这一主题。
面板分位数回归模型

面板分位数回归模型面板分位数回归模型是一种用于分析什么因素会影响某个特定变量的统计模型。
它主要应用于面板数据分析中,旨在解释某个因变量在所研究个体之间的差异,以及这种差异如何随着独立变量的变化而改变。
本文将详细介绍面板分位数回归模型的相关概念、假设、解释和应用,帮助读者了解并运用这一模型。
什么是面板数据?面板数据(panel data)顾名思义,就是由多个时间点和多个个体组成的数据。
每个时间点,我们会针对同一组个体(如公司、城市、家庭等)观测它们的某些属性(如收入、投资、人口等)。
这就像一组交叉的时间序列数据,以时间为独立变量、以不同个体为分组变量。
面板数据有很多优点,比如可以避免交叉截面数据的选择偏差,同时可以对个体和时间进行深入分析,从多个角度突出数据中的趋势和变化。
什么是分位数回归?分位数回归是针对因变量分布的不对称性问题,采用分位数的思想进行统计分析的方法。
它在传统回归的基础上,拓展了解释变量和因变量之间的关系,不仅关注均值,还能反映其它分位数点的差异。
这点对于非线性关系、异方差的回归模型而言,具有更广泛的适用性。
例如:如果我们用年收入来预测房价,直接拟合一个经典的线性回归模型可能效果并不好,因为一部分收入较低的人很难买得起较贵的房子,也存在一些高收入者低房价的情况。
如果我们使用分位数回归模型,我们可以更好地理解收入与房价之间的关系,因为我们能够在不同收入分位数下,看到收入与房价之间的具体关系。
面板分位数回归模型(Panel Quantile Regression, PQR)结合了面板数据和分位数回归两者的优点。
它是一种同时考虑时间和空间对一组个体差异进行分析的方法。
通过对每个个体在不同分位数下的条件分布函数建立模型,可以刻画出因变量随着独立变量的不同取值范围的变化规律。
像传统的面板数据模型一样,PQR模型也需要考虑固定效应和随机效应。
固定效应意味着个体之间差异和时间的差异是不同的,这些固定属性与模型中的控制变量一起被引入回归模型中。
分位数回归模型及其应用研究

分位数回归模型及其应用研究The manuscript was revised on the evening of 2021第一组计量经济学理论与方法分位数回归模型及其应用研究王桂胜1(首都经济贸易大学,北京,100026)摘要:本文在对分位数回归方法的含义和基本原理进行全面分析说明的基础上,对分位数回归方法在PANEL DATA模型中的应用作了深入分析,并对不同回归估计方法在PANEL DATA模型中的估计效果进行了比较分析。
在此基础上,通过分别采取一般最小平方法和分位数回归法对中国15省区的人均消费和人均收入的回归方程估计的统计结果比较,发现分位数回归方法在进行某些特殊的PANEL DATA模型估计时具有一定的优势。
关键词:分位数回归、面板数据模型、惩罚分位数回归估计一、分位数回归研究介绍自Koenker 和 Bassett (1978)提出线性分位数回归理论以来,分位数回归(QR)即成为近几十年来发展较快、应用广泛的回归模型方法,它不仅深化了对传统回归模型的理解,而且也推广了回归模型的类型和应用,使得回归模型拟合有关统计数据更加准确细致。
分位数回归模型是在稳健估计模型基础上发展形成。
稳健估计(Robust Estimation)理论包括基于一般凸损失函数的M 估计理论、基于样本秩统计量的R估计理论和基于样本次序统计量的L估计理论1王桂胜:男,1970年生,首都经济贸易大学劳动经济学院副教授,清华大学经管学院博士生。
等。
分位数回归强调以解释变量的分位数来估计推断因变量的分位数,通过建立分位数估计方程,并运用线性规划方法或非参数估计等方法来估计相应于不同分位数的解释变量系数或未知参数。
