高考数学 第六章 第4讲 数列求和 理

合集下载

2024年高考数学一轮复习(新高考版)《数列求和》课件ppt

2024年高考数学一轮复习(新高考版)《数列求和》课件ppt

跟踪训练2 (2023·重庆模拟)在①a1=1,nan+1=(n+1)·an,② 2a1 + 2a2 +…+2an =2n+1-2这两个条件中任选一个,补充在下面的问题中并作答. 问题:在数列{an}中,已知________. 注:如果选择多个条件分别解答,按第一个解答计分. (1)求{an}的通项公式;
(2)若bn=
2an 1 3an
,求数列{bn}的前n项和Sn.
由(1)可知 bn=2n3-n 1,
则 Sn=311+332+…+2n3-n 1,

13Sn=312+333+…+2n3-n 3+23nn-+11.

两式相减得23Sn=13+322+323+…+32n-23nn-+11=13+2911--313n1-1-23nn-+11
教材改编题
2.数列{an}的前 n 项和为 Sn.若 an=nn1+1,则 S5 等于
A.1
√B.56
C.16
D.310
因为 an=nn1+1=1n-n+1 1, 所以 S5=a1+a2+…+a5=1-12+12-13+…-16=56.
教材改编题
3.Sn=12+12+38+…+2nn等于
2n-n-1 A. 2n
第六章 数 列
§6.5 数列求和
考试要求
1.熟练掌握等差、等比数列的前n项和公式. 2.掌握非等差数列、非等比数列求和的几种常用方法.
内容索引
第一部分
落实主干知识
第二部分
探究核心题型
第三部分
课时精练

一 部 分
落实主干知识
知识梳理
数列求和的几种常用方法
1.公式法
直接利用等差数列、等比数列的前n项和公式求和.

第六章 第4讲 等差数列、等比数列与数列求和

第六章 第4讲 等差数列、等比数列与数列求和

抓住2个考点
突破4个考向
揭秘3年高考

(1)设{an}的公比为 q,则 b1=1+a,b2=2+aq,b3
=3+aq2,由 b1,b2,b3 成等比数列得(2+aq)2=(1+a)(3 +aq2), 即 aq2-4aq+3a-1=0.* 由 a>0 得, Δ=4a2+4a>0, 故方程*有两个不同的实根. 再由{an}唯一, 知方程*必有一根为 0, 将 q=0 代入方程* 1 得 a= . 3
抓住2个考点
突破4个考向
揭秘3年高考
(2)倒序相加法:如果一个数列{an}的前n项中首末两端等“ 距离”的两项的和相等或等于同一个常数,那么求这个数 列的前n项和即可用倒序相加法,如等差数列的前n项和即 是用此法推导的. (3)错位相减法:如果一个数列的各项是由一个等差数列 和一个等比数列的对应项之积构成的,那么这个数列的前 n项和即可用此法来求,如等比数列的前n项和就是用此法
所以Tn=b1+b2+…+bn=(21+22+…+2n)+n
抓住2个考点
突破4个考向
揭秘3年高考
21-2n + = +n=2n 1+n-2. 1-2
设An=Tn-6n=2n+1-5n-2,则An+1-An=2n+1-5, 所以当n=1时,有An+1<An;当n≥2时,有An+1>An. 故最小项为A2=23-10-2=-4. 即数列{Tn-6n}中最小项的值为-4.
抓住2个考点
突破4个考向
揭秘3年高考
(2)假设存在两个等比数列{an},{bn}使 b1-a1,b2-a2, b3-a3,b4-a4 成公差不为 0 的等差数列. 设{an}的公比为 q1,{bn}的公比为 q2,则 b2-a2=b1q2-
2 3 3 a1q1,b3-a3=b1q2 - a q , b - a = b q - a q 2 1 1 4 4 1 2 1 1.

高考人教A版数学一轮复习课件第6章第4节 数列求和课件

高考人教A版数学一轮复习课件第6章第4节 数列求和课件

则cn=(-1)nlog3[n(n+1)]+log33n-1=(-1)nlog3n+(-1)nlog3(n+1)+n-1,
∴{cn}的前26项和为(-log31-log32+0)+(log32+log33+1)+(-log33-log34+2)
+…+(-log325-log326+24)+(log326+log327+25)
∴{an}的公差为2,而a1=1,故an=2n-1.
(2)由(1)知 bn=
1
+ +1
=
1
2-1+ 2+1
=
2+1- 2-1
2
,
∴Sn=b1+b2+…+bn
1
=2[(
3-1)+( 5 − 3)+( 7 − 5)+…+( 2 + 1 − 2-1)]=
2+1-1
.
2
突破技能1.基本步骤
2
a1=1,+1
= 2 +2(an+1+an).
(1)求{an}的通项公式;
(2)记 b=
1
,求数列{bn}的前
+ +1
n 项和 Sn.
2
解:(1)由题意,得+1
− 2 =2(an+1+an),
即(an+1+an)(an+1-an)=2(an+1+an),
又数列{an}的各项均为正数,即an+1+an≠0,则an+1-an=2,

2025年高考数学一轮复习-6.4-数列求和【课件】

2025年高考数学一轮复习-6.4-数列求和【课件】
+1
送分试题;(2)当递推公式为 an+1=f(n)an 时,把原递推公式先转化为 =f(n),再利用累乘法

(逐商相乘法)求解。第(2)问的实质是数列的求和问题,常用的方法为错位相减法和裂项
相消法。
【变式训练】
则数列
1
+ +1
2 - 2 = 2 - 2 (n≥2),
(1)已知各项都为正数的数列{an}中,a1=1,a2= 3,+1
②当 n≥2 时,Tn=2+2×2 +2×2 +…+2×2
2
3
n
1, = 1,
2, ≥ 2。
22 (1−2 −1 ) (1+2−1)
-[1+3+5+…+(2n-1)]=2+2×
=
2
1−2
2n+2-n2-6,又 T1=1 也满足 Tn=2n+2-n2-6,所以 Tn=2n+2-n2-6。
=
1−2
-n·2n+1=2n+1-2-n·2n+1=(1-n)2n+1-2。所
易错题
4.(不能准确分组致误)已知数列{an}的通项公式为 an=(-1)n(2n-2),则数列{an}的前 n 项和
1 − , 为奇数,
Sn=
, 为偶数

