基于激光传感器的自动堆垛识别技术

基于激光传感器的自动堆垛识别技术
基于激光传感器的自动堆垛识别技术

基于激光传感器的自动堆垛识别技术

摘要:目前工业机器人在既有生产线的应用中遇到了因物料变化、堆垛偏移等情况造成的适应性不足、操作复杂等情况,本文从提高机器人的适用性和易用性出发,提出了一种基于激光传感器的自动堆垛识别技术。

关键词:搬运机器人,激光传感器,自动堆垛识别

0 引言

随着我国汽车产业的高速发展以及人口红利的衰竭,工业机器人正越来越多应用到汽车制造行业,尤其是搬运机器人正逐步取代人工出现在3K(肮脏、辛苦、危险)工作岗位上。

在实际应用过程中,尤其是对既有生产线自动化升级改造过程中,搬运机器人往往遇到因物料转换、转运造成的物料移位等原因造成的适应性不足、操作复杂等问题。本文设计一种基于激光传感器的自动堆垛识别技术,利用现有激光测距技术,与机器人控制系统相结合,很好地解决了上述问题,提高了搬运机器人的适用性和易用性。

1 系统组成

为了实现对物料堆垛的自动识别,智能系统应该具有以下几项功能:距离数据采集功能,数据处理及存储功能。本文设计的系统组成如图1所示。系统采用激光传感器采集物料堆垛信息,通过计算机和485通信接口处理传感器采集到的数据,从而实现对物料堆垛的自动识别。

图1 自动堆垛识别系统

由图1可知系统包括:

1)辅助子系统。由电源、电源控制电路组成。其中电源用来给设备供电,电源控制电路可以实现打开、关闭数据采集子系统。

2)数据采集子系统。主要用来采集堆垛的距离信息。

3)数据处理子系统。通过监视通信接口获取激光传感器采集到的信息,并根据激光传感器的协议解析这些信息,提取有效数据。

2 激光传感器数据采集算法

通过激光传感器采集到的数据是堆垛物料与激光传感器之间的距离值,若想知道堆垛中物料的高低层次、中心位置等数据,则必须对这些数据进行处理。

2.1 边沿处理算法

由于激光传感器在物料边沿处所返回的值会不停抖动,所以应首先对数据进行边沿分析以确定物料轮廓。

进行边沿处理时应首先选取点X-1,X,X+1,X+2所对应的距离数据HX-1,HX,HX+1,HX+2,计算相邻两点之间的高度差Δ1,Δ2,Δ3。其中:

Δ1 = fabs(HX- HX-1);

Δ2 = fabs(HX+1- HX);

Δ3 = fabs(HX+2- HX+1);

假设单件物料厚度为A,物料表面平整,其误差不超过B。

则当Δ 1≥A,并且Δ 2≤B,Δ 3≤B时,判断点X为物料边沿。

2.2 物料数量判断算法

当区别出物料的边沿后,我们就可以判断出该范围内物料的数量和各个物料的中心位置。

首先记录下起点边沿距离检测起点的距离S1,再记录终点边沿距离检测起点的距离S2,得到两者之间的差值

ΔS = S2- S1;

假设单个物料的宽度为C,则可以得到

DIV =ΔS/C;

REM =ΔS%C;

考虑到检测误差,当REM ≥2C/3时,DIV应当加1。

所得DIV的值即为该范围内的物料数量,再结合物料数量和ΔS,即可得出每个物料的中心位置。

3 实际应用结果及分析

按照上述理论基础,选取现场样本进行分析如下。

3.1 现场情况

如图2所示为某自动上料系统,在轨道两边共计6个料架,每个料架中物料的码放方式均不同。

2)数据分析流程。对所取得的数据按照如图3所示的流程进行处理,即可得到物料的堆垛位置、高低等所需信息。

图2 自动上料系统现场布置图

3.2 样本数据及分析结果

针对现场情况,获取多组样本,选取其中的96305号样本进行分析。

1)样本96305对应的数据为:

{750,750,750,750,750,750,750,750,733.188,733.188,734. 312,742.594,742.25, 737.094,737.094,732.344,731.188,731.18

8,733.75,733.75,738.375,738.25,738.25, 747.5,747.5,745.75,7 45.75,748.469,750,750,750,750,750,750,738.375,635.688,

635 .688,635.312,635.312,635.312,634.719,634.375,634.375,633.7 5,633.75, 632.75, 632.75,635,633.844,633.844,744.188,744.18 8,746.719,746.719,635.062,635.062, 635.969,635.969,635.75, 636.094,636.094,636.562,636.562,632.062,632.062,636.93,63

6.938,634.5,738.062,738.062,750,750,750,61

7.625,619.906,61

9.906,618.562,

618.562,618.531,617.938,617.938,617.531,617 .531,617.969,617.96

9,617.562, 617.562,691.562,691.562,750,

750,617.531,616.219,616.219,617.281,617.281, 635.344,635.3 44,615.906,617.375,617.375,617.719,617.719,616.219,616.21 9, 616.219,647.531,750,750,653.875,618.5,618.5,619.125,619.

125,620.156,620.156, 618.156,617.25,617.25,617.25,617.719, 617.719,617.219,619.219,619.219,750,750, 646.094,646.094,6 36.562,636.562,634.312,636.031,636.031,634.875,634.875, 64

8.469,648.469,648.469,637.219,635.031,635.031,636.562,750,750,7 50,750,750, 750,750,750,750,750,750,750,750,750,750,7

50,750,750,750,750,750,750,750,750, 750,750,750,750,750}

图3 数据分析处理流程

3)样本96305分析结果。对于96305号样本,其分析结果如图4所示。

图4 数据处理分析结果

工件数量:6个

各个工件的中心分别为41,60,80,98,116,131。

4 结论

随着工业机器人应用的日益广泛,自动堆垛识别技术能够很好地减少工业机器人对现行生产规范的修改。其所采用的激光测距技术成熟可靠,系统识别准确率高,可靠性好,具有很好的可行性。

