天津市静海县第一中学等差数列经典试题(含答案) 百度文库

合集下载

天津静海县第一中学2020年高二数学文下学期期末试题含解析

天津静海县第一中学2020年高二数学文下学期期末试题含解析

天津静海县第一中学2020年高二数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知f1(x)=cosx,f2(x)=f1′(x),f3(x)=f2′(x),f4(x)=f3′(x),…,f n(x)=f n﹣1′(x),则f2015(x)等于()A.sinx B.﹣sinx C.cosx D.﹣cosx参考答案:D【考点】导数的运算.【分析】对函数连续求导研究其变化规律,可以看到函数解析式呈周期性出现,以此规律判断求出f2015(x)【解答】解:由题意f1(x)=cosx,f2(x)=f1′(x)=﹣sinx,f3(x)=f2′(x)=﹣cosx,f4(x)=f3′(x)=sinx,f5(x)=f4′(x)=cosx,…由此可知,在逐次求导的过程中,所得的函数呈周期性变化,从0开始计,周期是4,∵2015=4×503+3,故f2015(x)=f3(x)=﹣cosx故选:D2. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为()A.96 B.48 C.24 D.0参考答案:B【考点】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法种数为2A44=48.故选B.【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.3. 直线与圆C:切于点p(-1,2),则a+b的值为() A.1 B.-1 C.3 D.-3参考答案:C4. 已知定义在R上的奇函数满足,当时,,( )A. B. C. D.参考答案:B略5. 已知x<2,则y=的最大值是()A.0 B .2 C. 4 D.8参考答案:A6. 的展开式中常数项为()A、-40B、-10C、10D、40参考答案:D7. 已知集合,,则A∪B= ( )A. B.C. D.参考答案:B【分析】根据题意,利用指数函数的性质解出集合,再根据集合的并集运算,即可求解出答案。

天津静海县第一中学高一数学文联考试题含解析

天津静海县第一中学高一数学文联考试题含解析

天津静海县第一中学高一数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. (5分)△ABC中,∠C=90°,且CA=CB=3,点M满足=2,则?=()A.18 B. 3 C.15 D.12参考答案:A考点:平面向量数量积的性质及其运算律.专题:计算题.分析:由题意可得△ABC是等腰直角三角形,AB=3,=,把要求的式子化为9+()?,再由两个向量垂直的性质运算求得结果.解答:由题意可得△ABC是等腰直角三角形,AB=3,=,故?=()?=+?=9+?=9+()?=9+﹣?=9+9﹣0=18,故选A.点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,属于基础题.2. 直线与互相垂直,则( )A. B.1 C.D.参考答案:C略3. 如图是某四棱锥的三视图,则该几何体的表面积等于 ( )A. B.C. D.参考答案:A4. 若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A. B. C. D.参考答案:B试题分析:本题是几何概型问题,矩形面积2,半圆面积,所以质点落在以AB为直径的半圆内的概率是,故选B.考点:几何概型.5. 下列函数中,在R上单调递增的是()A. B. C. D.参考答案:C6. 已知α为锐角, ( )参考答案:C7. 在等差数列中,若,则的值为 ( )A.14B.15C.16D.17参考答案:C略8. 已知定义域为R上的函数单调递增,如果的值 A.可能为0 B.恒大于0 C.恒小于0 D.可正可负参考答案:C解析: 由题设知,的图象关于点对称. 又由已知,且, 由在时单调递增知,.故选C.9. 已知 f(x)= ︱x︱-︱x-1︱,则f(f(0))A.1B.0C.-1D.2参考答案:C10. 方程的解的个数是()A.B.C.D.参考答案:C 解析:在同一坐标系中分别作出函数的图象,左边三个交点,右边三个交点,再加上原点,共计个二、填空题:本大题共7小题,每小题4分,共28分11. 已知正四棱锥的底面边长是6,高为,则该正四棱锥的侧面积为▲.参考答案:4812. 已知正四棱锥底面正方形边长为2,体积为,则此正四棱锥的侧棱长为.参考答案:设四棱锥的高为h,则由题意得,解得.又正四棱锥底面正方形的对角线长为,∴正四棱锥的侧棱长为.13. 已知角满足,则__________________.参考答案:【分析】运用诱导公式和二倍角余弦公式求解即可.【详解】由题意得.故答案为:.【点睛】解答三角变换中的“给值求值”问题时,要注意将所给的条件作为一个整体进行处理,把所求角根据“拼凑”的方法用已知角表示,然后进行求解,属于基础题.14. 已知a R+, 且a ≠ 1, 又M = , N = , P = , 则M, N , P的大小关系是.参考答案:M > N > P略15. 下列几个命题:①函数与表示的是同一个函数;②若函数的定义域为,则函数的定义域为;③若函数的值域是,则函数的值域为;④若函数是偶函数,则函数的减区间为.其中正确的命题有个.参考答案:116. 已知函数,给出下列命题:①若,则;②对于任意的,,,则必有;③若,则;④若对于任意的,,,则,其中所有正确命题的序号是_____.参考答案:见解析解:,对于①,当时,,故①错误.对于②,在上单调递减,所以当时,即:,故②正确.对于③表示图像上的点与原点连线的斜率,由的图像可知,当时,,即:,故③错误.对于④,由得图像可知,,故④正确.综上所述,正确命题的序号是②④.17. 设全集参考答案:略三、解答题:本大题共5小题,共72分。

2023届天津市静海县第一中学、杨村一中、宝坻一中等六校数学高一上期末含解析

2023届天津市静海县第一中学、杨村一中、宝坻一中等六校数学高一上期末含解析
4.向量 ,若 ,则k的值是()
A.1B.
C.4D.
5.下表是某次测量中两个变量 的一组数据,若将 表示为关于 的函数,则最可能的函数模型是
2
3
4
5
6
7
8
9
0.63
1.01
1.26
1.46
1.63
1.77
Hale Waihona Puke 1.891.99A.一次函数模型B.二次函数模型
C.指数函数模型D.对数函数模型
6.设 ,则 ()
A. B.a
C. D.
7.函数y= 的单调递减区间是( )
A.(-∞,1)B.[1,+∞)
C.(-∞,-1)D.(-1,+∞)
8.若-4<x<1,则 ()
A.有最小值1B.有最大值1
C.有最小值-1D.有最大值-1
9.已知 ,则 =()
A. B.
C. D.
10.与 角的终边相同的最小正角是()
A. B.
故答案为A
【点睛】本题主要考查指数函数和二次函数的单调性,考查复合函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.
8、D
【解析】先将 转化为 ,根据-4<x<1,利用基本不等式求解.
【详解】
又∵-4<x<1,
∴x-1<0
∴-(x-1)>0
∴ .当且仅当x-1= ,即x=0时等号成立
故选:D
(2)求出 ,再根据集合间的基本运算即可求解.
【详解】解:(1)由 ,
解得: ,
故 ,
又 ,

(2)由(1)知: ,
或 ,
或 .
20、(1) ;

2022-2023学年天津市静海区第一中学高一上学期期末数学试题(解析版)

2022-2023学年天津市静海区第一中学高一上学期期末数学试题(解析版)
【详解】 的定义域为 ,
,所以 为偶函数,
图象关于 轴对称,排除C,D选项;
,排除B选项.
所以A选项正确.
故选:A
4.已知 是第三象限角,若 ,则 ()
A. B. C. D.
【答案】C
【解析】
【分析】由题意得 ,再利用诱导公式化简 即可得到答案.
【详解】 是第三象限角,若 ,由 ,得
故选:C.
5.角 的终边与单位圆上半圆交于 ,则 _______
【详解】解:因为 ,
所以 ,
所以 .
故答案为:
13.已知 ,则 __________.
【答案】
【解析】
【分析】利用诱导公式将已知条件进行化简成 ,代入式子即可求解.
【详解】
,所以 ,
则 ,
故答案为: .
14.已知 , ,其中 ,
(1)求角 ;
(2)求 .
【答案】(1)
(2)
【解析】
【分析】(1)根据 ,然后利用两角差的余弦代入即可.
(3)求关于 的不等式 的解集.
【答案】(1)
(2)
(3)答案见详解
【解析】
【分析】(1)对①根据三个二次之间的关系分析运算;对②:根据二次函数的最值分析列式;对③:根据二次函数的对称性分析列式;结合题意可得应满足①②,运算求解;(2)根据题意参变分离可得 当 时恒成立,结合基本不等式运算求解;(3)根据一元二次不等式的解法分类讨论两根大小,运算求解.
【答案】(1)1(2)
【详解】令 ,解得 或 ,则 的定义域为 ,
由 在 单调递减,根据复合函数的单调性:同增异减,求出 的
减区间即为 的增区间,再结合 的定义域可知 的单调递增区间为 ,