解析 Sn=2×[0+1-2+3-4+…+(-1) (n-1)]=
1

+…+f
−1

+f(1)(n
an=2(n+1)
则数列
的通项公式为

2025高考数学一轮复习-6.4-数列求和【课件】

2025高考数学一轮复习-6.4-数列求和【课件】
【解析】 ∵an=nn1+1=1n-n+1 1 ∴数列{an}的前 n 项和 Sn=1-n+1 1=n+n 1 又 Sn=22001290,∴n=2019,故选 B.
易错易混 4.在数列{an}中,已知 an=n+11n+3(n∈N*),则{an}的前 n 项和 Sn=
_____12__56_-__n_+1__2_-__n_+1__3_ ______. 【解析】 ∵an=n+11n+3=12n+1 1-n+1 3, ∴Sn=1212-14+13-15+14-16+15-17+…+n+1 1-n+1 3 =1212+13-n+1 2-n+1 3 =1256-n+1 2-n+1 3.
第六章 数列
第四节 数列求和
课前双基巩固
——整合知识 夯实基础
『知识聚焦』 1.公式法 (1)等差数列{an}的前 n 项和 Sn=na12+an=na1+nn-2 1d. 推导方法:倒序相加法.
na1,q=1, (2)等比数列{an}的前 n 项和 Sn=a111--qqn,q≠1. 推导方法:乘公比, 错位相减法 .
6.若{log2an}是首项为 1,公差为 2 的等差数列,则数列{nan}的前 n 项和为 _S_n_=__2_+__6_n_9-__2__·4_n_.
【解析】 由题意可得 log2an=1+2(n-1)=2n-1, ∴an=22n-1=2·4n-1,∴nan=2n·4n-1, ∴数列{nan}的前 n 项和 Sn=2(1×40+2×41+3×42+…+n×4n-1), ∴12Sn=1×40+2×41+3×42+…+n×4n-1, ∴2Sn=1×41+2×42+3×43+…+n×4n,
课堂考点突破
——精析考题 提升能力
考点一 分组转化求和 【例 1】 已知数列{an}满足 a1=1,an+an-1=2n(n≥2,n∈N*). (1)记 bn=a2n,求数列{bn}的通项公式; (2)求数列{an}的前 n 项和 Sn.