MEMS传感器的现状及发展前景

M E M S传感器的现状及 发展前景 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

毕 业 设 计 指 导 课 论 文 MEMS传感器的现状及发展前景 摘要:MEMS传感器是随着纳米技术的发展而兴起的新型传感器,具有很多新的特性,相对传统传感器其具有更大的优势。在追求微型化的当代,其具有良好的发展前景,必将受到各个国家越来越多的重视。文章首先介绍了MEMS传感器的分类和典型应用,然后着重对几个传感器进行了介绍,最后对MEMS传感器的发展趋势与发展前景进行了分析。 关键词:MEMS传感器;加度计;陀螺仪;纳米技术;微机构;微传感器StatusandDevelopmentProspectofMEMSSensors Abstract:MEMSsensorisanewtypeofsensorwiththedevelopmentofnanotechnology.Ithasma nynewfeatures,whichhasagreatadvantageovertraditionalsensors.Inthepursuitofminia turizationofthecontemporary,itsgoodprospectsfordevelopment,willbesubjecttomorea

ndmoreattentioninvariouscountries.Firstly,theclassificationandtypicalapplicatio nofMEMSsensorareintroduced.Then,severalsensorsareintroduced.Finally,thedevelopm enttrendanddevelopmentprospectofMEMSsensorareanalyzed. Keywords:MEMSsensor;accelerometer;gyroscope;nanotechnology;micro- mechanism;micro-sensor 目录 一、引言 MEMS传感器是采用微机械加工技术制造的新型传感器,是MEMS器件的一个重要分支。1962年,第一个硅微型压力传感器的问世开创了MEMS技术的先河,MEMS技术的进步和发展促 进了传感器性能的提升。作为MEMS最重要的组成部分,MEMS传感器发展最快,一直受到各发达国家的广泛重视。美、日、英、俄等世界大国将MEMS传感器技术作为战略性的研究领域之一,纷纷制定发展计划并投入巨资进行专项研究。 随着微电子技术、集成电路技术和加工工艺的发展,MEMS传感器凭借体积小、重量轻、功耗低、可靠性高、灵敏度高、易于集成以及耐恶劣工作环境等优势,极大地促进了传感器的微型化、智能化、多功能化和网络化发展。MEMS传感器正逐步占据传感器市场,并逐渐取代传统机械传感器的主导地位,已得到消费电子产品、汽车工业、航空航天、机械、化工及医药等各领域的青睐。

激光对射说明书

激光对射说明书 周界报警产品:振动光纤、泄漏电缆、电子围栏、激光对射 三安古德

在防盗报警领域,室内防范目前主要采用门磁、红外幕帘探测,对于晚上和无人员活动的室内防范可能比较合理。 对普通家居、别墅等场所则不适应,有人时不能布防,晚上也不便于布防,达不到御贼于外的目的。 红外栅栏应用到门窗的室内防范不会影响到人员活动,但是,红外栅栏会受杂光、红外反射光及同频干扰误报率高。 因此,可靠性差是目前影响主动红外对射大量进入家居防范的主要原因。 对于室外防范,特别是较大空间范围的居民小区、工业园区、变电站等场所主要应用红外对射。 但是,从目前全国使用的情况看,真正长期应用的是极少数,大多成为一种摆设。 究其原因,主要是抗干扰能力差,受自然环境的影响,易发生误报警,包括各种光干扰、强磁干扰和恶劣天气的影响。 因此,在我国目前主动红外探测产品的应用仍是有限的,其原因主要是产品本身问题,受制于红外光源的特性。 将激光作为探测光源具有很多优势。 经过多年攻关努力,成功解决了激光稳定性、安全性、适应性、编码定位、低功率化和小型化问题。

在全球安防市场上率先推出信号旗栅栏型激光对射探测器,它既具有激光的光源优势,又具有红外栅栏简洁隐匿的外形特征,能兼顾室内外应用环境。 是防盗报警领域新一代革命性产品,能极大地拓展防盗报警领域的应用空间,能带来应用理念上的全新变化, 主要包括以下方面: 一、激光对射工作原理 其原理是在要设防的周界上设立一定数量的竖杆状的激光射线发射器和接收器,组成一个环形围栏,每对发射器与接收器之间根据发射功率不同,可相距10~150米 左右,通过发射器发射出多道平行的不可见激光射线,与接收器形成一个光回路,当入侵者翻越时,会隔断激光射线回路,从而产生报警。 二、激光对射参考系数 激光对射SA-1JG50 工作原理:激光 测试距离:200m(± 5) 颜色:象牙白 传感器类别: 位置传感器 耐热范围:75C°/-25C° 工作频率:50HZ-60 HZ 产品材质:黄童镀镍 外形规格:直径:12*60mm 电缆线长度:1.5m 工作电压:接受三线发射两线NPN常开DC6-36V 电流:200mA 电压:DC 9~36V(可根据客户特殊订制)。 * 较长检测距离:50米

激光检测技术研究现状与发展趋势

激光检测技术研究现状与发展趋势 提要:激光检测学科发展现状在光电检测领域,利用光的干涉、衍射和散射进行检测已经有很长的历史。由泰曼干涉仪到莫尔条纹,然后到散斑,再到全息干涉,出现了一个个干涉场,物理量(如位移、温度、压力、速度、折射率等)的测量不再需要单独测量,而是整个物理量场一起进行测量。自从激光出现以后,电子学领域的许多探测方法(如外差、相关、取样平均、光子计数等)被引入,使测量灵敏度和测量精度得到大大提高。用激光检测关键技术(激光干涉测量技术、激光共焦测量技术、激光三角测量技术)实现的激光干涉仪、激光位移传感器等,可以完成纳米级非接触测量。可以说,超精密加工技术将随着高精密激光检测技术的发展而发展;在此基础上,提出了激光测量需解决的关键技术及今后的发展方向。 1.测量原理 1.1激光测距原理 先由激光二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号。记录并处理从光脉冲发出到返回被接收所经历的时间,即可测定目标距离。

1.2激光测位移原理 激光发射器通过镜头将可见红色激光射向被测物体表面,经物体反射的激光通过接收器镜头,被内部的CCD线性相机接收,根据不同的距离,CCD线性相机可以在不同的角度下“看见”这个光点。根据这个角度及已知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物体之间的距离。 2.激光测量系统的应用 激光功率和能量是描述激光特性的两个基本参数,激光功率计和能量计是最常用的两类激光测量仪器。随着激光技术的不断发展,对激光测试技术和测量仪器提出了更高要求。由于调Q和锁模激光的出现和应用,要求测量的激光功率已从毫瓦、瓦、千瓦、兆瓦直到千兆瓦以上。激光能量也从毫焦尔逐渐跨过千焦尔。脉冲激光的持续时间也由毫秒、微秒、毫微秒、而缩短至微微秒量级。光谱范围也从紫外、可见、红外扩展到近毫米波段。激光精密测量和某些生物医学方面的研究和应用(如眼科治疗、细胞手术器等)的发展,对激光测量的精度也提出了非常高的要求。 2.1激光非球面检测技术 长期以来,非球面检测技术一直制约着非球面制造精度的提高,尤其对于高精度非球面的检测。规的非球面检测方法如刀口阴影法、激光数字干涉法及接触式光栅测量法等,对于检测工件表面来说都有一定的局限性。原子力显微镜是利用纳米级的探针固定在可灵敏操控的微米级尺度的弹性悬臂上,当针尖很靠近样品时,其顶端的原子与