天津天津市第一中学数列的概念练习题(有答案) 百度文库

天津天津市第一中学数列的概念练习题(有答案) 百度文库

一、数列的概念选择题1.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45B .46C .47D .482.已知数列{}n a 前n 项和为n S ,且满足*112(N 3)33n n n n S S S S n n --+≤+∈≥+,,则( )A .63243a a a ≤-B .2736+a a a a ≤+C .7662)4(a a a a ≥--D .2367a a a a +≥+3.在数列{}n a 中,11a =,对于任意自然数n ,都有12nn n a a n +=+⋅,则15a =( )A .151422⋅+B .141322⋅+C .151423⋅+D .151323⋅+4.已知数列{}n a 满足11a =,()*11nn n a a n N a +=∈+,则2020a =( ) A .12018B .12019 C .12020D .120215.数列{}n a 满足 112a =,111n na a +=-,则2018a 等于( )A .12B .-1C .2D .36.已知等差数列{}n a 中,13920a a a ++=,则574a a -=( ) A .30B .20C .40D .507.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184B .174C .188D .1608.若数列{a n }满足1112,1nn na a a a ++==-,则2020a 的值为( ) A .2B .-3C .12-D .139.已知数列{}n a 的前n 项和223n S n n =-,则10a =( )A .35B .40C .45D .5010.已知数列{}n b 满足12122n n b n λ-⎛⎫=-- ⎪⎝⎭,若数列{}n b 是单调递减数列,则实数λ的取值范围是( ) A .101,3B .110,23⎛⎫- ⎪⎝⎭C .(-1,1)D .1,12⎛⎫-⎪⎝⎭11.在数列{}n a 中,11a =,()*122,21n n a n n N a -=≥∈-,则3a =( )A .6B .2C .23D .21112.已知定义在R 上的函数()f x 是奇函数,且满足3()(),(1)32f x f x f -=-=,数列{}n a 满足11a =,且21n nS a n n=-,(n S 为{}n a 的前n 项和,*)n N ∈,则56()()f a f a +=( )A .1B .3C .-3D .013.数列1111,,,57911--,…的通项公式可能是n a =( ) A .1(1)32n n --+B .(1)32n n -+C .1(1)23n n --+D .(1)23nn -+14.已知数列{}n a 满足:11a =,145n n a a +=+,则n a =( ) A .85233n⨯- B .185233n -⨯- C .85433n⨯-D .185433n -⨯- 15.正整数的排列规则如图所示,其中排在第i 行第j 列的数记为,i j a ,例如4,39a =,则645a ,等于( )12345678910A .2019B .2020C .2021D .202216.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,……则此数列的第40项为( ). A .648B .722C .800D .88217.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( )A .92B .102C .8182D .11218.下列命题中错误的是( ) A .()()21f n n n N+=-∈是数列的一个通项公式B .数列通项公式是一个函数关系式C .任何一个数列中的项都可以用通项公式来表示D .数列中有无穷多项的数列叫作无穷数列 19.数列{}n a 满足:12a =,111nn na a a ++=-()*n N ∈其前n 项积为n T ,则2018T =( ) A .6-B .16-C .16D .620.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤C .数列{}n a 的最小项为3a 和4aD .数列{}n a 的最大项为3a 和4a二、多选题21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54C .S 2020=a 2022-1D .a 1+a 3+a 5+…+a 2021=a 202222.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列 C .2020312a <<D .2020314a << 23.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=024.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n= B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1{}nS 为递增数列 25.已知数列{}n a 满足:12a =,当2n ≥时,)21212n n a a -=+-,则关于数列{}n a 的说法正确的是 ( )A .27a =B .数列{}n a 为递增数列C .221n a n n =+-D .数列{}n a 为周期数列26.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.27.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4B .5C .7D .828.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >D .数列{}na 也是等差数列29.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( ) A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥30.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n =31.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数)B .数列{}n a -是等差数列C .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列D .1n a +是n a 与2n a +的等差中项32.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列 D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列 33.在下列四个式子确定数列{}n a 是等差数列的条件是( )A .n a kn b =+(k ,b 为常数,*n N ∈);B .2n n a a d +-=(d 为常数,*n N ∈);C .()*2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和21n S n n =++(*n N ∈).34.已知数列{}n a 是递增的等差数列,5105a a +=,6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )A .320n a n =-B .325n a n =-+C .当4n =时,n T 取最小值D .当6n =时,n T 取最小值35.设等差数列{}n a 的前n 项和为n S ,公差为d ,且满足10a >,1118S S =,则对n S 描述正确的有( ) A .14S 是唯一最小值 B .15S 是最小值 C .290S =D .15S 是最大值【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.C 解析:C 【分析】利用数列的递推式,得到a n +1=3a n -2,进而得到a n =3n -1+1,然后代入[lg(a 100-1)]可求解 【详解】当n ≥2时,S n =3S n -1-2n +4,则a n +1=3a n -2,于是a n +1-1=3(a n -1),当n =1时,S 2=3S 1-2+2=6,所以a 2=S 2-S 1=4.此时a 2-1=3(a 1-1),则数列{a n -1}是首项为1,公比为3的等比数列.所以a n -1=3n -1,即a n =3n -1+1,则a 100=399+1,则lg(a 100-1)=99lg3≈99×0.477=47.223,故[lg(a 100-1)]=47. 故选C2.C解析:C 【分析】由条件可得出11n n n n a a a a -+-≤-,然后可得3243546576a a a a a a a a a a -≤-≤-≤-≤-,即可推出选项C 正确.【详解】因为*112(N 3)33n n n n S S S S n n --+≤+∈≥+,,所以12133n n n n S S S S -+-≤--,所以113n n n n a a a a +-≤++ 所以11n n n n a a a a -+-≤-,所以3243546576a a a a a a a a a a -≤-≤-≤-≤-所以()6232435465764a a a a a a a a a a a a -=-+-+-+-≤- 故选:C 【点睛】本题主要考查的是数列的前n 项和n S 与n a 的关系,解答的关键是由条件得到11n n n n a a a a -+-≤-,属于中档题.3.D解析:D 【分析】在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减法求15a .【详解】12n n n a a n +=+⋅, 12n n n a a n +-=⋅,12112a a ∴-=⋅, 23222a a -=⋅, 34332a a -=⋅11(1)2n n n a a n ---=-⋅,以上1n -个等式,累加得12311122232(1)2n n a a n --=⋅+⋅+⋅++-⋅①又2341122122232(2)2(1)2n n n a a n n --=⋅+⋅+⋅++-⋅+-⋅②①- ②得23112222(1)2n n n a a n --=++++--⋅12(12)(1)2(2)2212n n n n n --=--⋅=-⋅--,(2)23n n a n ∴=-⋅+ ,151515(152)231323a ∴=-⋅+=⋅+,故选:D 【点睛】本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.4.C解析:C 【分析】根据数列的递推关系,利用取倒数法进行转化,构造等差数列,结合等差数列的性质求出通项公式即可. 【详解】 解:11nn n a a a +=+, ∴两边同时取倒数得11111n n n na a a a ++==+, 即1111n na a ,即数列1n a ⎧⎫⎨⎬⎩⎭是公差1d =的等差数列,首项为111a .则11(1)1nn n a =+-⨯=,得1n a n=, 则202012020a =, 故选:C 【点睛】本题主要考查数列通项公式的求解,结合数列递推关系,利用取倒数法以及构造法构造等差数列是解决本题的关键.考查学生的运算和转化能力,属于基础题.5.B解析:B 【分析】先通过列举找到数列的周期,再求2018a . 【详解】n=1时,234511121,1(1)2,1,121,22a a a a =-=-=--==-==-=- 所以数列的周期是3,所以2018(36722)21a a a ⨯+===-. 故选:B 【点睛】本题主要考查数列的递推公式和数列的周期,意在考查学生对这些知识的掌握水平和分析推理能力.6.B解析:B 【分析】利用等差数列{}n a 的通项公式代入可得574a a -的值. 【详解】由13920a a a ++=,得131020a d +=,则有5711144(4)631020a a a d a d a d -=+--=+=. 故选:B. 【点睛】考查等差数列通项公式的运用,知识点较为简单.7.B解析:B 【分析】根据高阶等差数列的知识,结合累加法求得数列的通项公式,由此求得19a . 【详解】3,4,6,9,13,18,24,1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()11113322n n n n -+⋅--=+=+.所以19191831742a ⨯=+=. 故选:B 【点睛】本小题主要考查数列新定义,考查累加法,属于基础题.8.D解析:D 【分析】分别求出23456,,,,a a a a a ,得到数列{}n a 是周期为4的数列,利用周期性即可得出结果. 【详解】由题意知,212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,612312a +==--,…,因此数列{}n a 是周期为4的周期数列, ∴20205054413a a a ⨯===. 故选D. 【点睛】本题主要考查的是通过观察法求数列的通项公式,属于基础题.9.A解析:A 【分析】利用()n n n a S S n 12-=-,根据题目已知条件求出数列的通项公式,问题得解.【详解】223n S n n =-,n 2∴≥时,1n n n a S S -=-22(23[2(1)3(1)]n n n n )=-----=45n1n = 时满足11a S = ∴ =45n a n ,∴ 10a =35故选:A.【点睛】本题考查利用n a 与n S 的关系求通项. 已知n S 求n a 的三个步骤: (1)先利用11a S =求出1a .(2)用1n -替换n S 中的n 得到一个新的关系,利用()n n n a S S n 12-=-便可求出当n 2≥时n a 的表达式.(3)对1n =时的结果进行检验,看是否符合n 2≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与n 2≥两段来写. .10.A解析:A 【分析】由题1n n b b +>在n *∈N 恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭,讨论n 为奇数和偶数时,再利用数列单调性即可求出. 【详解】数列{}n b 是单调递减数列,1n n b b +∴>在n *∈N 恒成立,即()122112+1222nn n n λλ-⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭, 当n 为奇数时,则()6212nn λ>-+⋅恒成立,()212n n -+⋅单调递减,1n ∴=时,()212n n -+⋅取得最大值为6-, 66λ∴>-,解得1λ>-;当n 为偶数时,则()6212nn λ<+⋅恒成立,()212n n +⋅单调递增,2n ∴=时,()212n n +⋅取得最小值为20,620λ∴<,解得103λ<, 综上,1013λ-<<. 故选:A. 【点睛】关键点睛:本题考查已知数列单调性求参数,解题的关键由数列单调性得出16212nn λ⎛⎫-<+ ⎪⎝⎭恒成立,需要讨论n 为奇数和偶数时的情况,这也是容易出错的地方. 11.C【分析】利用数列的递推公式逐项计算可得3a 的值. 【详解】()*122,21n n a n n N a -=≥∈-,11a =,212221a a ∴==-,3222213a a ==-. 故选:C. 【点睛】本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.12.C解析:C 【分析】判断出()f x 的周期,求得{}n a 的通项公式,由此求得56()()f a f a +. 【详解】依题意定义在R 上的函数()f x 是奇函数,且满足3()()2f x f x -=, 所以()333332222f x f x f x fx ⎛⎫⎛⎫⎛⎫⎛⎫+=---=--=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()()()32f x f x f x ⎛⎫=---=--= ⎪⎝⎭,所以()f x 是周期为3的周期函数.由21n n S a n n=-得2n n S a n =-①, 当1n =时,11a =,当2n ≥时,()1121n n S a n --=--②,①-②得11221,21n n n n n a a a a a --=--=+(2n ≥),所以21324354213,217,2115,2131a a a a a a a a =+==+==+==+=,652163a a =+=.所以56()()f a f a +=()()()()()()()316331013211013f f f f f f f +=⨯++⨯=+=--=-故选:C 【点睛】如果一个函数既是奇函数,图象又关于()0x a a =≠对称,则这个函数是周期函数,且周期为4a .13.D【分析】根据观察法,即可得出数列的通项公式. 【详解】因为数列1111,,,, (57911)--可写成 ()()()()2342322311111,1,1,12,..24.333-⨯-⨯-⨯+⨯+⨯+⨯+-⨯, 所以其通项公式为(1)(1)23213nnn a n n -=-=++⨯. 故选:D.14.D解析:D 【分析】 取特殊值即可求解. 【详解】当1n =时,11a =,显然AC 不正确,当2n =时,21459a a =+=,显然B 不符合,D 符合 故选:D15.C解析:C 【分析】根据题目中已知数据,进行归总结,得到一般性结论,即可求得结果. 【详解】根据题意,第1行第1列的数为1,此时111(11)112a ⨯-=+=,, 第2行第1列的数为2,此时212(21)122a ⨯-=+=,, 第3行第1列的数为4 ,此时313(31)142a ⨯-=+=,, 据此分析可得:第64行第1列的数为64164(641)120172a ⨯-=+=,,则6452021a =,, 故选:C.16.C解析:C 【分析】由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:222n a n =,即可得出.由0,2,4,8,12,18,24,32,40,50…,可得偶数项的通项公式:222n a n =.则此数列第40项为2220800⨯=. 故选:C17.B解析:B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=. 令1n n n ab a +=,则112n n b b +=. 