分位数回归是中位数回归和均值回归的推广。
分位数回归模型具体又分为四分位数回归、十分位数回归、百分位数回归、LOGIT分位数回归、审查分位数回归等模型。
关于分位数回归研究的最近发展,主要表现在分位数回归技术方法和方法应用等两方面的研究上。
分位数模型回归分析

分位数模型回归分析分位数是描述数据分布特征的重要指标,它不同于平均数和中位数,是以一定的百分比为界限,将数据分为等量的小组内容,并计算每一组内容的平均值而被定义出来的。
分位数可以快速、全面地描述数据分布特征,是定量分析研究中一个重要的理论工具,在金融、心理学等多个学科都有广泛的应用。
分位数模型回归分析(Quantile Regression)是基于分位数理论而发展起来的,它是一种包含变量的统计回归方法,基本思想是用若干统计模型的参数估计来识别数据的分布特征,以达到更好的描述数据的目的。
它的优势在于可以拟合出更加完整的数据分布情况,更有利于我们对数据的解读。
二、分位数模型回归分析的基本原理分位数模型回归分析是一种用来估计量化分布情况的统计回归方法,基本方法是以特定的分位数来定义变量的分布,然后根据观测数据分布的特征和回归解释变量,来进行参数估计。
它同样采用最小二乘法求得拟合参数,但与其他的最小二乘法不同的是,它是将数据根据分位数分为等量的小组内容后,考虑每组中的变量均值进行回归分析,而非只考虑全部数据的拟合情况,从而完善拟合结果。
分位数模型回归分析一般分为两个步骤:首先,根据先观察到的分位数和观测数据分布情况,定义回归模型参数;然后,根据观测数据拟合参数,完成分位数模型回归分析。
三、应用分位数模型回归分析的应用已经广泛,主要在金融学、心理学、市场营销、社会学等领域,都有不同程度的使用。
1.融领域:在金融分析中,分位数模型回归分析可以用来确定数据的分布特征,从而实现对金融风险的评估和管理,并有助于金融机构获取更多有价值的信息。
2.理学领域:分位数模型回归分析可以用来准确描述各类心理和行为变量的分布特征,从而更好地掌握人类思想的内涵,为心理研究收集有价值的信息。
3.场营销:分位数模型回归分析可以用来精准描述市场需求和购买行为,从而更有效地完成消费者目标定位,为市场营销提供有价值的指导。
4.会学:分位数模型回归分析也可以用来明确社会现象的分布特征,如收入分布、社会资本分布等,从而有助于更加有效地实施社会管理和政策,实现社会系统的稳定发展。
分位数向量自回归

分位数向量自回归
分位数向量自回归:探索互联网数据中的价值
随着互联网的迅猛发展,大量的数据被累积,而如何从这些庞大的数据中提取有用的信息成为了一项难题。
分位数向量自回归(Quantile Vector Autoregression,QVAR)方法可以帮助我们从互联网数据中发掘出更多的价值。
QVAR方法是一种基于分位数回归的时间序列分析方法,它考虑了多个变量之间的交互效应,并通过分位数向量来描述变量的分布情况。
这种方法不仅可以预测未来的变量值,还可以探究各个变量之间的动态关系。
在互联网领域中,我们可以使用QVAR方法来探索用户行为、网络安全、营销策略等方面的数据。
例如,在探索用户行为数据时,我们可以使用QVAR方法预测用户的购物行为,并根据分位数向量分析用户的消费习惯。
不仅如此,QVAR方法在网络安全领域也有着广泛的应用。
通过对网络攻击数据的分析,我们可以使用QVAR方法来预测未来的网络攻击时间与攻击方式,并提前采取相应的安全措施。
除此之外,QVAR方法还可以被用来探索营销策略的有效性。
通过对市场行情的分析,我们可以使用QVAR方法来预测未来市场需求,并
根据分位数向量优化营销策略,提高市场营销的效益。