(完整版)传感器的目前现状与发展趋势综述

传感器的目前现状与发展趋势 吴伟 1106032008 材控2班 摘要:传感器是高度自动化系统乃至现代尖端技术必不可少的一个关键组成部分。传感器技术是世界各国竞相发展的高新技术,也是进入21 世纪以来优先发展的十大顶尖技术之一。传感器技术所涉及的知识领域非常广泛,其研究和发展也越来越多地和其他学科技术的发展紧密联系。本文首先介绍了传感器的基本知识和传感器技术的发展历史。之后,综述了近几年高端前沿的光电传感器技术和生物传感器技术的主要研究状况。最后,展望了现代传感器技术的发展和应用前景。 关键词:传感器技术;传感器;研究现状;趋势 引言 当今社会的发展,是信息化社会的发展。在信息时代,人们的社会活动将主要依靠对信息资源的开发及获取、传输与处理。而传感器是获取自然领域中信息的主要途径与手段,是现代科学的中枢神经系统。它是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置的总称。传感器处于研究对象与测控系统的接口位置,一切科学研究和生产过程所要获取的信息都要通过它转换为容易传输和处理的电信号。如果把计算机比喻为处理和识别信息的“大脑”,把通信系统比喻为传递信息的“神经系统”,那么传感器就是感知和获取信息的“感觉器官”。 传感器技术是现代科技的前沿技术,发展迅猛,同计算机技术与通信技术一起被称为信息技术的三大支柱,许多国家已将传感器技术列为与通信技术和计算机技术同等重要的位置。现代传感器技术具有巨大的应用潜力,拥有广泛的开发空间,发展前景十分广阔。 1 传感器的基本知识

1.1 传感器的定义和组成 广义地说,传感器是指将被测量转化为可感知或定量认识的信号的传感器。从狭义方面讲,感受被测量,并按一定规律将其转化为同种或别种性质的输出信号的装置。传感器一般由敏感元件、转换元件、测量电路和辅助电源四部分组成,其中敏感元件和转换元件可能合二为一,而有的传感器不需要辅助电源。 1.2 传感器技术的基本特性 在测试过程中,要求传感器能感受到被测量的变化并将其不失真地转换成容易测量的量。被测量有两种形式:一种是稳定的,称为静态信号;一种是随着时间变化的,称为动态信号。由于输入量的状态不同,传感器的输入特性也不同,因此,传感器的基本特性一般用静态特性和动态特性来描述。衡量传感器的静态特性指标有线性度、灵敏度、迟滞、重复性、分辨率和漂移等。影响传感器的动态特性主要是传感器的固有因素,如温度传感器的热惯性等,动态特性还与传感器输入量的变化形式有关。 2 传感器技术的发展历史与回顾 传感器技术是在20世纪的中期才刚刚问世的。在那时,与计算机技术和数字控制技术相比,传感技术的发展都落后于它们,不少先进的成果仍停留在实验研究阶段,并没有投入到实际生产与广泛应用中,转化率比较低。在国外,传感器技术主要是在各国不断发展与提高的工业化浪潮下诞生的,并在早期多用于国家级项目的科研研发以及各国军事技术、航空航天领域的试验研究。然而,随着各国机械工业、电子、计算机、自动化等相关信息化产业的迅猛发展,以日本和欧美等西方国家为代表的传感器研发及其相关技术产业的发展已在国际市场中逐步占有了重要的份额。 我国从20世纪60年代开始传感技术的研究与开发,经过从“六五”到“九五”的国家攻关,在传感器研究开发、设计、制造、可靠性改进等方面获得长足的进步,初步形成了传感器研究、开发、生产和应用的体系,并在数控机床攻关中取得了一批可喜的、为世界瞩目的发明专利与工况监控系统或仪器的成果。但从总体上讲,它还不能适应我国经济与科技的迅速发展,我国不少传感器、信号

META_SLS激光传感器操作说明

Meta Vision Systems Smart Laser Probe Operating Manual ? Meta Vision Systems Ltd. March 2011 Version 1.0 Part number: DOC-S1E-10

Foreword This manual describes the operation of the Smart Laser Probe seam tracking system. Meta Vision Systems Ltd. has made every effort to ensure that the information presented in this user manual is correct. If you have any comments on the manual, please send them to us on the form at the end of this manual. Any questions about information contained in this manual or requests for further information should be forwarded to your equipment provider or Meta Vision Systems at the address below. This manual and its contents is copyright ? Meta Vision Systems Ltd. No part of this manual may be copied or distributed without the written consent of Meta Vision Systems. Meta Vision Systems Ltd. Oakfield House Oakfield Industrial Estate Eynsham Oxfordshire OX29 4TH UNITED KINGDOM Tel: +44 (0)1865 887900 Fax: +44 (0)1865 887901Meta Vision Systems Inc. 8084 TransCanada Highway St-Laurent Québec H4S 1M5 CANADA Tel: +1 514 3330140 Fax: +1 514 3338636 Web page: https://www.360docs.net/doc/734377244.html, Email: support@https://www.360docs.net/doc/734377244.html,