21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭. ∴1211322aa ⎛⎫= ⎪⎝⎭, 2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得:12111111(32)222n n na a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭ 2115(1)221122n n n---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-. ∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;18.C解析:C 【分析】根据通项公式的概念可以判定AB 正确;不难找到一些规律性不强的数列,找不到通项公式,由此判定C 错误,根据无穷数列的概念可以判定D 正确. 【详解】数列的通项公式的概念:将数列{} n a 的第n 项用一个具体式子(含有参数n )表示出来,称作该数列的通项公式,故任意一个定义域为正整数集合的或者是其从1开始的一个子集的函数都可以是数列的通项公式,它是一个函数关系,即对于任意给定的数列,各项的值是由n 唯一确定的,故AB 正确; 并不是所有的数列中的项都可以用一个通项公式来表示,比如所有的质数从小到大排在一起构成的数列,至今没有发现统一可行的公式表示,圆周率的各位数字构成的数列也没有一个通项公式可以表达,还有很多规律性不强的数列也找不到通项公式,故C 是错误的;根据无穷数列的概念,可知D 是正确的. 故选:C. 【点睛】本题考查数列的通项公式的概念和无穷数列的概念,属基础题,数列的通项公式是一种定义在正整数集上的函数,有穷数列与无穷数列是根据数列的项数来分类的.19.A解析:A 【分析】根据递推公式推导出()4n n a a n N *+=∈,且有12341a a a a=,再利用数列的周期性可计算出2018T 的值. 【详解】12a =,()*111++=∈-nn n a a n N a ,212312a +∴==--,3131132a -==-+,411121312a -==+,51132113a +==-,()4n n a a n N *+∴=∈,且()12341123123a a a a ⎛⎫=⨯-⨯-⨯= ⎪⎝⎭,201845042=⨯+,因此,()5042018450421211236T T a a ⨯+==⨯=⨯⨯-=-.故选:A. 【点睛】本题考查数列递推公式的应用,涉及数列周期性的应用,考查计算能力,属于中等题.20.C解析:C 【分析】令n n b na =,由已知得121n n b b n +-=+运用累加法得2+12n b n =,从而可得12+n a n n=,作差得()()()+13+4+1n n a n n a n n -=-,从而可得12345>>n a a a a a a =<<<,由此可得选项. 【详解】令n n b na =,则121n n b b n +-=+,又113a =,所以113b =,213b b -=,325b b -=, ,121n n b b n --=-, 所以累加得()()213+2113++122nn n b n --==,所以2+1212+n nb n an n n n===,所以()()()()+13+41212+1+++1+1n n n n a a n n n n n n -⎛⎫-=-= ⎪⎝⎭, 所以当3n <时,+1n n a a <,当3n =时,+1n n a a =,即34a a =,当>3n 时,+1>n n a a , 即12345>>n a a a a a a =<<<,所以数列{}n a 的最小项为3a 和4a ,故选:C. 【点睛】本题考查构造新数列,运用累加法求数列的通项,以及运用作差法判断差的正负得出数列的增减性,属于中档题.二、多选题 21.BCD 【分析】由题意可得数列满足递推关系,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,,故B 正确; 对于C ,可解析:BCD 【分析】由题意可得数列{}n a 满足递推关系()12211,1,+3n n n a a a a a n --===≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确; 对于C ,可得()112n n n a a a n +-=-≥, 则()()()()1234131425311++++++++++n n n a a a a a a a a a a a a a a +-=----即212++1n n n n S a a a a ++=-=-,∴202020221S a =-,故C 正确; 对于D ,由()112n n n a a a n +-=-≥可得,()()()135202124264202220202022++++++++a a a a a a a a a a a a =---=,故D 正确.故选:BCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3n n n a a a a a n --===≥,能根据数列性质利用累加法求解.22.ABD 【分析】构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,所以当时,,即在上为单调递增函数, 所以函数在为单调递增函数, 即, 即, 所以 ,解析:ABD 【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】由()1ln 2n n n a a a +=+-,1102a << 设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--, 所以当01x <<时,0f x,即()f x 在0,1上为单调递增函数, 所以函数在10,2⎛⎫ ⎪⎝⎭为单调递增函数,即()()102f f x f ⎛⎫<< ⎪⎝⎭,即()131ln 2ln ln 1222f x <<<+<+=, 所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确;2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD 【点睛】本题考查了数列性质的综合应用,属于难题.23.ABD 【分析】对于A ,由题意得bn=an2,然后化简4(b2020-b2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{an}满足a1=a2=1,an =an -1+an -2 (n≥3解析:ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题24.AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得.【详解】因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;解析:AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 11104n n n S S S -≠∴-= 因此数列1{}n S 为以114S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n=+-=∴=,即A 正确; 当2n ≥时111144(1)4(1)n n n a S S n n n n -=-=-=--- 所以1,141,24(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,即B ,C 不正确;故选:AD 【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.25.ABC 【分析】由,变形得到,再利用等差数列的定义求得,然后逐项判断. 【详解】 当时,由, 得, 即,又,所以是以2为首项,以1为公差的等差数列, 所以, 即,故C 正确;所以,故A 正确; ,解析:ABC 【分析】由)212n a =-1=,再利用等差数列的定义求得n a ,然后逐项判断. 【详解】当2n ≥时,由)212n a =-,得)221n a +=,1=,又12a =,所以是以2为首项,以1为公差的等差数列,2(1)11n n =+-⨯=+,即221n a n n =+-,故C 正确;所以27a =,故A 正确;()212n a n =+-,所以{}n a 为递增数列,故正确;数列{}n a 不具有周期性,故D 错误; 故选:ABC26.BC 【分析】根据等差数列的前项和性质判断. 【详解】A 错:;B 对:对称轴为7;C 对:,又,;D 错:,但不能得出是否为负,因此不一定有. 故选:BC . 【点睛】关键点点睛:本题考查等差数列解析:BC 【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC .【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 27.BD【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为,公差即每一层比上一层多的根数为,设一共放层,利用等差数列求和公式,分析即可得解.【详解】依据题意,根数从上至下构成等差解析:BD【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解.【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+= 整理得120021a n n=+-, 因为1a *∈N ,所以n 为200的因数,()20012n n +-≥且为偶数, 验证可知5,8n =满足题意.故选:BD.【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题.28.AB【分析】根据已知条件求得的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项.【详解】依题意,等差数列中,即,.对于A 选项,,所以A 选项正确.对于C 选项,,,所以,解析:AB【分析】根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项.【详解】依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+,1149249,2a d a d =-=-. 对于A 选项,24912490a a a d +=+=,所以A 选项正确. 对于C 选项,1492a d =-,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛⎫=+-=-+-=- ⎪⎝⎭,令0n a ≥得51510,22n n -≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,所以B 选项正确. 对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列{}na 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误. 故选:AB【点睛】等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解.29.BC【分析】设公差d 不为零,由,解得,然后逐项判断.【详解】设公差d 不为零,因为,所以,即,解得,,故A 错误;,故B 正确;若,解得,,故C 正确;D 错误;故选:BC解析:BC【分析】设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断. 【详解】设公差d 不为零, 因为38a a =, 所以1127a d a d +=+,即1127a d a d +=--, 解得192a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误; ()()()()()()221101110910,10102222n n n n n n d d na d n n n a n n S S d ----=+=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误; 故选:BC 30.BCD【分析】设等差数列的公差为,由等差数列的通项公式及前n 项和公式可得,再逐项判断即可得解.【详解】设等差数列的公差为,由题意,,所以,故A 错误;所以,所以,故B 正确;因为,所以当解析:BCD【分析】设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1215d a =-⎧⎨=⎩,再逐项判断即可得解.【详解】设等差数列{}n a 的公差为d , 由题意,1115411105112215a d a d a ⨯⨯⎧+=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确;因为()()2211168642n n n a n d n n n S -=+=-+=--+, 所以当且仅当8n =时,n S 取最大值,故C 正确; 要使()28640n S n =--+>,则16n <且n N +∈,所以使得0n S >的最大整数15n =,故D 正确.故选:BCD.31.ABD【分析】由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项.【详解】A.因为数列是等差数列,所以,即,所以A 正确;B. 因为数列是等差数列,所以,那么,所以数解析:ABD【分析】由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项.【详解】A.因为数列{}n a 是等差数列,所以1n n a a d +-=,即1n n a a d +=+,所以A 正确;B. 因为数列{}n a 是等差数列,所以1n n a a d +-=,那么()()()11n n n n a a a a d ++---=--=-,所以数列{}n a -是等差数列,故B 正确; C.111111n n n n n n n n a a d a a a a a a ++++---==,不是常数,所以数列1n a ⎧⎫⎨⎬⎩⎭不是等差数列,故C 不正确;D.根据等差数列的性质可知122n n n a a a ++=+,所以1n a +是n a 与2n a +的等差中项,故D 正确.故选:ABD【点睛】本题考查等差数列的性质与判断数列是否是等差数列,属于基础题型.32.BCD【分析】根据等差数列的性质即可判断选项的正误.【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知,必是递增数列;C 选项:时,是等差数列,而a = 1,解析:BCD【分析】根据等差数列的性质即可判断选项的正误.【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}n a 必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立; D 选项:数列{}n a 是等差数列公差为d ,所以11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.33.AC【分析】直接利用等差数列的定义性质判断数列是否为等差数列.【详解】A 选项中(,为常数,),数列的关系式符合一次函数的形式,所以是等差数列,故正确,B 选项中(为常数,),不符合从第二项起解析:AC【分析】直接利用等差数列的定义性质判断数列是否为等差数列.【详解】A 选项中n a kn b =+(k ,b 为常数,*n N ∈),数列{}n a 的关系式符合一次函数的形式,所以是等差数列,故正确,B 选项中2n n a a d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误;C 选项中()*2120n n n a a a n ++-+=∈N ,对于数列{}n a 符合等差中项的形式,所以是等差数列,故正确;D 选项{}n a 的前n 项和21n S n n =++(*n N ∈),不符合2n S An Bn =+,所以{}n a 不为等差数列.故错误.故选:AC【点睛】本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.34.AC【分析】由已知求出数列的首项与公差,得到通项公式判断与;再求出,由的项分析的最小值.【详解】解:在递增的等差数列中,由,得,又,联立解得,,则,..故正确,错误;可得数列的解析:AC【分析】由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值.【详解】解:在递增的等差数列{}n a 中,由5105a a +=,得695a a +=,又6914a a =-,联立解得62a =-,97a =, 则967(2)3963a a d ---===-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.故A 正确,B 错误;12(320)(317)(314)n n n n b a a a n n n ++==---可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.∴当4n =时,n T 取最小值,故C 正确,D 错误.故选:AC .【点睛】本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.35.CD【分析】根据等差数列中可得数列的公差,再根据二次函数的性质可知是最大值,同时可得,进而得到,即可得答案;【详解】,,设,则点在抛物线上,抛物线的开口向下,对称轴为,且为的最大值,解析:CD【分析】根据等差数列中1118S S =可得数列的公差0d <,再根据二次函数的性质可知15S 是最大值,同时可得150a =,进而得到290S =,即可得答案;【详解】1118S S =,∴0d <,设2n S An Bn =+,则点(,)n n S 在抛物线2y Ax Bx =+上,抛物线的开口向下,对称轴为14.5x =,∴1514S S =且为n S 的最大值,1118S S =12131815070a a a a ⇒+++=⇒=, ∴129291529()2902a a S a +===, 故选:CD.【点睛】本题考查利用二次函数的性质研究等差数列的前n 项和的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.。