总之,QVAR方法是探索互联网数据中有用信息的重要工具。
通过对这种方法的深入了解,我们可以更好地发挥互联网数据的价值,促进互联网产业的发展。
基于分位数自回归的金融风险计量

关系。
环境科学
03
分位数回归模型可以用于研究环境领域中的变量之间的关系,
例如气候变化、环境污染等。
03
基于分位数自回归的 金融风险计量模型构 建
金融风险计量模型构建思路
• 金融风险计量模型是用于评估和预测金融市场风险的重要工具 。在构建基于分位数自回归的金融风险计量模型时,首先需要 了解金融市场的特点和风险来源。金融市场具有复杂性和不确 定性,风险可能来自市场、信用、操作等多个方面。因此,在 构建模型时需要考虑这些因素,并能够捕捉市场动态和非线性 关系。
灵活性
分位数回归模型可以灵活 地描述变量之间的关系, 可以处理线性和非线性关 系。
条件性
分位数回归模型是基于条 件分位数进行建模,因此 可以更好地控制其他因素 的影响。
分位数回归模型的应用
金融风险管理
01
分位数回归模型可以用于衡量和管理金融风险,例如信用风险
、市场风险等。
医学和健康研究
02
分位数回归模型可以用于研究医学和健康领域中的变量之间的
结论与参考文献
研究结论
基于分位数自回归模型能够 有效地对金融风险进行计量 ,为风险管理和投资决策提 供更加精细化、个性化的参
考。
通过分位数自回归模型,可 以更好地理解金融市场的波 动特征和风险分布,为评估 市场稳定性和预测市场风险
提供有益的工具。
分位数自回归模型在处理金 融数据时具有较高的稳健性 和适用性,能够应对不同类 型和市场环境下的风险计量 问题。
型的参数估计和预测性能。
02
引入解释性变量
在模型中引入更多的解释性变量 ,如宏观经济指标、政策因素等
,以增强模型的预测能力。
04
模型验证和测试
分位数回归理论及其应用共3篇

分位数回归理论及其应用共3篇分位数回归理论及其应用1分位数回归理论及其应用分位数回归是一种重要的统计方法,可以有效地应用于对数据进行分析和建模。
本文将介绍分位数回归理论的概念、方法和应用,并通过实际案例来说明其在实践中的运用。
一、分位数回归理论概述分位数回归是通过对分位数进行建模,而不是对中心点(如平均数或中位数)进行建模的回归分析。
该方法可以帮助我们更好地理解数据的分布情况。
通常情况下,我们关注的是中位数或平均数,因为它们代表了数据集中的位置信息。
但是,在某些情况下,这些中心点可能无法提供足够的信息,或者它们可能无法很好地描述分布情况。
分位数回归方法就是通过对数据进行分位数的建模来解决这些问题。
分位数回归给出了不同分位数对自变量的响应,可以确定不同分位数下因变量与自变量之间的关系。
二、分位数回归方法1.示例数据在了解分位数回归方法之前,我们先介绍数据集。
假设我们有一组来自UNICEF的数据集,记录了不同国家儿童死亡率和GDP(卫生)支出的信息。
这些数据明显不是线性的,因为它们不能用单独的直线来描述。
2.分位数回归假设我们希望了解死亡率与GDP支出之间的关系。
我们可以在不同的分位数水平下,对死亡率和GDP支出之间的关系进行建模。
这个过程被称为分位数回归。
在本例中,我们将使用分位数水平为0.25、0.5和0.75。
我们可以首先在0.25和0.75分位数水平下建立模型,确定死亡率与GDP支出之间的关系。
然后,我们在0.5分位数水平下建立模型,确定这两个变量之间的中心关系。
3.结果分析在分位数回归分析后,我们可以得到以下结果。
在0.25分位数水平下,我们发现GDP支出与死亡率呈现负相关;在0.75分位数水平下,我们发现GDP支出与死亡率呈现正相关,这意味着一些经济条件较好的国家的死亡率可能会上升。