第4节 数列求和--2025年高考数学复习讲义及练习解析

第4节  数列求和--2025年高考数学复习讲义及练习解析

第四节数列求和课标解读考向预测1.熟练掌握等差、等比数列的前n 项和公式.2.掌握数列求和的几种常见方法.数列求和是高考考查的重点知识,预计2025年高考会考查等差、等比数列的前n 项和公式以及其他求和公式,可能与通项公式相结合,也有可能与函数、方程、不等式等相结合,综合命题,难度适中.必备知识——强基础数列求和的几种常用方法1.公式法(1)等差数列的前n 项和公式①已知等差数列的第1项和第n 项求前n 项和S n =n (a 1+a n )2;②已知等差数列的第1项和公差求前n 项和S n =na 1+n (n -1)2d .(2)等比数列的前n 项和公式当q =1时,S n =na 1;当q ≠1时,①已知等比数列的第1项和第n 项求前n 项和S n =a 1-a n q1-q ;②已知等比数列的第1项和公比求前n 项和S n =a 1(1-q n )1-q .2.分组求和法与并项求和法(1)若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)形如a n =(-1)n ·f (n )类型,常采用两项合并求解.3.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.5.倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解,如等差数列的前n 项和公式即是用此法推导的.1.1+2+3+4+…+n =n (n +1)2.2.12+22+…+n 2=n (n +1)(2n +1)6.3.裂项求和常用的变形(1)分式型:1n (n +k )=1(2n -1)(2n +1)=1n (n +1)(n +2)=121n (n +1)-1(n +1)(n +2)等.(2)指数型:2n (2n +1-1)(2n -1)=12n -1-12n +1-1,n +2n (n +1)·2n =1n ·2n -1-1(n +1)·2n 等.(3)根式型:1n +n +k =1k(n +k -n )等.(4)对数型:log m a n +1a n=log m a n +1-log m a n ,a n >0,m >0且m ≠1.1.概念辨析(正确的打“√”,错误的打“×”)(1)设数列{a n }的前n 项和为S n ,若a n =1n +1+n,则S 9=2.()(2)1n 2<1(n -1)n =1n -1-1n.()(3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求和.()(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n=3n-12.()答案(1)×(2)×(3)×(4)√2.小题热身(1)(人教A选择性必修第二册4.4练习T2改编)数列{a n}的前n项和为S n,若a n=1n(n+1),则S5=()A.1B.56C.16D.130答案B解析∵a n=1n(n+1)=1n-1n+1,∴S5=a1+a2+…+a5=1-12+12-13+…+15-16=56.故选B.(2)(人教A选择性必修第二册4.4练习T1改编)数列{a n}的通项公式a n=(-1)n(2n-1),则该数列的前100项和为()A.-200B.-100C.200D.100答案D解析S100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100.故选D.(3)(人教A选择性必修第二册习题4.3T3改编)若数列{a n}的通项公式a n=2n+2n-1,则数列{a n}的前n项和为()A.2n+n2-1B.2n+1+n2-1C.2n+1+n2-2D.2n+n-2答案C解析S n=a1+a2+a3+…+a n=(21+2×1-1)+(22+2×2-1)+(23+2×3-1)+…+(2n+2n-1)=(2+22+…+2n)+2(1+2+3+…+n)-n=2(1-2n)1-2+2×n(n+1)2-n=2(2n-1)+n2+n-n=2n+1+n2-2.故选C.(4)在数列{a n}中,a1=1,a n a n+1=-2,则S100=________.答案-50解析根据题意,由a1=1,a1a2=-2,得a2=-2,又a2a3=-2,得a3=1,a3a4=-2,得a4=-2,…,所以{a n}中所有的奇数项均为1,所有的偶数项均为-2,所以S100=a1+a2+…+a 99+a 100=1-2+…+1-2=50×(-1)=-50.考点探究——提素养考点一拆项分组法求和例1(2023·湖南岳阳统考三模)已知等比数列{a n }的前n 项和为S n ,其公比q ≠-1,a 4+a 5a 7+a 8=127,且S 4=a 3+93.(1)求数列{a n }的通项公式;(2)已知b n log 13a n ,n 为奇数,n ,n 为偶数,求数列{b n }的前n 项和T n .解(1)因为{a n }是等比数列,公比q ≠-1,则a 4=a 1q 3,a 5=a 1q 4,a 7=a 1q 6,a 8=a 1q 7,所以a 4+a 5a 7+a 8=a 1q 3+a 1q 4a 1q 6+a 1q 7=1q 3=127,解得q =3,由S 4=a 3+93,可得a 1(1-34)1-3=9a 1+93,解得a 1=3,所以数列{a n }的通项公式为a n =3n .(2)由(1)得b nn ,n 为奇数,n ,n 为偶数.当n 为偶数时,T n =b 1+b 2+…+b n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n )=-(1+3+…+n -1)+(32+34+…+3n )=-n2·[1+(n -1)]2+9(1-9n2)1-9=98(3n -1)-n 24;当n 为奇数时,T n =T n +1-b n +1=98(3n +1-1)-(n +1)24-3n +1=18·3n +1-98-(n +1)24.综上所述,T nn +1-98-(n +1)24,n 为奇数,3n -1)-n 24,n 为偶数.【通性通法】拆项分组法求和的常见类型【巩固迁移】1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值为________.答案n 2+1-12n解析由题意可得,通项公式为a n =(2n -1)+12n,则S n =[1+3+5+…+(2n -1)]++122+123+…=n [1+(2n -1)]2+21-12=n 2+1-12n .考点二并项转化法求和例2在等差数列{a n }中,已知a 6=12,a 18=36.(1)求数列{a n }的通项公式;(2)若b n =(-1)n ·a n ,求数列{b n }的前n 项和S n .解(1)由题意,设等差数列{a n }的公差为d,1+5d =12,1+17d =36,1=2,=2,∴a n =2+(n -1)×2=2n .(2)由(1),得b n =(-1)n ·a n =(-1)n ·2n ,∴S n =b 1+b 2+…+b n =-2+4-6+8-…+(-1)n ·2n ,(ⅰ)当n 为偶数时,S n =b 1+b 2+…+b n =-2+4-6+8-…+(-1)n ·2n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=2+2+…+2=n2×2=n ;(ⅱ)当n 为奇数时,n -1为偶数,S n =b 1+b 2+…+b n =S n -1+b n =n -1-2n =-n -1.∴Sn ,n 为偶数,n -1,n 为奇数.【通性通法】并项转化法求和【巩固迁移】2.(2024·浙江台州中学质检)已知数列{a n }满足a 1+2a 2+…+na n =2n ,数列{b n }满足对任意正整数m ≥2均有b m -1+b m +b m +1=1a m 成立.(1)求数列{a n }的通项公式;(2)求数列{b n }的前99项和.解(1)因为a 1+2a 2+…+na n =2n ,所以当n ≥2时,a 1+2a 2+…+(n -1)a n -1=2(n -1).两式相减,得na n =2,所以a n =2n (n ≥2).又当n =1时,a 1=2,也符合上式,所以a n =2n .(2)由(1)知1a n =n2.因为对任意的正整数m ≥2,均有b m -1+b m +b m +1=1a m =m2,故数列{b n }的前99项和b 1+b 2+b 3+b 4+b 5+b 6+…+b 97+b 98+b 99=(b 1+b 2+b 3)+(b 4+b 5+b 6)+…+(b 97+b 98+b 99)=1a 2+1a 5+…+1a 98=22+52+…+982=825.考点三裂项相消法求和例3(2023·承德模拟)已知数列{a n }的前n 项和为S n ,且a n +1S n=2n .(1)证明:数列{a n }是等差数列;(2)若a 2+1,a 3+1,a 5成等比数列.从下面三个条件中选择一个,求数列{b n }的前n 项和T n .①b n =na 2n a 2n +1;②b n =1a n +a n +1;③b n =2n +3a n a n +12n +1.