静海一中期末数学试卷答案

静海一中期末数学试卷答案

一、选择题(每题5分,共50分)1. 如果一个等差数列的第一项是3,公差是2,那么第10项是多少?答案:212. 一个等比数列的前三项分别是2,6,18,那么这个数列的公比是多少?答案:33. 一个圆的半径增加了20%,那么它的面积增加了多少?答案:44%4. 一个长方体的长、宽、高分别是4cm、3cm、2cm,那么它的体积是多少?答案:24cm³5. 如果一个数的平方是100,那么这个数是?答案:±106. 下列哪个函数是奇函数?A. y = x²B. y = x³C. y = |x|D. y = x² + 1答案:B7. 下列哪个方程的解是x = 2?A. x + 3 = 5B. 2x - 1 = 3C. 3x + 2 = 7D. x² + 1 = 5答案:B8. 下列哪个图形是轴对称图形?A. 等边三角形B. 等腰梯形C. 平行四边形D. 正方形答案:D9. 下列哪个数是质数?A. 15B. 17C. 18D. 20答案:B10. 下列哪个方程的解是y = 3?A. 2y + 1 = 7B. 3y - 2 = 7C. y + 1 = 7D. 2y - 1 = 7答案:C二、填空题(每题5分,共50分)11. 5的平方根是______。