在0.5分位数水平下,我们可以看到两种情况都可能发生,因为这是分布的中心位置。
这种方法允许我们更灵活地研究不同分位数下的自变量与因变量之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
门限分位数自回归模型及在股市收益自相关分析中的应用
摘要:门限分位数自然回归模型是一种非限行分位数回归模型,其可以应用讨论系统之中的门限效应。
并且在该模型之中,自然回归阶数以及门限值的确定等都将会为模型的分析效果带来直接的影响。
本文主要对门限分位数自然回归模型以及其在股市收益中的相关应用做出分析,希望能够给予同行业的工作人员提供一定参考价值。
关键词:门限分位数;回归模型;股市收益;分析
股市收益的自相关性是金融市场研究中的一个重要问题,研究人员针对于理性预定理论提出了有效的市场假说,奠定了传统的金融学基础。
有效的市场假说理论认为在一个有效的市场之中,股市的价格或者收益直接地反映了所有可能会获得的信息,过去的收益以及未来的收益并不相关,股市的收益则是不可以预测的,反而言之如果股市的收益在时间上是自相关的,那么历史收益是可以影响当前的收益的,这也直接表明了有效市场假说是难以成立的,可以采取序列自相关分析的方法,对其有效市场假说做出相应验证。
一、门限分位数自然回归模型的分析
1. 模型的表示分析
主要是记{ yt }作为其1 维响应的变量,然而x =(1,yt -1,yy
-2,…,yt -p)T 主要是为p+1为向量组成的解释变量,然而{ yt }则是为1维门限的白能量,其自然回归模型之中的门限变量通常情况下是需要相应变量{ yt }的滞后项,而γ则表示为门限,其模型如下所示:
和均值自激励门限自然回归的模型进行对比,门限分位数自回归模型存在着下述的优点:一是信息刻画更加全面,回归系数估计在不同的分位点可能存在着不同的表型,同时不同阶段的变量之间关系更加细致。
二是具有比较强的稳健性,和均值自激励门限自回归模型要求误差项服从特定分布的不同,其允许误差项服从一般的非对称的分布。
2. 模型的定阶
在门限分位数自然回归之中,最优滞后阶数p的选择是十分重要的,可以通过AIC的准确去进行实现,然而定义AIC的准则则是如下所示:
可以看出,AIC主要由两个部分所组成,一是可以反映出模型的拟合程度,主要是为前半段进行表示。
二是反映出模型的复杂城市,则是经过后半段进行表示。
3. 门限效应的诊断检验分析
针对于门限效应而言,其诊断检验主要是包括了以下方面的内容:第一,门限效应存在性检验,主要检验两个阶段的门限效应
自然回归的参数是否存在着统一性。
第二,特定的门限值的检验,主要是为检验门线效益是否出现了限定的门限值上。
然而在门限效应存在性的检验过程中,研究人员在研究TAR的模型时候从而便构造出来了Sup Wald 以及AveWald两个较为经典的检验。
此外研究人员也分别给出了单位的分位点所处于的SupWald以及AveWald的检验统计量,以及其整体分位点处的Kolmogorov-Smirnov 型的检验统计量,并且也是采取检验TQAR 模型的门限效应的存在性。
然而在特定的门限值检验过程中,并没有相应的文献进行讨论,因此研究人员分别给出了均值门限回归模型以及中位数门限自然回归模型中门限值估计的类似比,也给出了门限分位数的回归模型中门限估计似然比,根据其作为基础,通过对其TQAR 模型的特定门限值检验方法进行分析,使其在这基础上分别地构造了单分位点位置以及整体分位区间的似然比检验,采用检验单位在单个分位点处的门限值估计是否可以满足线性的约束条件进行分析,以及在整体进行区分的过程中区间上的门限值估计是否存在着一些显著性的差异,因此,针对于这点来说必须要能够引起相关研究人员的注意。