激光雷达技术的应用现状及应用前景

光电雷达技术 课程论文 题目激光雷达技术的应用现状及应用前景

专业光学工程 姓名白学武 学号2220140227 学院光电学院 2015年2月28日 摘要:激光雷达无论在军用领域还是民用领域日益得到广泛的应用。介绍了激光雷达的工作原理、工作特点及分类,介绍了它们的研究进展和发展现状,以及应用现状和发展前景。 引言 激光雷达是工作在光频波段的雷达。与微波雷达的T作原理相似,它利用光频波段的电磁波先向目标发射探测信号,然后将其接收到的同波信号与发射信号相比较,从而获得目标的位置(距离、方位和高度)、运动状态(速度、姿态)等信息,实现对飞机、导弹等目标的探测、跟踪和识别。 激光雷达可以按照不同的方法分类。如按照发射波形和数据处理方式,可分为脉冲激光雷达、连续波激光雷达、脉冲压缩激光雷达、动目标显示激光雷达、脉冲多普勒激光雷达和成像激光雷达等:根据安装平台划分,可分为地面激光雷达、机载激光雷达、舰载激光雷达和航天激光雷达;根据完成任务的不同,可分为火控激光雷达、靶场测量激光雷达、导弹制导激光雷达、障碍物回避激光雷达以及飞机着舰引导激光雷达等。 在具体应用时,激光雷达既可单独使用,也能够同微波雷达,可见光电视、

红外电视或微光电视等成像设备组合使用,使得系统既能搜索到远距离目标,又能实现对目标的精密跟踪,是目前较为先进的战术应用方式。 一、激光雷达技术发展状况 1.1关键技术分析 1.1.1空间扫描技术 激光雷达的空间扫描方法可分为非扫描体制和扫描体制,其中扫描体制可以选择机械扫描、电学扫描和二元光学扫描等方式。非扫描成像体制采用多元探测器,作用距离较远,探测体制上同扫描成像的单元探测有所不同,能够减小设备的体积、重量,但在我国多元传感器,尤其是面阵探测器很难获得,因此国内激光雷达多采用扫描工作体制。 机械扫描能够进行大视场扫描,也可以达到很高的扫描速率,不同的机械结构能够获得不同的扫描图样,是目前应用较多的一种扫描方式。声光扫描器采用声光晶体对入射光的偏转实现扫描,扫描速度可以很高,扫描偏转精度能达到微弧度量级。但声光扫描器的扫描角度很小,光束质量较差,耗电量大,声光晶体必须采用冷却处理,实际工程应用中将增加设备量。 二元光学是光学技术中的一个新兴的重要分支,它是建立在衍射理论、计算机辅助设计和细微加工技术基础上的光学领域的前沿学科之一。利用二元光学可制造出微透镜阵列灵巧扫描器。一般这种扫描器由一对间距只有几微米的微透镜阵列组成,一组为正透镜,另一组为负透镜,准直光经过正透镜后开始聚焦,然后通过负透镜后变为准直光。当正负透镜阵列横向相对运动时,准直光方向就会发生偏转。这种透镜阵列只需要很小的相对移动输出光束就会产生很大的偏转,透镜阵列越小,达到相同的偏转所需的相对移动就越小。因此,这种扫描器的扫

震动传感器产品使用说明书

震动传感器产品使用说明书 一、YT-JB3A震动传感器应用:特别设计作金属和水泥墙防破坏用,适用于保险箱、金属门、密 室、钱箱和银行水泥墙、自动柜员机、ATM取款机、保险箱等防击防敲物体等保护防盗保险柜 是针对ATM/自助银行系统而设计研发的一种新型高灵敏度全向振动传感器,具有全向检测、灵敏度可调、高抗干扰能力、产品一致性和互换性好、体积小、可靠性高、价格低等特点。 二YT-JB3振动传感器主要性能: 灵敏度:高低可调 一致性及互换性:好 可靠性及抗干扰:无误触发、抗干扰强 自动复位:自动复位性强 信号的后期处理:简单 输出信号:开关信号,外观小巧,安装调试方便。 无需外接振动分析板:产品内部设计振动分析放大电路 三、YT-JB3主要性能参数: 1、工作电压:12VDC(红线V+ 屏蔽线V-); 2、灵敏度:大于等于0.2g; 3、频率范围:0.5HZ~20HZ; 4、工作温度范围:-10℃~50℃; 5、体积: 6.0㎝×4.5㎝×2.1㎝ 6、检测方向:全向。 7、信号输出:开关信号(黄/白线); 8、输出脉冲宽度:与振动信号幅度成正比; 控制防范:每只振动探测器可控制 10m 2 左右的房间。 灵敏度:在探测器警戒防范区内,以 60kg(±5kg)体重的人用≥1kg钢锤或其它工具打墙1-3次报警。报警延时: 1-8秒; 报警输出:继电器常闭(警戒为常闭、报警常开)。 防拆功能:打开探测器盒盖或断电源线时报警。 误报率低:在电路中采用特殊信号处理电路,使之误报率最小 警戒电流≦ 47mA,报警电流≦ 30mA。 四、使用中注意的问题: YT-JB3振动传感器与其他的振动传感器一样,安装时使用粘结胶固定,以减小振动源至传感器之间的信号衰减。

传感器的应用现状及发展趋势-论文2011-11-16

传感器技术的研究应用现状与发展前景 传感器技术作为信息技术的三大基础之一,是当前各发达国家竞相发展的高技术是进入21 世纪以来优先发展的十大顶尖技术之一。传感器在科学技术领域、工农业生产以及日常生活中发挥着越来越重要的作用。人类社会对传感器提出的越来越高的要求是传感器技术发展的强大动力,而现代科学技术突飞猛进则提供了坚强的后盾。传感器是信息系统的源头, 在某种程度上是决定系统特性和性能指标的关键部件。本文回顾了传感器技术的发展历史,综述了近几年高端前沿的光电传感器技术和生物传感器技术的主要研究应用状况,并通过简述当前的应用实例,展望了现代传感器技术的发展和应用前景。 1.引言 传感器是将物理、化学、生物等自然科学和机械、土木、化工等工程技术中的非电信号转换成电信号的换能器。当今社会的发展是信息化社会的发展,在信息时代人们的社会活动将主要依靠对信息资源的开发及获取、传输与处理,而传感器是获取自然领域中信息的主要途径与手段,是现代科学的中枢神经系统,它是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置的总称。传感器处于研究对象与测控系统的接口位置一切科学研究和生产过程所要获取的信息都要通过它转换为容易传输和处理的电信号。如果把计算机比喻为处理和识别信息的大脑,把通信系统比喻为传递信息的神经系统,那么传感器就是感知和获取信息的感觉器官。传感器技术是现代科技的前沿技术,发展迅猛,同计算机技术与通信技术一起被称为信息技术的三大支柱,许多国家已将传感器技术列为与通信技术和计算机技术同等重要的位置现代传感器技术具有巨大的应用潜力拥有广泛的开发空间,发展前景十分广阔。 2.传感器的发展历史及分类 2.1传感器技术的发展历史 传感器技术是20世纪的中期才刚刚问世的,在那时与计算机技术和数字控制技术相比,传感技术的发展都落后于它们,不少先进的成果仍停留在实验研究阶段并没有投入到实际生产与广泛应用转化率比较低。在国外,传感器技术主要是在各国不断发展与提高的工业化浪潮下诞生的,并在早期多用于国家级项目