答案:±√512. 若a + b = 7,a - b = 1,则a = ______。

答案:413. 圆的直径是______,那么它的半径是______。

答案:直径 = 8cm,半径 = 4cm14. 若x² - 4x + 3 = 0,则x的值是______。

答案:x = 1 或 x = 315. 下列数列中,哪一项是等差数列的第7项?1,4,7,10,______。

答案:1316. 若一个数的立方是64,那么这个数是______。

答案:417. 下列哪个数是等比数列的第5项?1,2,4,8,______。

天津市静海区静海区第一中学2019-2020学年高三上学期12月月考数学试题(解析版)

天津市静海区静海区第一中学2019-2020学年高三上学期12月月考数学试题(解析版)

静海一中2019-2020第一学期高三数学(12月)学生学业能力调研试卷一、选择题:(每小题5分,共45分)1.已知全集为R ,集合{}1,0,1,2,3A =-,201x B x x ⎧⎫-=≥⎨⎬+⎩⎭,则A B 元素个数为A. 1B. 2C. 3D. 4【答案】B 【解析】 【分析】求出集合B ,利用交集的定义求出A B ,即可得到A B 元素个数【详解】由201x B xx ⎧⎫-=≥⎨⎬+⎩⎭,可得:()[)B=,12,-∞-⋃+∞,所以{}=2,3A B ⋂,即A B 元素个数为2,故答案选B【点睛】本题考查分式不等式的解法以及集合交集的定义,属于基础题. 2.设23342,log 5,log 5a b c -===,则a ,b ,c 的大小关系是( )A. a c b <<B. a b c <<C. b c a <<D. c b a <<【答案】A 【解析】 【分析】先根据1来分段,然后根据指数函数性质,比较出,,a b c 的大小关系. 【详解】由于203221-<=,而344log 5log 5log 41>>=,故a c b <<,所以选A.【点睛】本小题主要考查指数函数的单调性,考查对数函数的性质,考查比较大小的方法,属于基础题.3.已知:1:12p a -<<,[]:1,1q x ∀∈-,220,x ax --<则p 是q 成立的( ) A. 充分但不必要条件 B. 必要但不充分条件C. 充分必要条件D. 既不是充分条件也不是必要条件【答案】A 【解析】 【分析】构造函数()22f x x ax =--,先解出命题q 中a 的取值范围,由不等式()0f x <对[]1,1x ∀∈-恒成立,得出()()1010f f ⎧-<⎪⎨<⎪⎩,解出实数a 的取值范围,再由两取值范围的包含关系得出命题p 和q 的充分必要性关系.【详解】构造函数()22f x x ax =--,对[]1,1x ∀∈-,()0f x <恒成立,则()()110110f a f a ⎧-=-<⎪⎨=--<⎪⎩,解得11a -<<,()1,11,12⎛⎫-- ⎪⎝⎭Q Ü,因此,p 是q 的充分但不必要条件,故选A. 【点睛】本题考查充分必要条件的判断,一般利用集合的包含关系来判断两条件的充分必要性: (1)A B Ü,则“x A ∈”是“x B ∈”的充分不必要条件; (2)A B Ý,则“x A ∈”是“x B ∈”的必要不充分条件; (3)A B =,则“x A ∈”是“x B ∈”的充要条件;(4)A B ⊄,则“x A ∈”是“x B ∈”的既不充分也不必要条件.4.设直线:340l x y a ++=,圆22:(2)2C x y -+=,若在圆C 上存在两点P ,Q ,在直线l 上存在一点M ,使得90PMQ ∠=︒,则a 的取值范围是( ).A. [18,6]-B. [6-+C. [16,4]-D. [66---+【答案】C【解析】 如图:过圆心C 作CE l ⊥交于E , 过E 作圆C 的切线交圆于F 、G ,FEG ∠是圆心两点与l 上一点形成最大的角,只要90FEG ∠≥︒满足条件,即45FEC ∠≥︒,CF =EF ≤2EC ≤,即625a d +=≤,610a +≤, 164a -≤≤.故选C5.将函数2())sin 2sin 12f x x x x ππ⎛⎫=-++- ⎪⎝⎭图像向左平移ϕ(0)ϕ>个单位后图像关于点,03π⎛⎫⎪⎝⎭中心对称,则ϕ的值可能为( ) A.6π B.34π C.712π D.23π 【答案】B 【解析】 【分析】先将函数化简整理,再向左平移,根据平移后图像关于点,03π⎛⎫⎪⎝⎭中心对称,列出等式,即可得出结果. 【详解】由题意可得:2())sin 2sin 12cos 22sin(2)26f x x x x x x x πππ⎛⎫=-++-=-=- ⎪⎝⎭,将函数()f x 图像向左平移ϕ个单位后,得到2sin(22)6y x πϕ=-+,又平移后图像关于点,03π⎛⎫⎪⎝⎭中心对称, 所以22,36k k Z ππϕπ⨯-+=∈,因此,42k k Z ππϕ=-+∈,又因为0ϕ>,所以0,42k k Z ππ-+>∈,即1,2k k Z >∈, 当2k =时,34πϕ=.故选B【点睛】本题主要考查三角函数的图像变换,以及已知对称中心求参数的问题,熟记正弦函数的性质即可,属于常考题型.6.过抛物线24y x =焦点F 的直线与双曲线221(0)y x m m-=>的一条渐近线平行,并交抛物线于,A B 两点,若|||AF BF >且||3AF =,则m 的值为( )A. 8B.C.D. 4【答案】A 【解析】 【分析】设A (x 0,y 0),根据抛物线的定义可得x 0,y 0,代入直线AB 的方程,求出m 的值即可. 【详解】抛物线y 2=4x 的焦点F 的坐标为(1,0),准线方程为x 1=-,双曲线x 22y m-=1的一条渐近线方程为y ,不妨设直线AB 为y (x 1-),设A (x 0,y 0),则|AF |=x 013+=,∴x 0=2,又∵2004y x =且|AF |>|BF |,∴y 0>0,∴y 0==,代入y x 1-), 解得m =8, 故选A .【点睛】本题考查了直线和抛物线的关系,以及抛物线的定义和双曲线的性质,属于中档题. 7.已知n S 是数列{}n a 的前n 项和,且1453,23n n n S S a a a +=+++=,则8S =( ). A. 72 B. 88C. 92D. 98【答案】C 【解析】试题分析:1133n n n n n S S a a a ++=++⇒-=⇒{}n a 为等差数列,公差为3,所以由4523a a +=得118127231,8873922a d a S +=⇒==+⨯⨯⨯=,选C.考点:等差数列定义8.某地实行高考改革,考生除参加语文、数学、英语统一考试外,还需从物理、化学、生物、政治、历史、地理六科中选考三科.学生甲要想报考某高校的法学专业,就必须要从物理、政治、历史三科中至少选考一科,则学生甲的选考方法种数为( ) A. 6 B. 12C. 18D. 19【答案】D 【解析】 【分析】 首先求出事件对立事件,然后用减法求解.【详解】从物理、化学、生物、政治、历史、地理六科中任选三科的方法有3620C =种方法,从物理、政治、历史三科中至少选考一科的对立事件是一科都不选,即从剩下的三科选三科,共1种方法,所以学生甲的选考方法种数有20-1=19种方法. 故选:D【点睛】本题考查组合问题,意在考查转化与计算,属于基础题型.9.已知函数21(0)()21(0)x xx f x ex x x ⎧+≥⎪=⎨⎪++<⎩,若函数(())1y f f x a =--有三个零点,则实数a 的取值范围是( )A. 1(11)(23]e,,+⋃ B. 11(11)(23]3ee ⎧⎫+⋃⋃+⎨⎬⎩⎭,, C. 11(11)[23)3ee ⎧⎫+⋃⋃+⎨⎬⎩⎭,, D. 2(11)(23]e+⋃,, 【答案】B 【解析】【详解】该题属于已知函数零点个数求参数范围的问题,解决该题的思路是转化为方程解的个数来完成,需要明确函数图象的走向,找出函数的极值,从而结合图象完成任务.详解:(())10f f x a --=,即(())1f f x a -=,结合函数解析式,可以求得方程()1f x =的根为2x =-或0x =,从而得到()2f x a -=-和()0f x a -=一共有三个根,即(),()2f x a f x a ==-共有三个根,当0x ≥时,()11x x f x e =+>,21'()x x xx e xe x f x e e--==,从而可以确定函数()f x 在(,1)-∞-上是减函数,在(1,1)-上是增函数,在(1,)+∞上是减函数,且1(1)0,(1)1f f e-==+,此时两个值的差距小于2,所以该题等价于20111a a e -<⎧⎪⎨<<+⎪⎩或2011a a e -=⎧⎪⎨=+⎪⎩或2001a a -=⎧⎨<≤⎩或02111a a e <-≤⎧⎪⎨>+⎪⎩或12111a ea e ⎧-=+⎪⎪⎨⎪>+⎪⎩,解得111a e <<+或23a <≤或13a e=+,所以所求a 的范围是11(1,1)(2,3]3e e ⎧⎫++⎨⎬⎩⎭,故选B.点睛:解决该题的关键是明确函数图象的走向,利用数形结合,对参数进行分类讨论,最后求得结果,利用导数研究函数的单调性显得尤为重要.二、填空题:(每小题5分,共30分)10.i 是虚数单位,则51ii+-的值为_____________.【解析】 【分析】 首先化简复数51ii+-,然后求复数的模. 【详解】()()()()51546231112i i i iz i i i i ++++====+--+23z i ∴=+==【点睛】本题考查复数的化简和计算,意在考查基本的计算能力,属于基础题型.11.已知正三棱柱的所有顶点都在球O 的球面上,且该正三棱柱的底面边长为2O 的表面积为________. 【答案】253π 【解析】 【分析】首先判断正三棱柱外接球的球心,即上下底面正三角形中心连线的中点,然后构造直角三角形求半径,代入公式24S R π=求解.【详解】如图:设1O 和2O 分别是上下底面等边三角形中心,由题意可知12O O 连线的中点O 就是三棱柱外接球的球心,连接2,OA OO ,ABC ∆是等边三角形,且2AB =,2AO ∴=,2OO =2222253212R AO ⎛⎛⎫∴==+= ⎪ ⎪⎝⎭⎝⎭,∴球O 的表面积22543S R ππ==.故答案为:253π 【点睛】本题考查求几何体外接球的表面积的问题,意在考查空间想象能力和转化与化归和计算能力,属于基础题型.12.已知,m n 为正实数,则当nm =__________时922m n m n m++取得最小值. 【答案】1 【解析】题中所给的代数式即:92921115212m n n n m n m m m ⎛⎫+=+⨯+-≥= ⎪+⎝⎭+⨯,当且仅当92112nn m m=⨯++⨯即1nm=时等号成立.故答案为1.13.已知函数2019()20192019log )2x x f x x -=-++,则关于x 不等式()(23)4f x f x +->的解集为_______. 【答案】(,1)-∞ 【解析】 【分析】设()())2019220192019log xxg x f x x -=-=-+,判断函数()g x 的奇偶性和单调性,将不等式()(23)4f x f x +->,转化为()()32g x g x >-,利用函数性质解不等式. 【详解】设()())2019220192019log xxg x f x x -=-=-+()())2019220192019log x x g x f x x --=--=-+ ,()()0g x g x +-= ,∴函数()()2g x f x =-奇函数,且()())2019220192019log xxg x f x x -=-=-+在()0,∞+单调递增,()00g =,()()2g x f x ∴=-在R 上是单调递增函数,且是奇函数()()234f x f x ∴+->()()()2232232f x f x f x ⇒->--+=---⎡⎤⎣⎦ ,即()()()2332g x g x g x >--=-,32x x ∴>-,解得:1x <,∴ 解集为(),1-∞.故答案为:(),1-∞【点睛】本题考查构造函数,利用函数的性质解抽象不等式,意在考查转化与化归和计算能力,属于中档题型.14.如图,在平行四边形ABCD 中,3∠=πBAD ,2=AB ,1=AD ,若M ,N 分别是边AD ,CD 上的点,且满足==MD NCλAD DC,其中[]0,1∈λ,则⋅AN BM 的取值范围是______.【答案】[]3,1-- 【解析】【分析】建立平面直角坐标系,作DH AB ⊥,求得点的坐标,由点的坐标可得522AN AD DD λ⎛∴=+=-⎝⎭,()11,22BM λ⎛=- ⎝⎭,利用平面向量数量积的坐标运算和二次函数求值域的方法可得AN BM ⋅的取值范围.【详解】建立如图所示的平面直角坐标系,作,,13DH AB BAD AD π⊥∠==,1,2AH DH ∴==()()510,0,2,0,,,,2222A B C D ⎛⎫⎛∴ ⎪ ⎪ ⎝⎭⎝⎭,()(),1,1MD NCAM AD DN DC AD DCλλλ==∴=-=-,()()()1351,12,02,2222AN AD DD AD DC λλλ⎛⎫⎛∴=+=+-=+-=- ⎪ ⎪ ⎝⎭⎝⎭,同理可得:()1BM AM AB AD AB λ=-=-- ()112λ⎛=- ⎝⎭ ()2,0- 3122λ⎛⎫=-- ⎪ ⎪⎝⎭,5312,,222222AN BM λλ⎛⎛⎫∴⋅=-⋅--- ⎪ ⎪⎝⎭⎝⎭22113324λλλ⎛⎫=+-=+- ⎪⎝⎭. [][]21130,1,3,124AN BM λλ⎛⎫∈∴⋅=+-∈-- ⎪⎝⎭.故AN BM ⋅的取值范围是[]3,1--.【点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.15.定义域为R 的函数()f x 满足(2) 4 ()f x f x +=,当[0,2)x ∈时,2,[0,1)()1),[1,2)x x x f x x x ⎧-∈⎪=⎨+∈⎪⎩,若[2,0)x ∈-时,对任意的[1,2)t ∈都有2()168t af x t≥-成立,则实数a 的取值范围是______. 【答案】[6,)+∞ 【解析】 【分析】首先求出当[)0,2x ∈时,函数的最小值14-,再根据条件可得()()124f x f x =+,从而确定[)2,0x ∈-时,函数的最小值116-,转化为2116816t a t -≤-,再根据参变分离可得322a t t ≥+ [1,2)t ∈时恒成立,即()32max2a t t ≥+,转化为求函数()32g t t t =+的最大值. 【详解】当[)0,2x ∈时,2,[0,1)()1),[1,2)x x x f x x x ⎧-∈⎪=⎨+∈⎪⎩,[)0,1x ∈时,()221124f x x x x ⎛⎫=-=-- ⎪⎝⎭, 函数的最小值是14-, 当[)1,2x ∈时,()()1f x x =+,函数是单调递增函数,函数的最小值是()122f ==,∴当[)0,2x ∈时,()f x 的最小值是14-. 由题意可得()()124f x f x =+, 当[)2,0x ∈-时,[)20,2x +∈,[)2,0x ∴∈-时,函数的最小值是116-,当[)2,0x ∈-时,对任意的[1,2)t ∈都有2()168t af x t≥-成立, 即2116816t a t -≤-成立, 整理为:322a t t ≥+ [1,2)t ∈时恒成立, 令()32g t t t =+,()2320g t t t '=+≥恒成立,当[1,2)t ∈时,∴函数()g t 在[1,2)t ∈上是单调递增函数,()()max 212g t g ==,即2126a a ≥⇒≥,∴a 的取值范围是[)6,+∞.故答案为:[)6,+∞【点睛】本题考查分段函数的应用和函数性质的综合问题,意在考查转化与变形和计算能力,属于中档题型,本题的关键是利用条件转化为()()124f x f x =+,求[)2,0x ∈-时的最小值. 三、解答题:(本大题共4小题,共55分)16.ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,)(sin )sin A B B B A +=+.(Ⅰ)已知cos 3C =,3a =,求sin B 与b 的值; (Ⅱ)若0,3B π⎛⎫∈ ⎪⎝⎭,且4cos()5A B -=,求sin B .【答案】(Ⅰ)sin B =1b =+ 【解析】 【分析】(Ⅰ)先由)(sin )sin A B B B A +=化简整理得到sin A A =,求出3A π=,再由cos 3C =求出sin C ,根据sin sin()B A C =+求出sin B ,再由正弦定理,即可求出结果;(Ⅱ)先由4cos()5A B -=结合题中条件,求出3sin()5A B -=,再由sin sin(())B A A B =--展开,即可求出结果.