注:如果选择多个条件分别解答,按第一个解答计分.解(1)证明:因为a n +1S n=2n ,即n (a n +1)=2S n ,当n =1时,a 1+1=2S 1,解得a 1=1,当n ≥2时,(n -1)(a n -1+1)=2S n -1,所以n (a n +1)-(n -1)(a n -1+1)=2S n -2S n -1,即n (a n +1)-(n -1)(a n -1+1)=2a n ,所以(n -2)a n -(n -1)a n -1+1=0,当n =2时,上述式子恒成立,当n >2时,两边同除以(n -2)(n -1)可得a n n -1-a n -1n -2=-1(n -1)(n -2)=1n -1-1n -2,即a n n -1-1n -1=a n -1n -2-1n -2,,即a n -1n -1=a 2-1,所以a n -1=(n -1)(a 2-1),即a n =(n -1)(a 2-1)+1,当n =1时,也适合上式,所以a n +1-a n =n (a 2-1)+1-(n -1)(a 2-1)-1=a 2-1,所以数列{a n }是以1为首项,a 2-1为公差的等差数列.(2)设{a n }的公差为d ,因为a 2+1,a 3+1,a 5成等比数列,所以(a 3+1)2=a 5(a 2+1),即(2+2d )2=(1+4d )(2+d ),解得d =2,所以a n =2n -1.若选①b n =na 2n a 2n +1,则b n =n (2n -1)2(2n +1)2=181(2n -1)2-1(2n +1)2,所以T n =18112-132+132-152+…+1(2n -1)2-1(2n +1)2=181-1(2n +1)2.若选②b n =1a n +a n +1,则b n =12n -1+2n +1=2n +1-2n -1(2n -1+2n +1)(2n +1-2n -1)=12(2n +1-2n -1),所以T n =12(3-1+5-3+…+2n +1-2n -1)=12(2n +1-1).若选③b n =2n +3a n a n +12n +1,则b n =2n +3(2n -1)(2n +1)2n +1=1(2n -1)×2n -1(2n +1)×2n +1,所以T n =11×21-13×22+13×22-15×23+…+1(2n -1)×2n -1(2n +1)×2n +1=12-1(2n +1)×2n +1.【通性通法】利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;或者前面剩几项,后面也剩几项.(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=,1a n a n +2=【巩固迁移】3.数列{a n }的通项公式为a n =1n +n +1,若{a n }的前n 项和为24,则n =()A .25B .576C .624D .625答案C解析a n =n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1,令S n =24,得n =624.故选C.4.(2022·新高考Ⅰ卷)记S n 为数列{a n }的前n 项和,已知a 1=1是公差为13的等差数列.(1)求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <2.解(1)1,公差为13的等差数列,所以S n a n =1+13(n -1)=n +23,故S n =n +23a n .①当n ≥2时,S n -1=n +13a n -1.②由①-②可知a n =n +23a n -n +13a n -1,所以(n -1)a n =(n +1)a n -1,即a n a n -1=n +1n -1.所以a 2a 1×a3a 2×…×a n -1a n -2×a n a n -1=31×42×53×…×n n -2×n +1n -1=n (n +1)2(n ≥2),所以a n =n (n +1)2(n ≥2),又a 1=1也满足上式,所以a n =n (n +1)2(n ∈N *).(2)证明:因为1a n =2n (n +1)=2n -2n +1所以1a 1+1a 2+…+1a n =21-22+22-23+…+2n -2n +1=2-2n +1<2.考点四错位相减法求和例4(2023·全国甲卷)已知数列{a n }中,a 2=1,设S n 为{a n }的前n 项和,2S n =na n .(1)求{a n }的通项公式;(2)n 项和T n .解(1)因为2S n =na n ,当n =1时,2a 1=a 1,即a 1=0;当n =3时,2(1+a 3)=3a 3,即a 3=2,当n ≥2时,2S n -1=(n -1)a n -1,所以2(S n-S n-1)=na n-(n-1)a n-1,即2a n=na n-(n-1)a n-1,化简得(n-2)a n=(n-1)a n-1,当n≥3时,a nn-1=a n-1n-2=…=a32=1,即a n=n-1,当n=1,2时都满足上式,所以a n=n-1(n∈N*).(2)因为a n+12n=n2n,所以T n=+++…+n,1 2T n=++…+(n-+n+1,两式相减得12T n+…-n+1=12×11-12-n+1=1-,即T n=2-(2+n,n∈N*.【通性通法】1.错位相减法求和的适用条件若{a n}是公差为d(d≠0)的等差数列,{b n}是公比为q(q≠1)的等比数列,求数列{an b n}的前n项和S n.2.错位相减法求和的步骤3.错位相减法求和的注意事项注意在写出S n与qS n的表达式时,应特别注意将两式“错位对齐”,以便下一步准确写出点一S n -qS n ,特别是等比数列公比为负数的情形注意点二等式右边由第一项、中间n -1项的和式、最后一项三部分组成注意点三经常把b 2+b 3+…+b n 这n -1项和看成n 项和,把-a n b n +1写成+a n b n +1导致错误【巩固迁移】5.(2023·河北示范性高中调研)已知数列{a n }的前n 项和为S n ,且a 2=6,a n +1=2(S n +1).(1)证明{a n }为等比数列,并求{a n }的通项公式;(2)求数列{na n }的前n 项和T n .解(1)因为a n +1=2(S n +1),所以a n =2(S n -1+1)(n ≥2),故a n +1-a n =2(S n -S n -1)=2a n ,即a n +1a n=3(n ≥2),又a 2=2(S 1+1)=2a 1+2,故a 1=2,即a2a 1=3,因此a n +1a n=3(n ∈N *).故{a n }是以2为首项,3为公比的等比数列.因此a n =2×3n -1(n ∈N *).(2)因为T n =2×1+2×2×3+2×3×32+…+2n ×3n -1,①故3T n =2×1×3+2×2×32+…+2(n -1)×3n -1+2n ×3n ,②①-②,得-2T n =2+(2×3+2×32+…+2×3n -1)-2n ×3n=2+2×3(3n -1-1)3-1-2n ×3n =-1+(1-2n )×3n ,即T n =(2n -1)×3n +12.考点五倒序相加法求和例5已知数列{a n },{b n }满足a 1=118,2a n +1-a n =16a n +1a n ,b n =1a n-16.(1)证明{b n }为等比数列,并求{b n }的通项公式;(2)求a 1b 1+a 2b 2+a 3b 3+…+a 7b 7.解(1)由2a n +1-a n =16a n +1a n ,可得1a n +1=2a n-16,于是1a n +1-16=即b n +1=2b n ,而b 1=1a 1-16=2,所以{b n }是首项为2,公比为2的等比数列.所以b n =2×2n -1=2n .(2)由(1)知a n =12n +16,所以a n b n =2n2n +16.因为a k b k +a 8-k b 8-k =2k 2k +16+28-k 28-k +16=2k -42k -4+1+11+2k -4=1,所以2(a 1b 1+a 2b 2+a 3b 3+…+a 7b 7)=(a 1b 1+a 7b 7)+(a 2b 2+a 6b 6)+…+(a 7b 7+a 1b 1)=7,因此a 1b 1+a 2b 2+a 3b 3+…+a 7b 7=72.【通性通法】倒序相加法的使用策略策略一将一个数列倒过来排列,当它与原数列相加时,若有规律可循,并且容易求和,则这样的数列求和时可用倒序相加法(等差数列前n 项和公式的推导即用此方法)策略二和对称性有关求和时可用倒序相加,比如函数关于点对称的性质,组合数中C k n =C n -kn 的性质【巩固迁移】6.已知函数f (x )对任意的x ∈R ,都有f (x )+f (1-x )=1,数列{a n }满足a n =f (0)+…+f (1),则数列{a n }的通项公式为________.答案a n =n +12解析∵f (x )+f (1-x )=1,∴1,又a n =f (0)+…+f (1)①,∴a n =f (1)+…+f (0)②,①+②,得2a n =n +1,∴a n =n +12.