激光传感器的工作原理及其应用

激光传感器由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。激光传感器工作时,先由激光发射二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号,并将其转化为相应的电信号。常见的是激光测距传感器,它通过记录并处理从光脉冲发出到返回被接收所经历的时间,即可测定目标距离。激光传感器的应用 利用激光的高方向性、高单色性和高亮度等特点可实现无接触远距离测量。激光传感器常用于长度、距离、振动、速度、方位等物理量的测量,还可用于探伤和大气污染物的监测等。 激光测长 精密测量长度是精密机械制造工业和光学加工工业的关键技术之一。现代长度计量多是利用光波的干涉现象来进行的,其精度主要取决于光的单色性的好坏。激光是最理想的光源,它比以往最好的单色光源(氪-86灯)还纯10万倍。因此激光测长的量程大、精度高。 激光测距 它的原理与无线电雷达相同,将激光对准目标发射出去后,测量它的往返时间,再乘以光速即得到往返距离。由于激光具有高方向性、高单色性和高功率等优点,这些对于测远距离、判定目标方位、提高接收系统的信噪比、保证测量精度等都是很关键的,因此激光测距仪日益受到重视。在激光测距仪基础上发展起来的激光雷达不仅能测距,而且还可以测目标方位、运运速度和加速度等,已成功地用于人造卫星的测距和跟踪。 激光测振 它基于多普勒原理测量物体的振动速度。多普勒原理是指:若波源或接收波的观察者相对于传播波的媒质而运动,那么观察者所测到的频率不仅取决于波源发出的振动频率而且还取决于波源或观察者的运动速度的大小和方向。所测频率与波源的频率之差称为多普勒频

激光测距传感使用手册

激光测距传感使用手册

前言 尊敬的客户: 衷心的感谢您选择了深圳市南方测控技术有限公司的激光测距传感器! 为了让您更好的使用本激光测距传感器与防止意外事故的发生,请您在使用本激光测距传感器前仔细的阅读本说明书。 本说明书的版权归属深圳市南方测控技术有限公司所有,如在不影响本激光测距传感器整体性能的前提下所作的修改或更新,恕不另行通知。

激光测距传感器系统说明 术语解释 激光测距:利用激光对目标的距离进行准确测定。激光测距一般采用两种方式来测量距离:脉冲法和相位法。 脉冲激光测距:基于激光脉冲反射时差法原理,测距仪器发射出的激光经被测量目标反射后,激光束被测距仪器接收,测距仪器记录激光往返的时间。光速和往返时间的乘积的一半,就是测距仪器和被测量物体之间的距离。 激光测距传感器:为工业测量之产品,采用工业标准设计、生产和检测,可在线24小时连续实施测量,有的可以多台组网测试。 激光安全等级:国际上对激光有统一的分类,激光器分为四类(Class1、Class2、Class3、Class4)。Class1激光器对人是安全的,Class2激光器对人有较轻的伤害,Class3以上的激光器对人有严重伤害,使用时需特别注意,避免对人眼直射。

Class2激光器:指激光器的出口光功率小于1mw,一般认为对人的眼睛是安全的,正常暴露在这种激光器的光束下不会对眼睛的视网膜造成永久性的伤害。尽管此种激光器是安全的,但也不能长时间的直视激光光束。如偶尔照射到人眼还不至于引起伤害,但连续观察激光束时能损伤眼睛。此是对第二级激光器的最重要控制措施。 系统概述 LPS系列激光测距传感器是一种功能强大的测量精确、无接触式的工业用距离测量设备,它可广泛地被集成用于各种工业用途的控制和监测系统上。使用图例如下:

KCO-AV一氧化碳传感器维护及使用说明书 (HK1.7适农版)

安装使用传感之前,请仔细阅读本说明书,以便正确地使用和维护。 一、产品概述 KCO系列一氧化碳传感器是可以应用于检测危险一氧化碳泄漏场所,采用进口电化学式传感器,具有信号稳定,精度高等优点,防爆接线方式适用于各种危险场所。 二、产品特性 -先进的微处理器技术 -0-1000ppm量程规格,用户可根据实际要求而定。 -防爆设计,快速,可信,稳定。 -12-30V直流电源供电 -RS485输出(选配) -标配三线制4-20mA模拟信号输出;二线制输出或继电器输出(选配) -反应速度快,测量精度高 -最佳的性能和较低的安装费用 -维护费用低 三、技术参数 检测气体:空气中的一氧化碳(CO) 量程:0-1000ppm量程范围可根据实际要求而定 精度:<±3%(F.S) 最小读数:0.1ppm 响应时间:≤30秒 传感器寿命:24个月 传感器类型:电化学 电源:12-30V直流电源供电 检测方式:扩散式 工作方式:长期连续工作 输出信号:标配三线制4-20mA模拟信号输出;二线制输出,继电器输出或RS485输出(选配) 连线方式:G1/2阳螺纹防爆软管 电缆规格:型号RVVP3×1.0mm2信号传输距离:≥1000米 结构材料:压铸铝 防爆标志:Ex dIICT6 防护等级:IP65 工作温度:-20~50℃(特殊要求根据需要而定) 工作湿度:≤90%RH 尺寸:183×143×92mm 重量:≤1.2kg 四、线性对比公式 电流型:(最大测量范围-最小测量范围)/(20-4)=当前值/(当前电流值-4) ******当前+最小测量范围值,才是实际值。 电压型:0-10V 输出(最大测量范围-最小测量范围)/10=当前设备值/(当前电压值) ******当前+最小测量范围值,才是实际值。 电压型:0-5V输出(最大测量范围-最小测量范围)/5=当前设备值/(当前电压值) ******当前+最小测量范围 五、外形尺寸