【详解】)(sin )sin A B B B A +=+得cos sin sin sin sin A B A B B A B A =+,故sin A A =,因为(0,)A π∈,且cos 0A ≠,所以tan A =3A π=.因为cos 3C =,(0,)C π∈,所以sin 3C = 因此sin sin()sin cos cos sin B A C A C +A C =+=123236=⋅+⋅=, 由正弦定理知:sin sin b aB A=,即1b =+(Ⅱ)因为0,3B π⎛⎫∈ ⎪⎝⎭,所以0,33A B B ππ⎛⎫-=-∈ ⎪⎝⎭,又4cos()5A B -=, 所以3sin()5A B -=, 所以sin sin(())sin cos()cos sin()B A A B A A B A A B =--=---=【点睛】本题主要考查解三角形,熟记正弦定理、两角和与差的正弦公式等即可,属于常考题型.17.已知n S 是数列{}n a 的前n 项和,12a =且14n n n S a a +=⋅,()*n N ∈,数列{}n b 中,114b =,且()*1(1)nn nnb b n N n b +=∈+-.(1)求数列{}n a 的通项公式;(2)设12332n nnb ac +=,求{}n c 的前n 项和n T ;(3)证明:对一切*n N ∈,()221322321i Ia na i -=⋅<-∑【答案】(1)1q =或2q =-;(2)1(31)(2)9nn n S -+-=;(3)见解析【解析】 【分析】(1)当2n ≥时,构造114n n n S a a --=⋅,变形为114n n a a +--=,再求数列的通项公式;(2)由已知变形为()1111111n n n b nb n n +⎡⎤-=--⎢⎥++⎣⎦,利用累加法求数列{}n b 的通项公式,然后再求数列{}n c 的通项公式,利用错位相减法求和;(3)()2213221i Ia na i -=⋅-∑表示求数列()22223221n n -⎧⎫⋅⎪⎪⎨⎬-⎪⎪⎩⎭的前n 项和,然后将通项放缩为2n ≥时,()()()()2212211232343411414141412141n n n n n n n nn----⋅⋅⋅=<=-------,然后利用裂项相消法求和.【详解】(1)1n =时,可得24a =,2n ≥时,14n n n S a a +=⋅,114n n n S a a --=⋅,两式相减,得()114n n n n a a a a +-=- ,0n a ≠,114n n a a +-∴-=,∴数列{}n a 的奇数项和偶数项分别成以4为公差的等差数列,当21n k =-,*k N ∈时,()()21114422212n k a a a k k k n -==+-⨯=-=-=, 当2n k =,*k N ∈时,()221442n k a a a k k n ==+-⨯== ,2n a n ∴=,*k N ∈.(2) ()*1(1)nn nnb b n N n b +=∈+-,1111n n n b nb n ++∴=- ,即()()111111n n n b nb n n +=-++ ,整理为:()1111111n nn b nb n n +⎡⎤-=--⎢⎥++⎣⎦, 21111122b b ⎛⎫∴-=-- ⎪⎝⎭, 3211113223b b ⎛⎫-=-- ⎪⎝⎭ , 4311114334b b ⎛⎫-=-- ⎪⎝⎭, …………………………,()1111111n n nb n b n n -⎡⎤-=--⎢⎥--⎣⎦,2n ≥时, 这1n -个式子相加可得11111n nb b n ⎛⎫-=-- ⎪⎝⎭ , 131n b n ∴=+,当1n =时,111314b ==+成立, 131n b n ∴=+,1231213333nn n b ++=+=+, 1222n n nn n c +∴== , 23123......2222n n n T =++++,12n T = 231121 (2222)n n n n+-++++ , 两式相减可得:23111111 (222222)n n n nT +=++++-111112212212n n n n T +⎛⎫- ⎪⎝⎭=-- ,222n nn T +∴=-(3)()2213221i Ia na i -=⋅-∑表示求数列()22223221n n -⎧⎫⋅⎪⎪⎨⎬-⎪⎪⎩⎭的前n 项和,设前n 项和为n T , 当1n =时,1312933T ==<成立, 当2n ≥时,()()()()2212211232343411414141412141n n n n n n n nn ----⋅⋅⋅=<=-------122311111111......3414141414141n n n T -⎛⎫⎛⎫⎛⎫∴=+-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭1111212341413413n n ⎛⎫=+-=-< ⎪---⎝⎭. 综上可知23n T <, ∴对一切*n N ∈,()221322321i I a na i -=⋅<-∑.【点睛】本题考查了数列通项公式的求法和数列求和,已知考查转化与化归和计算能力,属于中高档习题,本题的难点是第三问放缩求数列的和,一般数列求和的方法包含1.公式法求和;2.错位相减法求和;3.裂项相消法求和;4.分组转化法求和;5.倒序相加法求和. 18.如图,已知等腰梯形ABCD 中,1//,2,2AD BC AB AD BC E ===是BC 的中点,AE ⋂BD M =,将BAE ∆沿着AE 翻折成1B AE ∆,使平面1B AE ⊥平面AECD .(Ⅰ)求证:1CD B DM ⊥平面; (Ⅱ)求二面角1D AB E --的余弦值;(Ⅲ)在线段1B C 上是否存在点P ,使得//MP 平面1B AD ,若存在,求出11B PB C的值;若不存在,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)二面角的余弦值为;(Ⅲ)存在点P ,使得//MP 平面1B AD ,且.【解析】【详解】试题分析:( I ) 根据直线与平面垂直的判定定理,需证明CD 垂直平面1B AD 内的两条相交直线.由题意易得四边形ABED 是菱形,所以EA BD ⊥,从而CD BD ⊥,即1,CD B M CD MD ⊥⊥,进而证得平面.(Ⅱ) 由( I )可知,、、两两互相垂直,故可以为轴,为轴,为轴建立空间直角坐标系,利用空间向量即可求得二面角的余弦值.(Ⅲ)根据直线与平面平行的判定定理,只要能找到一点P 使得PM 平行平面内的一条直线即可.由于12AMCD ,故可取线段1B C 中点P ,1B D 中点Q ,连结,,MP PQ AQ .则//PQ CD ,且1=2PQ CD .由此即可得四边形AMPQ 是平行四边形,从而问题得证.试题解析:( I ) 由题意可知四边形ABED 是平行四边形,所以,故.又因为AB BE =,M 为AE 的中点所以BM AE ⊥, 即.DM AE ⊥又因为//AD BC , 2.AD CE == 所以四边形ADCE 是平行四边形. 所以//.AE CD 故CD DM ⊥. 因为平面平面, 平面平面,1B M ⊂平面所以平面.1.B M AE ⊥ 因为平面, 所以CD .因为,、平面,所以平面.(Ⅱ) 以为轴,为轴,为轴建立空间直角坐标系,则,,,.平面的法向量为. 设平面的法向量为, 因为,,, 令得,.所以, 因为二面角为锐角,所以二面角的余弦值为.(Ⅲ) 存在点P ,使得//MP 平面1B AD .法一: 取线段1B C 中点P ,1B D 中点Q ,连结,,MP PQ AQ .则//PQ CD ,且1=2PQ CD . 又因为四边形AECD 是平行四边形,所以//AE CD .因为M 为AE 的中点,则//AM PQ .所以四边形AMPQ 是平行四边形,则//MP AQ . 又因为AQ ⊂平面1AB D ,所以//MP 平面1AB D .所以在线段上存在点,使得平面,.法二:设在线段上存在点,使得平面,设11B P B C λ=,(),(2,3,0)C ,因为11MP MB B P =+.所以(2)MP λ=. 因为平面, 所以0MP m ⋅=,所以, 解得, 又因为MP ⊄平面,所以在线段上存在点,使得平面,.考点:1、空间直线与平面的位置关系;2、二面角.19.已知直线220x y -+=经过椭圆C : ()222210x y a b a b+=>>的左顶点A 和上顶点D ,椭圆C 的右顶点为B ,点S 是椭圆C 上位于x 轴上方的动点,直线,AS BS 与直线103x =分别交于,M N 两点. (1)求椭圆方程;(2)求线段MN 的长度的最小值;(3)当线段MN 的长度最小时,在椭圆上有两点12,T T ,使得1T SB ∆,2T SB ∆的面积都为15,求直线12T T 在y 轴上的截距.【答案】(1) 2214x y +=;(2) 83 ;(3) 32【解析】 【分析】(1)因为直线过椭圆的左顶点与上顶点,故可解出直线与坐标轴的交点,即知椭圆的长半轴长与短半轴长,依定义写出椭圆的方程即可.(2)引入直线AS 的斜率k ,用点斜式写出直线AS 的方程,与l 的方程联立求出点M 的坐标,以及点S 的坐标,又点B 的坐标已知,故可解 出直线SB 的方程,亦用参数k 表示的方程,使其与直线l 联立,求出点N 的坐标,故线段MN 的长度可以表示成直线AS 的斜率k 的函数,根据其形式选择单调性法或者基本不等式法求最值,本题适合用基本不等式求最值.(3)在上一问的基础上求出的参数k ,则直线SB 的方程已知,可求出线段SB 的长度,若使面积为15,只须点T 到直线BS的距离为4 即可,由此问题转化为研究与直线SB平行且距离为4的直线与椭圆的交点个数问题,求出平行直线l ',即有得到y 轴上的截距.【详解】解(1)由已知得椭圆C 的左顶点A (-2,0),上顶点D (0,1),得2,1a b ==,故椭圆方程:2214x y +=(2)直线AS 的斜率k 显然存在,且大于0,故设直线AS :(2)y k x =+, 得1016(,)33k M 由22(2)14y k x x y =+⎧⎪⎨+=⎪⎩得()222214161640k x k x k +++-= 设11(,)S x y ,则()212164-214k x k -=+,可得2122814k x k-=+ 从而12414ky k =+,即222284,1414k k S k k ⎛⎫- ⎪++⎝⎭B (2,0),直线BS :1(2)4y x k=-- 1(2)4103y x kx ⎧=--⎪⎪⎨⎪=⎪⎩可得101,33N k ⎛⎫- ⎪⎝⎭,16133k MN k =+,0,k >1618333k MN k =+≥= ,当且仅当14k =时,线段MN 长度最小值83.(3)14k =,直线BS的方程为6420.,55x y S BS ⎛⎫+-=∴= ⎪⎝⎭, 椭圆上有两点使三角形面积为15,则点12,T T 到BS的距离等于4, 设直线12T T :0x y t ++==132t =-或252t =- ①当132t =-,联立221432x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩得251250x x -+=,检验440∆=>,符合题意. ②152t =-,联立221452x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩得2520210x x -+=,检验200∆=-<,舍去. 综上所述,直线12T T 在y 轴上的截距是32【点睛】本题是解析几何中直线与圆锥曲线位置关系中很复杂的题目,要求答题者拥有较高的探究转化能力以及对直线与圆锥曲线位置关系中特征有较好的理解,且运算能力较强才能胜任此类题的解题工作,这是一个能力型的题,好题.【此处有视频,请去附件查看】20.已知函数()()x f x mx n e -=+(,m n R ∈,e 是自然对数的底数).(1)若函数()f x 在点()()1,1f 处的切线方程为30x ey +-=,试确定函数()f x 的单调区间;(2)①当1n =-,m R ∈时,若对于任意1,22x ⎡∈⎤⎢⎥⎣⎦,都有()f x x ≥恒成立,求实数m 的最小值;②当1m n ==时,设函数()()()()x g x xf x tf x e t R -'=++∈,是否存在实数[],,0,1a b c ∈,使得()()()g a g b g c +<?若存在,求出t 的取值范围;若不存在,说明理由.【答案】(1)()f x 在()0,∞+上单调递减,在(),0-∞上单调递增;(2)①212e +;②存在(),323,2e t e ⎛⎫∈-∞--+∞ ⎪⎝⎭,使得命题成立 【解析】 【分析】(1)利用切线方程可知()21f e =,()11f e'=-,从而构造出方程组求得,m n ,得到()f x 解析式,根据导函数的符号确定()f x 的单调区间;(2)①将问题转化为1x m e x ≥+对任意1,22x ⎡∈⎤⎢⎥⎣⎦恒成立;设()1x x e xϕ=+,利用导数求解()m a x x ϕ,可得()m a x m x ϕ≥;②设存在[],,0,1a b c ∈,使得()()()g a g b g c +<,将问题转化为()()()()min max 2g x g x <,利用导数分别在1t ≥,0t ≤和01t <<研究()g x 的最大值和最小值,从而根据最值的关系可求得t 的取值范围.【详解】(1)由题意()()()()2x xxx me mx n e mx m n f x e e -+-+-'== ()f x 在点()()1,1f 处的切线方程为:30x ey +-=()21f e ∴=,()11f e '=-,即:21m n e e n ee +⎧=⎪⎪⎨-⎪=-⎪⎩ 解得:1m =,1n = ()1x xf x e +∴=,()x x f x e'=- 当0x >时,()0f x '<,当0x <时,()0f x '>()f x ∴在()0,∞+上单调递减,在(),0-∞上单调递增(2)①由1n =-,m R ∈,1x mx x e -≥,即:1x m e x≥+ 对任意1,22x ⎡∈⎤⎢⎥⎣⎦,都有()f x x ≥恒成立等价于1x m e x ≥+对任意1,22x ⎡∈⎤⎢⎥⎣⎦恒成立 记()1x x e x ϕ=+,()21x x e xϕ'=- 设()21xh x e x =- ()320x h x e x '∴=+>对1,22x ⎡∈⎤⎢⎥⎣⎦恒成立()21x h x e x ∴=-在1,22⎡⎤⎢⎥⎣⎦单调递增而1402h ⎛⎫=< ⎪⎝⎭,()21204h e =->()21x x e x ϕ'∴=-在1,22⎡⎤⎢⎥⎣⎦上有唯一零点0x 当01,2x x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'<,当()0,2x x ∈时,()0x ϕ'>()x ϕ∴在01,2x ⎛⎫⎪⎝⎭单调递减,在()02x ,上单调递增()x ϕ∴最大值是12ϕ⎛⎫⎪⎝⎭和()2ϕ中的较大的一个()122m m ϕϕ⎧⎛⎫≥⎪ ⎪∴⎝⎭⎨⎪≥⎩,即2212m m e ⎧≥⎪⎨≥+⎪⎩ 212m e ∴≥+,m ∴的最小值为212e +②假设存在[],,0,1a b c ∈,使得()()()g a g b g c +<,则问题等价于()()()()min max 2g x g x <()()211x x t x g x e +-+= ()()()1x x t x g x e ---'∴=⑴当1t ≥时,()0g x '≤,则()g x 在[]0,1上单调递减()()210g g ∴<,即321te -⋅<,得:312et >-> 3,2e t ⎛⎫∴∈-+∞ ⎪⎝⎭(2)当0t ≤时,()0g x '≥,则()g x 在[]0,1上单调递增()()201g g ∴<,即32te -<,得:320t e <-< (),32t e ∴∈-∞-(3)当01t <<时,当[)0,x t ∈时,()0g x '<;当(],1x t ∈时,()0g x '>,()g x ∴在[)0,t 上单调递减,在(],1t 上单调递增的()()(){}2max 0,1g t g g ∴<,即132max 1,t t t e e +-⎧⎫⨯<⎨⎬⎩⎭……(*) 由(1)知()1t t f t e+=在[]0,1t ∈上单调递减,故142t t e e +⨯≥,而33t e e -< ∴不等式(*)无解综上所述,存在(),323,2e t e ⎛⎫∈-∞--+∞ ⎪⎝⎭,使得命题成立 【点睛】本题考查导数在研究函数中的应用,涉及到导数的几何意义的应用、研究函数的单调性、恒成立问题的求解.本题的解题关键是能够将问题转化为函数最值之间的关系,从而将恒成立问题进行等价转化,转变为函数最值的求解问题,。