∴数列{a n }的通项公式为a n =n +12.课时作业一、单项选择题1.(2024·黑龙江牡丹江第二次阶段测试)已知等差数列{a n },a 2=3,a 5=6前8项和为()A .15B .25C .35D .45答案B解析由a 2=3,a 5=6可得公差d =a 5-a 23=1,所以a n =a 2+(n -2)d =n +1,因此1a n a n +1=1(n +1)(n +2)=1n +1-1n +2,8…=12-110=25.故选B.2.在数列{a n }中,a n =(-1)n -1(4n -3),前n 项和为S n ,则S 22-S 11为()A .-85B .85C .-65D .65答案C解析∵S 22=a 1+a 2+a 3+…+a 21+a 22=(1-5)+(9-13)+…+(81-85)=(-4)×11=-44,S 11=a 1+a 2+a 3+…+a 10+a 11=(1-5)+(9-13)+…+(33-37)+41=(-4)×5+41=21,∴S 22-S 11=-44-21=-65.3.(2023·青岛调研)已知数列{a n }的前n 项和是S n ,且满足a 1=3,a 2k =8a 2k -1,a 2k +1=12a 2k ,k ∈N *,则S 2023=()A .42023-1B .3×22023-3C .3×41012-9D .5×41011-2答案C解析∵a 2k =8a 2k -1,a 2k +1=12a 2k ,∴a 2k +1=4a 2k -1.又a 1=3,∴数列{a 2k -1}是首项为3,公比为4的等比数列.∵a 2=8a 1=24,a 2k +2a 2k =a 2k +2a 2k +1·a 2k +1a 2k=4,∴数列{a 2k }是首项为24,公比为4的等比数列.∴S 2023=(a 1+a 3+…+a 2023)+(a 2+a 4+…+a 2022)=3(1-41012)1-4+24(1-41011)1-4=3×41012-9.4.已知数列{a n }的前n 项和为S n ,且满足a n +a n +1+a n +2=cosn π3,a 1=1,则S 2023=()A .0B .12C .1D .32答案C解析S 2023=a 1+(a 2+a 3+a 4)+(a 5+a 6+a 7)+…+(a 2021+a 2022+a 2023)=1+cos2π3+cos 5π3+…+cos 2018π3+cos 2021π3=1+cos 2π3+1.故选C.5.数列{a n }的前n 项和S n =2n +2,数列{log 2a n }的前n 项和为T n ,则T 20=()A .190B .192C .180D .182答案B解析当n =1时,a 1=S 1=21+2=4,当n ≥2时,a n =S n -S n -1=2n +2-(2n -1+2)=2n -2n -1=2n -1,经检验a 1=4不满足上式,所以a n,n =1,n -1,n ≥2.设b n =log 2a n ,则b n,n =1,-1,n ≥2,所以T 20=b 1+b 2+b 3+b 4+…+b 20=2+1+2+3+…+19=192.故选B.6.(2024·湖北黄冈调研)已知数列{a n }满足a n ·(-1)n +a n +2=2n -1,S 20=650,则a 23=()A .231B .234C .279D .276答案B解析由a n ·(-1)n +a n +2=2n -1,S 20=650可知,当n 为偶数时,a n +a n +2=2n -1,当n 为奇数时,a n +2=a n +2n -1,所以S 20=(a 1+a 3+…+a 19)+(a 2+a 4)+(a 6+a 8)+(a 10+a 12)+(a 14+a 16)+(a 18+a 20)=650,即a 1+(a 1+1)+(a 1+6)+(a 1+15)+(a 1+28)+(a 1+45)+(a 1+66)+(a 1+91)+(a 1+120)+(a 1+153)+3+11+19+27+35=650,由此解得a 1=3,所以a 23=a 1+231=234.故选B.7.(2024·江苏常州高三阶段考试)已知正项数列{a n }是公差不为0的等差数列,且a 1,a 2,a 4成等比数列.若∑24k =11a k +a k +1=3,则a 1=()A .169B .916C .43D .34答案A解析设正项等差数列{a n }的公差为d ,且d ≠0,∵a 1,a 2,a 4成等比数列,∴a 22=a 1a 4,即(a 1+d )2=a 1(a 1+3d ),整理得,d 2=a 1d ,∵d ≠0,∴d =a 1,∵∑24k =11a k +a k +1=∑24k =1a k +1-a k(a k +1+a k )(a k +1-a k )=∑24k =1a k +1-a k a k +1-a k =∑24k =11d(a k +1-a k )=1d (a 2-a 1+a 3-a 2+…+a 25-a24)=1d (a25-a 1)=1d (a 1+24d -a 1)=3,即1a 1(5a 1-a 1)=3,即4a 1=3a 1,∵a 1>0,∴a1=169.故选A.8.已知函数fg(x )=f (x )+1,若an ={a n }的前2022项和为()A.2023B .2022C .2021D .2020答案B 解析由于函数f,则x 即0,所以f (x )+f (1-x )=0,所以g (x )+g (1-x )=[f (x )+1]+[f (1-x )+1]=2,所以2(a 1+a 2+…+a 2022)=2g…+=g+g +…+g2×2022,因此数列{a n }的前2022项和为a 1+a 2+…+a 2022=2022.故选B.二、多项选择题9.(2024·广东梅州市大埔县高三质检)已知数列{a n }的首项为4,且满足2(n +1)a n -na n +1=0(n ∈N *),则()A B .{a n }为递增数列C .{a n }的前n 项和S n =(n -1)·2n +1+4D n 项和T n =n 2+n 2答案BD解析由2(n +1)a n -na n +1=0得a n +1n +1=2·a n n ,是以a11=a 1=4为首项,2为公比的等比数列,故A 错误;因为an n =4·2n -1=2n +1,所以a n =n ·2n +1,显然递增,故B 正确;因为S n=1×22+2×23+…+n ×2n +1,2S n =1×23+2×24+…+n ×2n +2,所以-S n =1×22+23+…+2n +1-n ×2n +2=22(1-2n )1-2-n ·2n +2,故S n =(n -1)·2n +2+4,故C 错误;因为a n 2n +1=n ·2n +12n +1=n ,所n 项和T n =n (1+n )2=n 2+n 2,故D 正确.故选BD.10.设数列{a n }的前n 项和为S n ,若a n =1+1n 2+1(n +1)2,则下列结论中正确的是()A .a n =n 2+n +1n (n +1)B .S n =n 2+n -1n +1C .a n ≤32D .满足S n ≤2024的n 的最大值为2023答案ACD 解析a n =1+1n 2+1(n +1)2=[n (n +1)+1]2n 2(n +1)2=n 2+n +1n (n +1),故A 正确;因为a n =1+1n (n +1)=1+1n -1n +1,所以S n =n …n +1-1n +1=n 2+2n n +1,故B 错误;因为1+1n (n +1)>1+1(n +1)(n +2),所以a n >a n +1,所以{a n }是递减数列,所以a n ≤a 1=32,故C正确;因为a n =1+1n -1n +1>0,所以S n 递增,且S 2023<2024,S 2024>2024,所以满足S n ≤2024的n 的最大值为2023,故D 正确.故选ACD.三、填空题11.12!+23!+34!+…+n (n +1)!=________.答案1-1(n +1)!解析∵k (k +1)!=k +1-1(k +1)!=1k !-1(k +1)!,∴12!+23!+34!+…+n(n +1)!=1-12!+12!-13!+13!-14!+…+1(n -1)!-1n !+1n !-1(n +1)!=1-1(n +1)!.12.已知数列{a n }满足a n +2n +2,n 为奇数,a n ,n 为偶数,且a 1=2,a 2=1,则此数列的前20项和为________.答案1133解析当n 为奇数时,由a n +2=a n +2可知,{a n }的奇数项成等差数列,且公差为2,首项为a 1=2;当n 为偶数时,由a n +2=2a n 可知,{a n }的偶数项成等比数列,且公比为2,首项为a 2=1,故前20项和为a 1+a 2+a 3+…+a 19+a 20=(a 1+a 3+a 5+…+a 19)+(a 2+a 4+a 6+…+a 20)+10×92×2+1-2101-2=110+1023=1133.13.(2024·云南曲靖高三月考)已知正项数列{a n }满足a 1=2且a 2n +1-2a 2n -a n a n +1=0,令b n =(n +2)a n -257,则数列{b n }的前7项和为________.