R1500激光测距仪使用说明书

R1500|1200米激光测距仪使用说明书 目次 1 用途 (1) 2 主要性能及技术规格 (2) 3 镜内符号及功能 (2) 4 测距操作 (3) 5 使用注意事项 (4) 6 附件 (4) 1 用途 R1500激光测距仪是一种高级的激光测距系统,可以快速提供精确测量的距离。其独特的光学性能可以在任何情况下提供清晰的图像。该激光测距仪用的是最新的数字电路设计和光学系统,同时,在镜片质量和价格上是其他任何产品都无法超越的。 该测距仪具备高档望远镜和激光测距双重功能。具有测距时间快、距离显示直观、测距精度高,耗电省,不使用时自动断电等特点。该仪器体积小、外形美、重量轻,便于携带;机内使用一节9V电池,更换方便。 该测距仪广泛用于高尔夫球、打猎等体育、野外活动的距离测量;也广泛用于电杆、桥梁和建筑工地的距离测量;还可用于一般的地形测量、仓储测量等。 测距仪的外型见图一。 1 —望远镜目镜(境内距离显示) 2 —望远镜物镜 3 —激光发射物镜 4 —激光接收物镜 5 —模式按钮 6 —触发按钮 7 —电池盖 2 主要性能 2.1 测距范围:15~1200m或1500m; 2.2 测距方式:半导体激光测距(对人眼无 害); 2.3 测距误差:±1m±0.1%; 2.4 测距显示方式:视野内LCD显示; 2.5 有效物镜口径:25mm; 2.6 膜系:多层镀膜; 2.7 出瞳直径: 3.6mm; 2.8 出瞳距离: 1 3.5mm; 2.9 对焦方式:目镜调焦; 2.10 望远镜倍率:7X; 2.11 在1000m之视野:140m(视场8°); 2.12 测距模式:RAIN、RELF、>150,无 显示为标准模式; 2.13 电源:6F22-9V; 2.14 外形尺寸:60X145X142mm; 2.15 重量:440g; 2.16 防水性:不防水。 2.17三脚架螺纹:1/4″×6 3 境内符号及功能3.1 测距仪镜内测距符号见图二。 3.2 瞄准标记:在视场中心,用“”表示,测距时用中心圆瞄准目标。 图二 图一

国内外传感器技术现状与未来发展趋势

《传感器原理与应用》结课论文国外传感器现状及发展趋势 学院:计算机与信息工程学院 专业:通信工程 班级:13级通信工程 学号: : 指导教师:袁博 学年学期:2016-2017学年第一学期

摘要:传感器技术是现代技术的应用具有巨大的发展潜力,通过传感器技术的应用现状,在未来发展中存在的问题和面临的挑战,传感器技术现状与发展趋势。 关键字:传感器,现状,发展趋势。 正文: 一、传感器的定义和组成 根据国家标准(GB7665—87),传感器(transduer/sensor)的定义是:能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。 这一定义包含了以下几方面的含意:①传感器是测量装置,能完成检测任务:②它的输出旦是某一被测量,可能是物理量.也可能是化学量、生物量等;②它的输出量是某种物理量,这种量要便于传输、转换、处理、显示等,这种量可以是气、光、电物理量,但主要是电物理量;④输出输入有对应关系,且应有一定的精确程度。 关于传感器,我国曾出现过多种名称,如发送器、传送器、变送器等,它们的涵相同或相似。所以近来己逐渐趋向统一,大都使用传感器这一名称了。 但是,在我国还经常有把‘传感器”和“敏感元件”等同使用的情况。当从仪器仪表学科的角度强调是一种感受信号的装置时,称其为。传感器”:而从电子学的角度强调它是一种能感受信号的电子元件时,称其为“敏感元件”。两种

不同的提法在大多数情况下并不矛盾。例如热敏电阻,既可以称其为“温度传感器”,也可以称之为“热敏元件”。但在有些情况下则只能概括地用“传感器”一词来称谓。例如,利用压敏元件作为敏感元件,并具有质量块、弹按和阻尼等结构的加速度传感器,很难用“敏感元件%类的词称谓,而只“传感器”则更为贴切。 传感器一般由敏感元件、转换元件和转换电路三部分组成。 (1)敏感元件:它是直接感受被测量,并输出与被测量成确定关系的某一种量的元件。 是一种气体压力传感器的示意图。膜盒2的下半部与壳体l固接,上半部通过连扦与磁芯 4相连,磁芯4置于两个电感线圈3中,后者接人转换电路5。这里的膜盒就是敏感元件,其外部与大气压力尸。相通,部与被测量压力尸相通。当尸变化时.引起膜盒上半部移动,即输出相应的位移量。 (2)转换元件:敏感元件的输出就是它的输入,它把输入转换成电路参量。在图2—2中,转换元件是可变电感线圈3,它把输入的位移量转换成电感的变化。 (3)转换电路:上述电路参数接入转换电路.便可转换成电量输出。 实际上,有些传感器很简单.有些则较复杂,大多数是开环系统,也有些是带反馈的闭环系统。 最简单的传感器由一个敏感元件(兼转换元件)组成,它感受被测量时直接输出电量,如热电偶;有些传感器由敏感元件组成,没有转换电路,如压电式加

压力传感器的发展趋势和现状.

压力传感器的发展趋势和现状 南京宏沐科技有限公司 2012-02-14 09:41 传感器技术是现代测量和自动化系统的重要技术之一。随着硅、微机械加工技术、超大集成电路技术和材料制备与特性研究工作的进展,使得压力传感器在光纤传感器的批量生产、高温硅压阻及压电结传感器的应用成为可能,在生物医学、微型机械等领域,压力传感器有着广泛的应用前景。 1 压力传感器的发展趋势 当今世界各国压力传感器的研究领域十分广泛,几乎渗透到了各行各业,但归纳起来主要有以下几个趋势: (1 小型化目前市场对小型压力传感器的需求越来越大,这种小型传感器可以工作在极端恶劣的环境下,并且只需要很少的保养和维护,对周围的环境影响也很小,可以放置在人体的各个重要器官中收集资料,不影响人的正常生活。如德国HELM公司生产的量程为2~500PSI 的传感器,直径仅为1. 27mm ,可以放置在人体的血管中而不会对血液的流通产生大的影响。 (2 集成化压力传感器已经越来越多的与其它测量用传感器集成以形成测量和控制系统。集成系统在过程控制和工厂自动化中可提高操作速度和效率。 (3 智能化由于集成化的出现,在集成电路中可添加一些微处理器,使得传感器具有自动补偿、通讯、自诊断、逻辑判断等功能。 (4 广泛化压力传感器的另一个发展趋势是正从机械行业向其它领域扩展,例如:汽车元件、医疗仪器和能源环境控制系统。 (5 标准化传感器的设计与制造已经形成了一定的行业标准。如ISO 国际质量体系;美国的ANSI、ASTM标准、俄罗斯的ГOCT、日本的J IS 标准。