数学-高一-天津市静海一中高一(下)3月月考数学试卷

数学-高一-天津市静海一中高一(下)3月月考数学试卷

2015-2016学年天津市静海一中高一(下)3月月考数学试卷一、选择题:(每小题4分,共20分)1.已知△ABC的内角A,B,C的对边分别为a,b,c,且=,则B=()A.B.C.D.2.已知等差数列{a n}中,a7+a9=16,S11=,则a12的值是()A.15 B.30 C.31 D.643.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若c2=(a﹣b)2+6,C=,则△ABC的面积()A.3 B.C.D.34.若数列{a n}满足﹣=d(n∈N*,d为常数),则称数列{a n}为调和数列.已知数列{}为调和数列,且x1+x2+…+x20=200,则x5+x16=()A.10 B.20 C.30 D.405.已知S n是等差数列{a n}的前n项和,若a1=﹣2016,,则S2014等于()A.2 013 B.﹣6042 C.﹣4 026 D.4 026二、填空题:(每题4分,共20分)6.在△ABC中,a,b,c分别是角A,B,C的对边,且=﹣若b=,a+c=4,则a的值为.7.在△ABC中,内角A、B、C所对的边分别是a、b、c,若sinC+sin(B﹣A)=sin2A,则△ABC的形状为.8.数列{a n}中,若a1=1,a2=2,a n+2=a n+2,则数列的通项公式a n=.9.设等差数列{a n},{b n}的前n项和分别为S n,T n若对任意自然数n都有=,则的值为.10.已知,数列{b n}满足b n=(log2a2n+1)×(log2a2n+3),则的前n项和为.三、解答题:(本大题共3题,共65分)11.(1)在△ABC中,已知边,已知角B=45°,求角A;若该题中的条件改为边,已知角A=60°,求角B ;请根据该题的解答归纳判断解三角形的一个解、两个解的依据;(2)A ,B ,C 的对边分别是a ,b ,c ,已知3acosA=ccosB +bcosC ,求A 的值;(3)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,,求角A ;(4)在锐角△ABC ,A ,B ,C 的对边分别是a ,b ,c ,,求.12.(1)等差数列{a n }的前n 项和是S n ,已知a m ﹣1+a m +1﹣a m 2=0,S 2m ﹣1=38,求m ;(2)设等差数列{a n }的前n 项和是S n ,若S 3=9,S 6=36,求a 7+a 8+a 9;(3)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,求这个数列的项数;(4)已知数列{a n }的通项公式是a n =4n ﹣25,求数列{|a n |}的前n 项和并说出判断数列是等差数列的基本方法.13.(1)已知数列{a n }的前n 项和,求通项公式a n ;(2)在数列{a n }中,a 1=1,a n +1﹣a n =2n +1,求数列的通项a n ; (3)在数列{a n }中,a 1=1,前n 项和,求{a n }的通项公式a n .(4)已知在每项均大于零的数列{a n }中,首项a 1=1,且前n 项和S n 满足(n ∈N *,n ≥2),求a n .14.已知数列{a n }中,a 1=,a n =2﹣(n ≥2,n ∈N ),数列{b n }满足b n =(n∈N*).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.2015-2016学年天津市静海一中高一(下)3月月考数学试卷参考答案与试题解析一、选择题:(每小题4分,共20分)1.已知△ABC的内角A,B,C的对边分别为a,b,c,且=,则B=()A.B.C.D.【考点】正弦定理.【分析】已知等式右边利用正弦定理化简,整理得到关系式,再利用余弦定理表示出cosB,将得出的关系式代入求出cosB的值,即可确定出B的度数.【解答】解:已知等式利用正弦定理化简得:=,即c2﹣b2=ac﹣a2,∴a2+c2﹣b2=ac,∴cosB==,∵B为三角形的内角,∴B=.故选:C.2.已知等差数列{a n}中,a7+a9=16,S11=,则a12的值是()A.15 B.30 C.31 D.64【考点】等差数列的前n项和;等差数列的通项公式.【分析】根据a7+a9=16求得a8=8,再由求得a6=,设公差等于d,则有8=+2d,求得d的值,再由a12=a8+4d 求得结果.【解答】解:等差数列{a n}中,∵a7+a9=16=2a8,∴a8=8.∴==11a6,∴a6=.设公差等于d,则有8=+2d,故d=.∴a12=a8+4d=15,故选A.3.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若c2=(a﹣b)2+6,C=,则△ABC的面积()A.3 B.C.D.3【考点】余弦定理.【分析】根据条件进行化简,结合三角形的面积公式进行求解即可.【解答】解:∵c2=(a﹣b)2+6,∴c2=a2﹣2ab+b2+6,即a2+b2﹣c2=2ab﹣6,∵C=,∴cos===,解得ab=6,则三角形的面积S=absinC==,故选:C4.若数列{a n}满足﹣=d(n∈N*,d为常数),则称数列{a n}为调和数列.已知数列{}为调和数列,且x1+x2+…+x20=200,则x5+x16=()A.10 B.20 C.30 D.40【考点】数列的求和.【分析】由题意知道,本题是构造新等差数列的问题,经过推导可知{x n}是等差数列,运用等差数列的性质可求解答案.【解答】解:由题意知:∵数列{}为调和数列﹣x n=d∴﹣=x n+1∴{x n}是等差数列又∵x1+x2+…+x20=200=∴x1+x20=20又∵x1+x20=x5+x16∴x5+x16=20故选:B.5.已知S n是等差数列{a n}的前n项和,若a1=﹣2016,,则S2014等于()A.2 013 B.﹣6042 C.﹣4 026 D.4 026【考点】等差数列的前n项和.【分析】S n是等差数列{a n}的前n项和,可得数列是等差数列,利用等差数列的通项公式即可得出.【解答】解:∵S n是等差数列{a n}的前n项和,∴数列是等差数列.∵a1=﹣2016,,∴公差d==1,首项为﹣2016,∴=﹣2016+2014﹣1=﹣3,∴S2014=﹣6042.故选:B.二、填空题:(每题4分,共20分)6.在△ABC中,a,b,c分别是角A,B,C的对边,且=﹣若b=,a+c=4,则a的值为1或3.【考点】正弦定理的应用.【分析】运用正弦定理和两角和的正弦公式及诱导公式,求出角B,再由余弦定理,结合条件,解方程,即可得到a.【解答】解:=﹣,即有﹣2acosB=bcosC+ccosB,即﹣2sinAcosB=sinBcosC+cosCsinB=sin(B+C)=sinA,即有cosB=﹣,由于B为三角形的内角,则B=,又b2=a2+c2﹣2accosB,即有13=a2+c2+ac,又a+c=4,解得,a=1,c=3或a=3,c=1.故答案为:1或3.7.在△ABC中,内角A、B、C所对的边分别是a、b、c,若sinC+sin(B﹣A)=sin2A,则△ABC的形状为等腰或直角三角形.【考点】两角和与差的正弦函数.【分析】由两角和与差的三角函数公式结合三角形的知识可得cosA=0或sinA=sinB.进而可作出判断.【解答】解:∵sinC+sin(B﹣A)=sin2A,∴sin(A+B)+sin(B﹣A)=sin2A.∴sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=2sinAcosA∴2sinBcosA=2sinAcosA.∴cosA(sinA﹣sinB)=0,∴cosA=0或sinA=sinB . ∵0<A ,B <π,∴A=或A=B .∴△ABC 为直角三角形或等腰三角形. 故答案为:等腰或直角三角形8.数列{a n }中,若a 1=1,a 2=2,a n +2=a n +2,则数列的通项公式a n = n . 【考点】等差数列的通项公式.【分析】由已知得a n +2﹣a n =2,从而得到a n =n .【解答】解:∵数列{a n }中,a 1=1,a 2=2,a n +2=a n +2, ∴a n +2﹣a n =2,a 3=1+2=3,a 4=2+2=4,… ∴a n =n .故答案为:n .9.设等差数列{a n },{b n }的前n 项和分别为S n ,T n 若对任意自然数n 都有=,则的值为.【考点】等差数列的性质.【分析】由等差数列的性质和求和公式可得原式=,代值计算可得.【解答】解:由等差数列的性质和求和公式可得:=+======故答案为:10.已知,数列{b n }满足b n =(log 2a 2n +1)×(log 2a 2n +3),则的前n 项和为.【考点】数列的求和.【分析】利用对数的运算性质可得b n,再利用“裂项求和”方法即可得出.【解答】解:∵,∴a2n+1=22n﹣1,a2n+3=22n+1.∴b n=(log2a2n+1)×(log2a2n+3)=(2n﹣1)(2n+1),则==,的前n项和为=++…+==.故答案为:.三、解答题:(本大题共3题,共65分)11.(1)在△ABC中,已知边,已知角B=45°,求角A;若该题中的条件改为边,已知角A=60°,求角B;请根据该题的解答归纳判断解三角形的一个解、两个解的依据;(2)A,B,C的对边分别是a,b,c,已知3acosA=ccosB+bcosC,求A的值;(3)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,,求角A;(4)在锐角△ABC,A,B,C的对边分别是a,b,c,,求.【考点】余弦定理;三角函数的化简求值;正弦定理.【分析】(1)①由正弦定理可得:,a>b,A为锐角或钝角,两解.②,A=60°,由正弦定理可得:=,由a>b,B为锐角.综上可得:已知a>b,A为锐角,则B为锐角.已知a>b,B为锐角,对b与asinB分类讨论即可得出.(2)由正弦定理可得:3acosA=ccosB+bcosC,由正弦定理可得:3sinAcosA=sinCcosB+sinBcosC=sinA,即可得出.(3)由,利用正弦定理可得:c=2b,又a2﹣b2=bc,可得a=b.再利用余弦定理即可得出.(4)由,可得a2+b2=6abcosC,a2+b2=,变形+==,代入即可得出.【解答】解:(1)①由正弦定理可得:,可得sinA=,∵a>b,∴A=60°或120°.②,A=60°,由正弦定理可得: =,解得sinB=,∵a>b ,∴B=45°.综上可得:已知a >b ,A 为锐角,则B 为锐角.已知a >b ,B 为锐角,b <asinB 时,无解;b=asinB 时,A=90°;asinB <b <a 时,A 有两解.(2)由正弦定理可得:3acosA=ccosB +bcosC ,由正弦定理可得:3sinAcosA=sinCcosB +sinBcosC=sin (B +C )=sinA , ∵sinA ≠0,∴cosA=,∴A=arccos . (3)∵,由正弦定理可得:c=2b ,又a 2﹣b 2=bc ,∴a 2=b 2+6b 2=7b 2,即a=b . ∴cosA===,又A ∈(0,π),∴A=.(4)∵,∴a 2+b 2=6abcosC ,b 2+a 2=6ab ×,可得a 2+b 2=,∴+=tanC •=====4.12.(1)等差数列{a n }的前n 项和是S n ,已知a m ﹣1+a m +1﹣a m 2=0,S 2m ﹣1=38,求m ; (2)设等差数列{a n }的前n 项和是S n ,若S 3=9,S 6=36,求a 7+a 8+a 9;(3)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,求这个数列的项数;(4)已知数列{a n }的通项公式是a n =4n ﹣25,求数列{|a n |}的前n 项和并说出判断数列是等差数列的基本方法.【考点】等差数列的前n 项和;等差数列的通项公式. 【分析】(1)根据等差数列的性质得a m ﹣1+a m +1=2a m ,从而得到a m =0(舍)或a m =2,由此能求出m 的值.(2)由等差数列的性质得S 3,S 6﹣S 3,S 9﹣S 6成等差数列,由此能求出a 7+a 8+a 9的值. (3)设这个数列的项数为n ,由等差数列的通项公式和前n 项和公式列出方程,由此能求出项数n .(4)由a n =4n ﹣25>0得,n >,由此分n ≤6和n ≥7分类讨论能求出S n .判断数列是等差数列的基本方法最常用的是两种方法用定义证明或用等差数列的性质证明. 【解答】解:(1)根据等差数列的性质可得:a m ﹣1+a m +1=2a m , ∵a m ﹣1+a m +1﹣a m 2=0,∴a m ﹣1+a m +1﹣a m 2=a m (2﹣a m )=0, 解得:a m =0或a m =2,若a m =0,则S 2m ﹣1=(2m ﹣1)a m =38不成立,∴a m =2, ∴S 2m ﹣1=(2m ﹣1)(a 1+a m ﹣1)=(2m ﹣1)a m =4m ﹣2=38,解得m=10.(2)∵等差数列{a n }的前n 项和是S n ,S 3=9,S 6=36, 由等差数列的性质得S 3,S 6﹣S 3,S 9﹣S 6成等差数列, 即9,27,S 9﹣S 6成等差数列, ∴2×27=9+(S 9﹣S 6),解得a 7+a 8+a 9=S 9﹣S 6=2×27﹣9=45. (3)设这个数列的项数为n ,∵这个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390, ∴,解得n=13.(4)由a n =4n ﹣25>0得,n >,①当n ≤6时,S n =|a 1|+|a 2|+…+|a n | =﹣(a 1+a 2+…+a n ) =﹣()n=﹣2n 2+23n . ②当n ≥7时,S n =|a 1|+|a 2|+…+|a n |=﹣(a 1+a 2+…+a 6)+(a 7+a 8+…+a n ) =﹣2×36+23×6+(n ﹣6)=66+(2n ﹣11)(n ﹣6) =2n 2﹣23n +132. ∴S n =. 判断数列是等差数列的基本方法最常用的是两种方法: (i )用定义证明,即证明a n ﹣a n ﹣1=d (常数).(ii )用等差数列的性质证明,即证明2a n =a n ﹣1+a n +1.13.(1)已知数列{a n }的前n 项和,求通项公式a n ;(2)在数列{a n }中,a 1=1,a n +1﹣a n =2n +1,求数列的通项a n ; (3)在数列{a n }中,a 1=1,前n 项和,求{a n }的通项公式a n .(4)已知在每项均大于零的数列{a n }中,首项a 1=1,且前n 项和S n 满足(n ∈N *,n ≥2),求a n .【考点】数列递推式. 【分析】(1),n=1时,a 1=S 1=2;n ≥2时,a n =S n ﹣S n ﹣1,即可得出.(2)a 1=1,a n +1﹣a n =2n +1,利用“累加求和”方法、等差数列的求和公式即可得出. (3)a 1=1,前n 项和,n ≥2时,a n =S n ﹣S n ﹣1,可得:=,利用“累乘求积”即可得出. (4)由(n ∈N *,n ≥2),可得﹣=2,利用等差数列的通项公式及其递推关系即可得出. 【解答】解:(1)∵,∴n=1时,a 1=S 1=2;n ≥2时,a n =S n ﹣S n ﹣1=3n 2﹣2n +1﹣=6n ﹣5. 由n=1时,6n ﹣5=1≠2, ∴a n =.(2)∵a 1=1,a n +1﹣a n =2n +1,∴n ≥2时,a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 2﹣a 1)+a 1 =(2n ﹣1)+(2n ﹣3)+…+3+1 ==n 2.n=1时,n 2=1也成立. ∴a n =n 2.(3)a 1=1,前n 项和, ∴n ≥2时,a n =S n ﹣S n ﹣1=﹣a n ﹣1,化为: =,∴a n =•••…•••a 1=•••…••×1,=.n=1时也成立.∴a n =. (4)∵(n ∈N *,n ≥2), ∴﹣=2, ∴数列是等差数列,首项为1,公差为2, ∴=1+2(n ﹣1)=2n ﹣1,∴S n =(2n ﹣1)2,∴n ≥2时,a n =S n ﹣S n ﹣1=(2n ﹣1)2﹣(2n ﹣3)2=8n ﹣8,∴a n =.14.已知数列{a n }中,a 1=,a n =2﹣(n ≥2,n ∈N ),数列{b n }满足b n =(n ∈N*).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.【考点】数列递推式;数列的函数特性;等差关系的确定.【分析】(1)把给出的变形得a n a n ﹣1=2a n ﹣1﹣1,然后直接求b n +1﹣b n ,把b n +1和b n 用a n +1和a n 表示后整理即可得到结论;(2)求出数列{b n }的通项公式,则数列{a n }的通项公式可求,然后利用数列的函数特性可求其最大项和最小项.【解答】(1)证明:由,得:a n a n ﹣1=2a n ﹣1﹣1,则a n +1a n =2a n ﹣1. 又,∴b n +1﹣b n = ====1. ∴数列{b n }是等差数列;(2)解:∵,,又数列{b n }是公差为1的等差数列,∴,则=,当n=4时,取最大值3,当n=3时,取最小值﹣1.故数列{a n}中的最大项是a4=3,最小项是a3=﹣1.2016年10月17日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题1.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60B .120C .160D .2402.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72B .90C .36D .453.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )A .6-B .2-C .1-D .04.设等差数列{}n a 的前n 项和为n S ,公差1d =,且6210S S ,则34a a +=( )A .2B .3C .4D .55.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n -B .nC .21n -D .2n6.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32B .33C .34D .357.设等差数列{}n a 的前n 项和为n S ,10a <且11101921a a =,则当n S 取最小值时,n 的值为( ) A .21B .20C .19D .19或208.