答案2021解析由a 2n +1-2a 2n -a n a n +1=0可得(a n +1+a n )(a n +1-2a n )=0,因为a n +1+a n >0,所以a n +1=2a n ,即a n +1a n=2,所以数列{a n }是以a 1=2为首项,2为公比的等比数列,所以a n =2×2n -1=2n ,所以b n =2n (n +2)-257,令c n =2n (n +2),{c n }的前n 项和为T n ,则T 7=3×21+4×22+5×23+…+9×27,2T 7=3×22+4×23+5×24+…+9×28,两式相减可得,-T 7=3×21+22+23+…+27-9×28=6+4×(1-26)1-2-9×28=6+4×63-9×256=-2046,所以T 7=2046,所以数列{b n }的前7项和为T 7-257×7=2046-25=2021.14.(2023·湖北重点中学模拟)已知数列{a n }的前n 项和为S n ,且2a n -S n =2,记数列n 项和为T n .若对于任意n ∈N *,不等式k >T n 恒成立,则实数k 的取值范围为________.答案13,+解析依题意2a n -S n =2,当n =1时,a 1=2,由2a n -1-S n -1=2,n ≥2,两式相减并化简得a n =2a n -1,所以数列{a n }是首项为2,公比为2的等比数列,即a n =2n ,所以a n(a n +1)(a n +1+1)=2n(2n +1)(2n +1+1)=12n +1-12n +1+1,所以T n …+=13-12n +1+1<13,所以实数k 的取值范围是13,+四、解答题15.(2024·湖北恩施模拟)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1·4na n a n +1,求数列{b n }的前n 项和T n .解(1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12.由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1,所以a n =2n -1.(2)b n =(-1)n -1·4na n a n +1=(-1)n -1·4n(2n -1)(2n +1)=(-1)n -1当n 为偶数时,T n…1-12n +1=2n2n +1;当n 为奇数时,T n…1+12n +1=2n +22n +1.所以T nn为奇数n 为偶数T n16.已知数列{a n }的前n 项和为S n ,且a 1=1,a n =-2S n -1S n (n ≥2).(1)求a n ;(2)设b n =2nS n ,求数列{b n }的前n 项和T n .解(1)∵a n =-2S n -1S n ,∴S n -S n -1=-2S n -1S n ,∴S n -1-S n =2S n S n -1,∴1S n -1S n -1=2,∴,且1S n =1S 1+2(n -1)=1+2n -2=2n -1,∴S n =12n -1(n ∈N *),∴当n ≥2时,a n =-2(2n -1)(2n -3),又a 1=1不满足上式,∴a nn ≥2.(2)由(1)可得b n =(2n -1)2n ,则T n =1×21+3×22+…+(2n -3)2n -1+(2n -1)2n ,2T n =1×22+3×23+…+(2n -3)2n +(2n -1)2n +1,两式相减得-T n =2+23+24+…+2n +1-(2n -1)2n +1=2+23(1-2n -1)1-2-(2n -1)2n +1=2-8+2n +2-(2n -1)2n +1=-6-(2n -3)2n +1,∴T n =(2n -3)2n +1+6.17.(2024·江西临川一中阶段考试)函数f (x )=ln x ,其中f (x )+f (y )=2,记S n =ln x n +ln (x n -1y )+…+ln (xy n -1)+ln y n(n ∈N *),则∑2024i =11S i =()A .20242025B .20252024C .20254048D .40482025答案A解析∵f (x )=ln x ,f (x )+f (y )=2,∴f (x )+f (y )=ln x +ln y =ln (xy )=2.S n =ln x n +ln (x n -1y )+…+ln (xy n -1)+ln y n ,即S n =ln y n +ln (xy n -1)+…+ln (x n -1y )+ln x n ,两式相加得,2S n =(n +1)ln(x n y n )=n (n +1)ln (xy )=2n (n +1),∴S n =n (n +1),∑2024i =11S i =∑2024i =11i (i +1)=∑2024i =11-12025=20242025.故选A.18.(2023·广西玉林统考三模)已知函数f (x )=e -x -e x ,若函数h (x )=f (x -4)+x ,数列{a n }为等差数列,a 1+a 2+a 3+…+a 11=44,则h (a 1)+h (a 2)+…+h (a 11)=________.答案44解析由题意,可得h (x )=f (x -4)+x =e -(x -4)-e x -4+x ,设等差数列{a n }的前n 项和为S n ,公差为d ,则S 11=11a 1+11×102d =11(a 1+5d )=11a 6=44,解得a 6=4,则h (a 6)=h (4)=e -(4-4)-e 4-4+a 6=a 6=4,根据等差中项的性质,可得a 1+a 11=2a 6=8,则h (a 1)+h (a 11)=e-(a 1-4)-e a 1-4+a 1+e-(a11-4)-e a 11-4+a 11=1e a 1-4+1e a 11-4-(e a 1-4+e a 11-4)+a 1+a 11=e a 1-4+e a 11-4e a 1+a 11-8-(e a 1-4+e a 11-4)+a 1+a 11=a 1+a 11=8,同理可得,h (a 2)+h (a 10)=8,h (a 3)+h (a 9)=8,h (a 4)+h (a 8)=8,h (a 5)+h (a 7)=8,所以h (a 1)+h (a 2)+…+h (a 11)=5×8+4=44.19.(2023·山西太原二模)已知等比数列{a n }的前n 项和为S n (S n ≠0),满足S 1,S 2,-S 3成等差数列,且a 1a 2=a 3.(1)求数列{a n }的通项公式;(2)设b n =-3a n(a n +1)(a n +1+1),求数列{b n }的前n 项和T n .解(1)设数列{a n }的公比为q ,依题意得S 1+(-S 3)=2S 2,所以-(a 2+a 3)=2(a 1+a 2),即-a 1(q +q 2)=2a 1(1+q ),因为a 1≠0,所以q 2+3q +2=0,解得q =-1或q =-2,因为S n ≠0,所以q =-2,又因为a 1a 2=a 3,所以a 21q =a 1q 2,即a 1=q =-2,所以a n =(-2)n .(2)由题意可得,b n =-3(-2)n[(-2)n +1][(-2)n +1+1]=(-2)n +1-(-2)n[(-2)n +1][(-2)n +1+1]=1(-2)n +1-1(-2)n +1+1,则T n =1(-2)1+1-1(-2)2+1+1(-2)2+1-1(-2)3+1+…+1(-2)n +1-1(-2)n +1+1=-1-1(-2)n +1+1.20.(2024·新疆阿克苏地区质检)已知正整数数列{a n },a 1=1,a 2=2,当n ≥2时,a 2n -1a n +1<a n -2025年高考数学复习讲义及练习解析211<a 2n +1a n +1恒成立.(1)证明数列{a n }是等比数列并求出其通项公式;(2)定义:|x |表示不大于xn 项和为S n ,求|S 1|+|S 2|+|S 3|+…+|S 2024|的值.解(1)由a 2n -1a n +1<a n -1<a 2n +1a n +1,得a 2n -1<a n -1a n +1<a 2n +1.因为{a n }是正整数数列,所以a n -1a n +1=a 2n (n ≥2,n ∈N *),于是{a n }是等比数列.又a 1=1,a 2=2,所以a n =2n -1,n ∈N *.(2)因为2n -1a n =2n -12n -1,S n =120+321+522+…+2n -12n -1,12S n =121+322+523+…+2n -12n ,两式相减得,12S n =1++122+123+…-2n -12n =3-2n +32n,所以S n =6-2n +32n -1<6,又S n +1-S n =2n +12n >0,即{S n }为递增数列,S 1=1,2<S 2=52<3,3<S 3=154<4,4<S 4=378<5,S 5=8316>5,所以|S 1|=1,|S 2|=2,|S 3|=3,|S 4|=4,|S n |=5(n ≥5),所以|S 1|+|S 2|+|S 3|+…+|S 2024|=1+2+3+4+=10110.。