二、应用的分析
1. 数据的选取以及描述的统计分析
选择1990年一直到2014年上证综合指数日收盘价总计5828个数据去研究我国股市收益的自相关性,数据的选择特点主要为:
第一,上证综指的覆盖面比较广,同时市场的影响力也是比较大,充分地刻画出我国股票市场的一个动态的变化。
第二,时间的跨度比较长,自从其上海证券交易所正式开市营业后,综指便是对其所有的历史数据。
第三,日度数据比月度以及年度的数据能够更加揭示出我国股市波动的一个细节,同时定义的收益率为价格自然对数的一阶差分,为:yt=ln(pt/pt-1),其中Pt为日收盘价,该数据主要是来自于我国泰安数据库。
2. 模型的估计以及检验分析
采用门限分位数自然回归模型对我国股市收益序列的自然有关特征进行分析,其门限变量的设定为滞后一期收益yt-1,对于模型的设定而言主要为两个极端,其中阶段一是:yt-1≤γ,表示了前期的收益是小于门限值。
阶段二是是:yt-2>γ,表示为前期的收益是大于门限值,并且也是选择了0.1/0.25/0.5、0.75 以及0.9 等五个达标性的分位点,代股市所处于的不同状态,比如中位点表示了温和的市场,然而尾部的分位点则是表示了极端的市场环境。
通过从起门限值阶段的划分不同和点位所处于异质效益方面,对收益序列的自相关特点进行相应归纳,进而得出要是股票的收益存在着正相关性,那么也表明了价格的信息存在着反应的不足,然而要是股票的收益存在着负自相关性,那么也表明了价格对于新信息存在着反应过度。
如果反应不足将会表示投资者低估了新的信息,进而处于在保守的状态。
使收益将会沿着原来的方向继
续进行运动。
然而反应过度则是意味着投资者对于信息的过分关注,从而出现了过激的效应,使其收益得到了反向的修正。
通过分析研究之后得出,门限效应的存在也就意味着门限是收益在惯性效应以及反转效应之间进行切换的一个重要的开关,其具体主要表现在以下几方面:阶段一主要为前期的收益低于门限值的时候,低迷市场环境下收益序列表现出比较强的一个正相关,然而前期的收益以及当期收益在同向变化的过程中,主要为前期收益比较低,摒弃的功能其收益率则越低,这样也直接地意味着低迷市场对于目前的低水平收益存在着反应不足,进而存在着“惯性效应”。
然而与之相反繁荣市场的环境下收益序列也表现出比较强的负相关,前期的收益对于目前的收益也存在着校正的一个作用,能够引导当期的收益向着高水平进行回复,这样也直接地意味着繁荣市场对于当期的低水平收益容易出现过度,从而便出现了“反转效应”,然而类似的也可以将其分为阶段二,所得出来的结论与阶段一是相反的,主要是体现在了低迷市场对于高的前期收益反应存在着过度,并且也存在着“反转效应”,然而繁荣的市场对于高的前期收益反应存在着不足,进而出现了“惯性效应”。
通过对上述的内容进行分析研究后可以得出,本文主要是对门限分位数自然回归模型的整个建模的过程做出了相应的分析,从而重点地对门限分位数自然回归的内容作出了分析,同时也与门限均质自回归模型进行对比,其门限分位数自然回归模型能够更加
细致地揭示其在不同点位的时间序列非线性的动态变化过程,与此同时刻画了门限非线性的特点以及分位点的异质效应。
参考文献
[1]许启发,贾俊颖,蒋翠侠,杨善林.基于门限分位数回归的网上商品销量影响因素探析[J].商业经济与管理,2016(07):5-14.
[2]陈家清,张智敏,王仁祥.基于贝叶斯自激励门限自回归模型的中国GNP经济分析[J].统计与决策,2012(13):28-31. [3]聂飒.非对称视角下我国通货膨胀的动态行为分析[J].石河子大学学报:哲学社会科学版,2014(06):64-71.。