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 9.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13B .14C .15D .1610.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121B .161C .141D .15111.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+B .2()4f x x =C .3()4xf x ⎛⎫= ⎪⎝⎭D .4()log f x x =12.已知等差数列{}n a 的公差d 为正数,()()111,211,n n n a a a tn a t +=+=+为常数,则n a =( )A .21n -B .43n -C .54n -D .n13.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60B .11C .50D .5514.已知数列{}n a 的前项和221n S n =+,n *∈N ,则5a =( )A .20B .17C .18D .1915.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .53B .2C .8D .1316.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩17.在1与25之间插入五个数,使其组成等差数列,则这五个数为( ) A .3、8、13、18、23 B .4、8、12、16、20 C .5、9、13、17、21D .6、10、14、18、2218.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1B .2C .3D .419.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a +=B .560a a +=C .670a a +=D .890a a +=20.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC . 6SD . 7S二、多选题21.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >22.题目文件丢失!23.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列 C .2020312a <<D .2020314a << 24.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 25.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为826.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S >D .110S >27.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4B .5C .7D .828.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k Nk ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列29.无穷数列{}n a 的前n 项和2n S an bn c =++,其中a ,b ,c 为实数,则( )A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列30.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <B .70a >C .{}n S 中5S 最大D .49a a <【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.B 【分析】根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()11515815152a a S a +==,从而可得出结果.【详解】解:由题可知,2938a a a +=+,由等差数列的性质可知2938a a a a +=+,则88a =,故()1158158151521515812022a a a S a +⨯====⨯=. 故选:B. 2.B 【分析】由题意结合248,,a a a 成等比数列,有2444(4)(8)a a a =-+即可得4a ,进而得到1a 、n a ,即可求9S . 【详解】由题意知:244a a =-,848a a =+,又248,,a a a 成等比数列,∴2444(4)(8)a a a =-+,解之得48a =,∴143862a a d =-=-=,则1(1)2n a a n d n =+-=,∴99(229)902S ⨯+⨯==,故选:B 【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量 1、由,,m k n a a a 成等比,即2k m n a a a =; 2、等差数列前n 项和公式1()2n n n a a S +=的应用. 3.A 【分析】 转化条件为122527n n a an n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.【详解】 因为122527n n a a n n +-=--,所以122527n na a n n +-=--, 又1127a =--,所以数列27n a n ⎧⎫⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以()1212327na n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得3722n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()()()3123min13316p q S S a a S S =-=+=⨯-+--⨯=-.故选:A. 【点睛】解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 4.B 【分析】根据等差数列的性质,由题中条件,可直接得出结果. 【详解】因为n S 为等差数列{}n a 的前n 项和,公差1d =,6210S S ,所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=. 故选:B. 5.B【分析】根据条件列出关于首项和公差的方程组,求解出首项和公差,则等差数列{}n a 的通项公式可求. 【详解】因为3518a S +=,633a a =+,所以11161218523a d a d a d +=⎧⎨+=++⎩,所以111a d =⎧⎨=⎩,所以()111n a n n =+-⨯=,故选:B. 6.D 【分析】设年纪最小者年龄为n ,年纪最大者为m ,由他们年龄依次相差一岁得出(1)(2)(28)1520n n n n m ++++++++=,结合等差数列的求和公式得出111429m n =-,再由[]90,100m ∈求出n 的值.【详解】根据题意可知,这30个老人年龄之和为1520,设年纪最小者年龄为n ,年纪最大者为m ,[]90,100m ∈,则有(1)(2)(28)294061520n n n n m n m ++++++++=++=则有291114n m +=,则111429m n =-,所以90111429100m ≤-≤ 解得34.96635.31n ≤≤,因为年龄为整数,所以35n =. 故选:D 7.B 【分析】 由题得出1392a d =-,则2202n dS n dn =-,利用二次函数的性质即可求解.【详解】设等差数列{}n a 的公差为d ,由11101921a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392a d =-,10a <,0d ∴>,()211+2022n n n dS na d n dn -∴==-,对称轴为20n =,开口向上, ∴当20n =时,n S 最小.故选:B. 【点睛】方法点睛:求等差数列前n 项和最值,由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 8.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅,又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 9.A 【分析】利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A 10.B 【分析】由条件可得127a =,然后231223S a =,算出即可. 【详解】因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =所以231223161S a == 故选:B 11.D 【分析】把点列代入函数解析式,根据{x n }是等比数列,可知1n nx x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;对于B ,函数2()4f x x =上的点列{x n ,y n },有y n =24n x ,由于{x n }是等比数列,所以1n nx x +为常数,因此1n n y y +-=()222214441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;对于C ,函数3()4xf x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=133()()44n n x x+-=33()()144n qx⎡⎤-⎢⎥⎣⎦,这是一个与n 有关的数,故{y n }不是等差数列;对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=114444log log log log n n n nx x x x q ++-==为常数,故{y n }是等差数列;故选:D . 【点睛】 方法点睛:判断数列是不是等差数列的方法:定义法,等差中项法. 12.A【分析】由已知等式分别求出数列的前三项,由2132a a a =+列出方程,求出公差,利用等差数列的通项公式求解可得答案. 【详解】11a =,()()1211n n n a a tn a ++=+,令1n =,则()()121211a a t a +=+,解得21a t =-令2n =,则()()2322121a a t a +=+,即()2311t a t -=-,若1t =,则20,1a d ==,与已知矛盾,故解得31a t =+{}n a 等差数列,2132a a a ∴=+,即()2111t t -=++,解得4t =则公差212d a a =-=,所以()1121n a a n d n =+-=-. 故选:A 13.D 【分析】根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()1111161111552a a S a +===.故选:D. 14.C 【分析】根据题中条件,由554a S S =-,即可得出结果. 【详解】因为数列{}n a 的前项和2*21,n S n n N =+∈, 所以22554(251)(241)18a S S =-=⨯+-⨯+=. 故选:C . 15.B 【分析】设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2, 故选:B 16.B 【分析】利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==,上式也成立,()*21n a n n N ∴=-∈,故选:B. 【点睛】易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结果,考查学生的分类思想与运算求解能力,属于基础题. 17.C 【分析】根据首末两项求等差数列的公差,再求这5个数字. 【详解】在1与25之间插入五个数,使其组成等差数列,则171,25a a ==,则712514716a a d --===-, 则这5个数依次是5,9,13,17,21. 故选:C 18.B 【分析】由题意可得221114n n a a +-=,运用等差数列的通项公式可得2143n n a =-,求得14n b =,然后利用裂项相消求和法可求得结果【详解】解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,得221114n n a a +-=, 所以数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列, 所以2114(1)43n n n a =+-=-, 因为0n a >,所以n a =,所以1111n n nb a a +=+=所以14n b ==,所以201220T b b b =++⋅⋅⋅+111339(91)244=++⋅⋅⋅+=⨯-=, 故选:B 【点睛】关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得221114n n a a +-=,从而数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,进而可求n a =,14n b ==,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题 19.B 【分析】由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】由等差数列的求和公式可得()110101002a a S +==,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B. 20.B 【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S .二、多选题21.ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.22.无23.ABD 【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】由()1ln 2n n n a a a +=+-,1102a << 设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--, 所以当01x <<时,0f x,即()f x 在0,1上为单调递增函数,所以函数在10,2⎛⎫⎪⎝⎭为单调递增函数,即()()102f f x f ⎛⎫<<⎪⎝⎭,即()131ln 2ln ln 1222f x <<<+<+=, 所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD 【点睛】本题考查了数列性质的综合应用,属于难题. 24.ABD 【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+- 20192020a a =,所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题. 25.BD 【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD. 26.ABD 【分析】转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】因为57S S =,所以750S S -=,即670a a +=,因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确; 所以6S 最大,故B 正确; 所以()113137131302a a S a+⨯==<,故C 错误; 所以()111116111102a a S a+⨯==>,故D 正确.故选:ABD. 27.BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+= 整理得120021a n n=+-, 因为1a *∈N ,所以n 为200的因数,()20012n n+-≥且为偶数, 验证可知5,8n =满足题意. 故选:BD. 【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题. 28.BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k aa a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k kk k k k k k aa a a a a a a kp +++++--+-+-++-=,222k k a a kp ∴-=,()221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD. 【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题. 29.ABC 【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴= 所以当0c时,{}n a 是等差数列, 00a c b ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:A B C 【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题. 30.AD 【分析】先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.【详解】解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=< 所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+, 所以60a >,760a a <-<, 所以0d <,{}n S 中6S 最大, 由于11267490a a a a a a +=+=+<, 所以49a a <-,即:49a a <.故AD正确,BC错误.故选:AD.【点睛】本题考查等差数列的前n项和公式与等差数列的性质,是中档题.。

相关文档
最新文档