新高考2023版高考数学一轮总复习第6章第4讲数列求和课件

新高考2023版高考数学一轮总复习第6章第4讲数列求和课件

1 n+
n+1,前
n
项和为 9,则 n= A.9
B.99
(B )
C.10 [解析]
D.100
因为 an=
1 n+
n+1=
n+1-
n.所以 Sn=a1+a2+a3+…
+an=( 2-1)+( 3- 2)+…+( n+1- n)= n+1-1.所以 n+1-
1=9,即 n+1=10,所以 n=99.故选 B.
1.常见的裂项公式 (1)nn1+1=1n-n+1 1; (2)nn1+k=1k1n-n+1 k; (3)n2-1 1=12n-1 1-n+1 1;
(4)2n-112n+1=122n1-1-2n1+1;
(5)
1 n+
n+1=
n+1-
n;
1 n+
n+k=1k(
n+k-
n);
(6)nn+11n+2=12nn1+1-n+11n+2.
D.439+2120
(2)(2021·信 阳 模 拟 ) 已 知 数 列 {an} 中 , a1 = a2 = 1 , an + 2 =
a2na+n,2, n是n是 偶奇 数数 ,, 则数列{an}的前 20 项和为
(C )
A.1 121
B.1 122
C.1 123
D.1 124
[解析] (1)令数列{an}的前 n 项和为 Sn,则 S20=a1+a2+a3+…+a20 =2(1+2+3+…+20)-12+212+213+…+2120=420-1-2120=419+2120.