从宇宙开发到海底探秘,从生产的过程控制到现代文明生活,几乎每一项技术都离不开传感器,因此,许多国家对传感器技术的发展十分重视,如日本把传感器技术列为六大核心技术(计算机、通信、激光、半导体、超导体和传感器之一。在各类传感器中压力传感器具有体积小、重量轻、灵敏度高、稳定可靠、成本低、便于集成化的优点,可广泛用于压力、高度、加速度、液体的流量、流速、液位、压强的测量与控制。除此以外,还广泛应用于水利、地质、气象、化工、医疗卫生等方面。由于该技术是平面工艺与立体加工相结合,又便于集成化,所以可用来制成血压计、风速计、水速计、压力表、电子称以及自动报警装置等。压力传感器已成为各类传感器中技术最成熟、性能最稳定、性价比最高的一类传感器。因 此对于从事现代测量与自动控制专业的技术人员必须了解和熟识国内外压力传感器的研究现状和发展趋势。

传感器技术发展现状及趋势

传感器技术发展现状及趋势 桂林航天工业学院 课程论文 题目:传感器技术发展现状及趋势 专业:工商企业管理(生产运作与质量管理) 姓名:罗并 学号:20190820Z00102 指导教师:陈少航 2019年 6月12日 传感器技术发展现状及趋势 在信息化社会,几乎没有任何一种科学技术的发展和应用能够离得开传感器和信号探 测技术的支持。生活在信息时代的人们,绝大部分的日常生活与信息资源的开发,采集, 传送和处理息息相关。分析当前信息与技术发展状态,21世纪的先进传感器必须具备小型化,智能化,多功能化和网络化等优良特征。 为了能够与信息时代信息量激增,要求捕获和处理信息的能力日益增强的技术发展趋 势保持一致,对于传感器性能指标(包括精确性,可靠性,灵敏性等)的要求越来越严格; 与此同时,传感器系统的操作友好性亦被提上了议事日程,因此还要求传感器必须配有标 准的输出模式;而传统的大体积弱功能传感器往往很难满足上述要求,所以它们已逐步被 各种不同类型的高性能微型传感器所取代;后者主要由硅材料构成,具有体积小,重量轻,反应快,灵敏度高以及成本低等优点。 目前,几乎所有的传感器都在由传统的结构化生产设计向基于计算机辅助设计(CAD) 的模拟式工程化设计转变,从而使设计者们能够在较短的时间内设计出低成本,高性能的 新型系统,这种设计手段的巨大转变在很大程度上推动着传感器系统以更快的速度向着能 够满足科技发展需求的微型化的方向发展。 智能化传感器(Smart Sensor)是20世纪80年代末出现的另外一种涉及多种学科的新 型传感器系统。此类传感器系统一经问世即刻受到科研界的普遍重视,尤其在探测器应用 领域,如分布式实时探测,网络探测和多信号探测方面一直颇受欢迎,产生的影响较大。,智能化传感器具有以下优点: (1)智能化传感器不但能够对信息进行处理,分析和调节,能够对所测的数值及其误 差进行补偿,而且还能够进行逻辑思考和结论判断,能够借助于一览表对非线性信号进行

激光传感器O1D100中文操作说明

目录 安全指示 (21) 功能和特性 (22) 操作和指示元件 (22) 电气连接 (23) 操作模式 (24) 编程 (25) 设置/操作 (26) 技术信息/操作/参数 可调节参数 (27) 菜单结构1:主菜单 (30) 菜单结构2:扩展功能 (31) 菜单结构3:教学模式 (32) 输出功能 (32) 比例图 (36)

避免暴露 此缝隙会释放激光 小心 激光 请勿凝视光柱 2级激光产品 最大功率4.1mW 波长650nm 脉冲1.3ns 21CFR PART 1040 EN60825-1:2003-10 粘贴到电缆警告: 2级激光产品 请对电源电缆使用粘贴标签。 请勿凝视光柱

功能和特性 光学距离传感器 ●测量0.2 -10m的距离 ●在10段显示屏上显示测量结果 ●根据设置输出功能,生成2个输出信号●O1D100:认证:21 CRF 部件1040 操作和指示元件

; 电气连接 本设备只能由熟练的电工来连接。必须遵守国家的或国际上关于电气设备安装的规章。 电源电压符合EN50178,SELV 、PELV 。 O1D100:cULus ,电源级别2。 在连接本设备之前请断开电源。 ifm 槽的核心颜色: 1=BN (棕色),2=WH (白色),3=BU (蓝色),4=BK (黑色)。 注意:如果输出2连接到模拟输入卡,则必须首先设置输出的参数(OU2=I 或者OU2=U )。否则 可能会毁坏输入卡。

“运行”模式 此模式是一般操作模式 打开电源之后,本设备处于运行模式。它执行其监视功能,并根据设备参数生成输出信号。 显示屏指示当前距离,黄色LED表示输出的切换状态。 “显示”模式 此模式指示参数和设置参数值 在短暂地按[Mode / Enter] 按钮之后,设备转入显示模式。它在内部保持操作模式。与此无关,可以读取设置参数值: ●短暂地按[Mode / Enter] 按钮,可滚动参数。 ●短暂地按[Set] 按钮,可将相应的参数值显示15秒。再过15秒之后,设备返回到“运行”模 式。 “编程”模式 此模式设置参数值 在选择了一个参数,然后按住[Set] 按钮超过5秒之后,设备转到编程模式(显示的参数值闪烁,然后持续增长)。设备在内部保持操作模式。它继续其对现有参数的监视功能,直到更改终止。 您可以通过按[Set] 按钮来更改参数值,并通过按[Mode / Enter] 按钮来确认参数值。如果超过15秒未按任何按钮,则设备返回到“运行”功能。

颜色传感器产品说明书

【产品展示图片】 引脚说明

1、S0 2、S1 3、OE 4、GND 5、VCC 6、OUT 7、S2 8、S3 简要说明 一、尺寸:长34mmX宽26mmX高10mm 二、主要芯片:TCS230 三、工作电压:直流5V 四、输出频率电压0~5V 五、特点: 1、所有的引脚全部引出 2、输出占空比50% 3、采用高亮白色LED灯反射光 4、可直接和单片机连接 5、静态检测被测物颜色 6、检测距离10mm最佳 操作说明请参看我们的优酷视频:https://www.360docs.net/doc/734377244.html,/龙戈电子 适用场合:单片机学习、电子竞赛、产品开发、毕业设计等等附录: 颜色传感器TCS230及颜色识别电路

随着现代工业生产向高速化、自动化方向的发展,生产过程中长期以来由人眼起主导作用的颜色识别工作将越来越多地被相应的颜色传感器所替代。例如:图书馆使用颜色区分对文献进行分类,能够极大地提高排架管理和统计等工作;在包装行业,产生包装利用不同的颜色和装潢来表示其不同的性质或用途。目前的颜色传感器通常是在独立的光电二极管上覆盖经过修正的红、绿、蓝滤波片,然后对输出信号进行相应的处理,才能将颜色信号识别出来;有的将两者集合起来,但是输出模拟信号,需要一个A/D电路进行采集,对该信号进一步处理,才能进行识别,增加了电路的复杂性,并且存在较大的识别误差,影响了识别的效果。TAOS(Texas Advanced Optoelectronic Solutions)公司最新推出的颜色传感器TCS230,不仅能够实现颜色的识别与检测,与以前的颜色传感器相比,还具有许多优良的新特性。 1 .TCS230芯片的结构框图与特点: TCS230是TAOS公司推出的可编程彩色光到频率的转换器,它把可配置的硅光电二极管与电流频率转换器集成在一个单一的CMOS电路上,同时在单一芯片上集成了红绿蓝(RGB)三种滤光器,是业界第一个有数字兼容接口的RGB彩色传感器,TCS230的输出信号是数字量,可以驱动标准的TTL或CMOS逻辑输入,因此可直接与微处理器或其他逻辑电路相连接,由于输出的是数字量,并且能够实现每个彩色信道10位以上的转换精度,因而不再需要A/D转换电路,使电路变得更简单,图1是TCS230的引脚和功能框图。 图1中,TCS230采用8引脚的SOIC表面贴装式封装,在单一芯片上集成有64个光电二极管,这些二极管分为四种类型,其16个光电二极管带有红色滤波器;16个光电二极管带有绿色滤波器;16个光电二极管带有蓝色滤波器,其余16个不带有任何滤波器,可以透过全部的光信息,这些光电二极管在芯片内是交叉排列的,能够最大限度地减少入射光辐射的不均匀性,从而增加颜色识别的精确度;另一方面,相同颜色的16个光电二极管是并联连接的,均匀分布在二极管阵列中,可以消除颜色的位置误差。工作时,通过两个可编程的引脚来动态选择所需要的滤波器,该传感器的典型输出频率范围从2Hz-500kHz,用户还可以通过两个可编程引脚来选择100%、20%或2%的输出比例因子,或电源关断模式。输出比例因子使传感器的输出能够适应不同的测量范围,提高了它的适应能力。例如,当使用低速的频率计数器时,就可以选择小的定标值,使TCS230的输出频率和计数器相匹配。 从图1可知:当入射光投射到TCS230上时,通过光电二极管控制引脚S2、S3的不同组合,可以选择不同的滤波器;经过电流到频率转换器后输出不同频率的方波(占空比是50%),不同的颜色和光强对应不同频率的方波;还可以通过输出定标控制引脚S0、S1,选择不同的输出比例因子,对输出频率范围进行调整,以适应不同的需求。

传感器技术发展现状及趋势

桂林航天工业学院 课程论文 题目:传感器技术发展现状及趋势 专业:工商企业管理(生产运作与质量管理) 姓名:罗并 学号:20130820Z00102 指导教师:陈少航 2015年6月12日 传感器技术发展现状及趋势 在信息化社会,几乎没有任何一种科学技术的发展和应用能够离得开传感器和信号探测技术的支持。生活在信息时代的人们,绝大部分的日常生活与信息资源的开发,采集,传送和处理息息相关。分析当前信息与技术发展状态,21世纪的先进传感器必须具备小型化,智能化,多功能化和网络化等优良特征。 为了能够与信息时代信息量激增,要求捕获和处理信息的能力日益增强的技术发展趋势保持一致,对于传感器性能指标(包括精确性,可靠性,灵敏性等)的要求越来越严格;与此同时,传感器系统的操作友好性亦被提上了议事日程,因此还要求传感器必须配有标准的输出模式;而传统的大体积弱功能传感器往往很难满足上述要求,所以它们已逐步被各种不同类型的高性能微型传感器所取代;后者主要由硅材料构成,具有体积小,重量轻,反应快,灵敏度高以及成本低等优点。 目前,几乎所有的传感器都在由传统的结构化生产设计向基于计算机辅助设计(CAD)的模拟式工程化设计转变,从而使设计者们能够在较短的时间内设计出低成本,高性能的新型系统,这种设计手段的巨大转变在很大程度上推动着传感器系统以更快的速度向着能够满足科技发展需求的微型化的方向发展。 智能化传感器(Smart Sensor)是20世纪80年代末出现的另外一种涉及多种学科的新型传感器系统。此类传感器系统一经问世即刻受到科研界的普遍重视,尤其在探测器应用领域,如分布式实时探测,网络探测和多信号探测方面一直颇受欢迎,产生的影响较大。,智能化传感器具有以下优点: (1)智能化传感器不但能够对信息进行处理,分析和调节,能够对所测的数值及其误差进行补偿,而且还能够进行逻辑思考和结论判断,能够借助于一览表对非线性信号进行线性化处理,借助于软件滤波器滤波数字信号。此外,还能够利用软件实现非线性补偿或其它更复杂的环境补偿,以改进测量精度。 (2)智能化传感器具有自诊断和自校准功能,可以用来检测工作环境。当工作环境临近其极限条件时,它将发出告警信号,并根据其分析器的输入信号给出相关的诊断信息。当智能化传感器由于某些内部故障而不能正常工作时,它能够借助其内部检测链路找出异常现象或出了故障的部件。 (3)智能化传感器能够完成多传感器多参数混合测量,从而进一步拓宽了其探测与应用领域,

相关文档
最新文档