Sn

na1+an 2
=n_a_1+__n__n_-2__1_d=
(3)等比数列的前 n 项和公式: Sn=naa11-1-,aqqnq==1_,___a_1_11_--__qq_n_ ,q≠1. 注意等比数列公比 q 的取值情况,要分 q=1,q≠1.

高考数学第六章数列4第4讲数列求和练习理含解析

高考数学第六章数列4第4讲数列求和练习理含解析

第4讲 数列求和[基础题组练]nnaa ) 项之和为( -1)}的通项公式是,则该数列的前=(-1)(21001.数列{nn100 .- BA .-200 100 .200.DC S =(-1+3)+(-5+7)+…+(-197解析:选D.由题意知+199)=2×50=100.故选100D.n *Snaaaaa ) ,则 的值为+(-1){}中,,=2,( =2,∈-N =12.在数列nnn 60+1221 000 .A .990 B99 .DC .1 100naaanaaanS =.为偶数时,=-解析:选A.故为奇数时,=-,=02=2;,nnnnnn 60+2+22×30+(2+4+…+60)=990.aaaann ∈-}满足:≥2,=(3.(2019·河北“五个一名校联盟”模拟)已知数列{nnnn 1-+1*SnaSaa ){=}的前N ),=1,( =2,项和,则为数列nn 2 018122 ..3 BA0.C .1D aaaaaaaaa =-,=-=-1,=1,,所以=22解析:选A.因为==-1,,nnn643+1-1521aaa }是周期为6的周期数列,且每连续6项的和为0,故=1, =2,…,故数列{1,n 87Saaaa =3.故选=A. =336×0+++22 0182 01812 017111++…+的值为( 4. )2222n 1-+114-)1(2-13-nn +31+1B.- A. nn )+2(2+2()241111313????+ C.-D.-+nn ??nn 2++1222+14+111解析:选C.因为==22nnnnn )++1)-(12+(2111????-,=nn ??2+21111所以+++…+2222n 1-11()2-+13-14-11111111????-+…+-+-1-+ =nn ??25+332421131????-- = nn ??2+1+22.1113????+.-= nn ??21++24n *Snaaaa ) ),则 =1,等于·=2(( 5.(2019·开封调研)已知数列{∈}满足N nnn 2 018+111 0092 0183 2-1BA .2.3×-1 0081 00912-2CD .3×2.3×-n 1+aa 22·nn1++2aa 2,=2,又=解析:选B.=1,== n 21aaa 2·nn 1+1a n 2+aaSaaaaa =,,,2.所以所以,…成等比数列,所以,…成等比数列;,= 15146322018a naaaaaaaaaaaaaaa =++++++…++)+)+…+++(=(+…+++2 01822 0174352 01846352 0171621 0091 009)(1-21-221 009B. =3·2-3.故选+ 211--2aaaaanS 2=1,-6.(2019·郑州质量预测)已知数列{=}的前2项和为,且,nnnn 121+2+111**TnnTa ________(∈N )+,则=0(.∈N ),记==++…+ nn 2 018SSS n 21*aanaaaaa 为等差数列,公,所以数列+{解析:由=-2+2=0(}∈N ),可得nnnnnnn 1++212++Snnnaaaandd =-,通项公式1==+(项和-1)×,则其前=差=1-+=2-1=1nn 112naann 111121+1)1(1+1)1(n 1T +2(-=++…+===2(,所以=-),n SSSnnnSn211)1222(++nn21n4 036×122 0182111T. =,故==+…+--)=2(1-)2 018nnnn2 0191+2 0181+3++114 036 答案: 2 0192a n1+*Snaaaa=________N),则其前}中,9=2,且=4(项和-)(.∈7.已知数列{nnn9+11a n22222aaaaaaaaaaa,所以)==解析:由已知,得4=(4-0,即-4-+42nnnnnnnnnnn1+++1+1+1+119)-122×(10Saa022.2-==2,所以数列{2}是首项为2,公比为的等比数列,故1 ==2nn921-1 022 答案:112aaaaa项的和等于,则该数列的前+2 018-,且=.已知数列8{}满足=nnnn1+122 ________.112aaaa解析:因为=,又,+-=nnn1+1221aaa1所以=,从而=1=,,4232.1??*knk),∈-1,(=2N2?a即得=n?*?knk),∈(1,N=213 027????S+1==1 009×.故数列的前2 018项的和等于 2 018??223 027答案:2n312n*2an∈N1),.满足:++…+=(3-9.(2019·唐山模拟)已知数列{}n aaa8n21a}的通项公式;求数列{ (1)n a111n b.=log,求+(2)设+…+n3bbnbbbb nn11232+132n≥2时,因为,当 (3-1)=3解:(1)=a81nnn-11122=(++…+)-(++…+)aaaaaaa nnn1-122133nn-222=(3-1)-(3-1) 88n-21,=3n n-21n也成立,当=1,=3a n na.=所以nn12-3a n nb 1)=-=log(2,-(2)n3n11111 =因为(=-),bnnnnb1+1)222(2-1)(21+-nn1+111 ++…+所以bbbbbb nn12+213111111=[(1-)+(-)+…+(-)]nn11522-+32311=(1-) n12+2n. =n1+2a-31n anSS=.已知数列{,}的前项和为.(2019·唐山市摸底考试10)nnn2a;求 (1)n bnabnTT.的前{1)=(2)若(-,且数列}项和为,求nnnnnSa-1,①由已知可得,2 =3解:(1)nn San≥2),② 2-=31(所以nn1-1-SSaa,-)=3①-②得,2(3-nnnn11--aan≥2),化简得(=3nn1-na=1,=1可得,在①中,令1a}是以1为首项,{3为公比的等比数列,所以数列nn-1a.从而有3=nn-1bn-1)3,(2) =(nn-1120nT,③+…+=0×3(+1×3 +2×3-1)×3nn312nT④3-1)×3=0×3+1×3+2×3+…+(.则nnn1123-nT-(③-④得,-2-1)×3=3+3+3+…+3nn3-3n n -1)×3-(=3-1n n3-)×3(3-2.=2n n3)×3(2+-3T.所以=n4]综合题组练 [n aaana) 的前1.在数列{12}中,若+(-1)项和等于=2{-1,则数列( }nnnn1+B..76 78 AD.80C.82nn+1aanaanaa++·1=2=21-,得,得+(-B.解析:选由已知1)+(-1)nnnnnn2++1+1+2nnnnnSaaa+10,结果相加可得+=5,9及+=21)=(-(2,-1)+(26+1),取,=1,32112aaa=78.故选+…+B.+12411anSanaSnS的值为+2,=1,当,则2.已知数列{≥2}的前时,项和为=nnnn2 017-11( )A.2 015 B.2 013D.1 008.1 009C aSnnaSnnaa+≥1=因为++21=,,≥2,所以,两式相减得+2解析:选D.nnnnnn1+1-1+naSaaaaa)=1 009+…+(=1,所以,故选=(+++,=1D.≥2.又)2 017312 017212 016*bnaaaaa}{{+}(为“凸数列”.已知数列∈N)3.已知数列{},若,则称数列=bbbbbbb,2,nnnnnn21++bbb.2 019项和为{=-2,则数列________}为“凸数列”,且=1,的前n2132,得3=-,==-1,=解析:由“凸数列”的定义及=1,=-7534261bbbbbbbb,于是+06,=-2,…,所以数列{}是周期为的周期数列,且+=+++1=n6253418bbbb4.+2 019}数列{的前项和等于+=-n321.答案:-4na)(1+1n*aaan∈N)=,且,则=4.(一题多解)(2019·合肥模拟)数列{}满足:(anS=________.}的前项和数列{nn naan33+1)+(1nn a,两边同解析:通解:时=nn11+na+33n取倒数得==+n1+nnnaaa1+13)+(+nnn1+nnnnnn1+1+1=+3,所以-=3,整理得,所以数列{}是以=3为首项,3为公aaaanaaa)+(1nnnnnn1++11nn1naaS=是常数列,所以,所以数列{差的等差数列,所以=3.,所以}=nnn a33n na111+1)1(n aaaaa=,,=,根据,所以=,可得=优解:用归纳法求解,=n42+131na33+333n n11aaS=,从而,经验证.猜想==nnn1+333aaanSSSS,,前,项和为.(2019·合肥模拟)已知等差数列{1}中,,且--=45nn45233成等比数列.a}的通项公式;求数列{ (1)n n4n bnTb.的前项和,求数列(2)令{=(-1)}nnn aa nn1+adaadd=2. 44{,得}的公差为2,由,-==解:(1)设n35SaSaSa+12,,,=-1=34所以+=25+21413212aaaSSS 12)+2)·(4,成等比数列,所以(3++5)又=,(2-1,134211a 1解得,=1na1. -=2所以n n411nn b,(+)=(2)-=(1)(-1)n naan1-+212nn1+11111111nT=-(1+)+(+)-(+)+…-(+)+(当+为偶数时,n nnn1--5721-322335n211T=-1+,所以=-. )n nnn11+212+2+11111111nT=-(1+)+(+)-(+)+…+(+)-当(为奇数时,+n nnn1232--533572-11),n1+2n+212T=-1-=-所以.n nn1+21+2.n2?n?-,为偶数n1+2?T.=所以n n2+2?n?为奇数-,n1+2222nSnnanSSn0. -的前(项和)满足:+-(+=-)6.(2019·银川质检正项数列{1)}nnnn aa (1)求数列{;} 的通项公式nn n+15*bbnTnT<,都有的前∈项和为(2)令N=. ,数列{,证明:对于任意的}nnnn22na64)+2(n222nnSnnS +(,+)-1)=-(解:(1)由0-nn2SSnn0.+得[-(1)+=)](nn2nnSSa. >0,{+}是正项数列,所以=由于数列nnn naS于是=≥2=2,当时,1122nnSnnnaS.=2(--=1)-1)=-(+-nnn1-aan. =}的通项公式综上可知,数列{2nn n+1ban证明:由于2==,,(2)nn22an)(2+n n1111+????b-. ==则??nn)+(2164)(2+1111111??T--+…++1-+-=n2222nn?)(133524-16111111????-+1+--=n222222n??)12()+1+(()+2161151??????+1<. =22222nnnn???22+()641622n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.nn2+1+2-21n
B.nn2+1+1-21n
C.n2+2n+4-2n1-1
D.n2-2n+4-2n1-1
解析:先把数列的前 n 项和分解成等差数列和等 比数列的前 n 项和,进而根据等差数列和等比数列的 求和公式求出答案.
4. 若 Sn=1-2+3-4+…+(-1)n-1·n,则 S50=
(1)请写出数列{an}的前 n 项和 Sn 的公式,并推导其公式; (2)若 an=n,数列{an}的前 n 项和为 Sn,求S11+S12+…+S1n 的和.
【解答过程】(1)Sn=na1+2 an或 Sn=na1+nn-2 1d. 证明:设等差数列{an}的公差为 d, 因为 Sn=a1+a2+…+an, 所以 Sn=a1+(a1+d)+(a1+2d)+…+[a1+(n-1)d],① Sn=an+(an-d)+(an-2d)+…+[an-(n-1)d],② 由①+②得:2Sn=n(a1+an). 所以 Sn=na1+2 an.
(3)分 n=2k 和 n=2k+1 两类写出 d1+d2+…+dn,然 后利用分组求和.
【解答过程】 (1)因为{an}、{bn}是等差数列, 由b4+a3b6+b2+a7 b8=25,知ab34++ab76=25, 即ab11+ +ab99=25, 所以TS99=ab11+ +22 ab99× ×99=ab11+ +ab99=25, 所以A2××99++71=25,解得 A=1.
第4讲 数列求和
1. 等差数列{an}的通项公式为 an=2n+1,其前 n 项和为
Sn,则数列{Snn}的前 10 项的和为( C )
A.120
B.70
C.75
D.100
解析:因为Snn=n+2,所以{Snn}的前 10 项和为 10×3+ 102×9=75.
ห้องสมุดไป่ตู้
2. 设数列 1,(1+2),…,(1+2+…+2n-1),…的前 n
一 分组求和及并项法求和
【例 1】设等差数列{an},{bn}前 n 项和 Sn,Tn 满足TSnn= A2nn++71,且b4+a3b6+b2+a7b8=25,S2=6;函数 g(x)=12(x-1),且 cn=g(cn-1)(n∈N,n>1),c1=1.
(1)求 A; (2)求数列{an}及{cn}的通项公式; (3)若 dn=acnnnn为为偶奇数数 ,试求 d1+d2+…+dn.
(2)令 Sn=kn(n+1), 因为 S2=6,得 k=1,即 Sn=n2+n, 当 n=1 时,a1=S1=2, 当 n≥2 时,an=Sn-Sn-1=2n. 综合可得 an=2n(n∈N*). 又由(1)有,cn=12(cn-1-1),即 cn+1=12(cn-1+1), 所以{cn+1}是以 2 为首项,以12为公比的等比数列, 所以 cn+1=2·(12)n-1,即 cn=(12)n-2-1.
.
解析:S50=1-2+3-4+…+49-50 =(-1)×25 =-25.
5. 数列 0.5,0.55,0.555,0.5555,…的前 n 项和为________.
解析:先表示出数列 0.5,0.55,0.555,0.5555,…的通项公式 an =59(1-10-n),然后再根据等比数列前 n 项和公式计算.
所以 d1+d2+…+dn= n2+2n+2+43[1-12n-1] n为正奇数 n2-2 n+34[1-12n] n为正偶数
【温馨提示】奇数项和偶数项分别构成等差数列或者 等比数列的,可以分项数为奇数和偶数时使用等差数列或 等比数列的求和公式.
【跟踪训练 1】(2014·北京)已知{an}是等差数列,满足 a1 =3,a4=12,数列{bn}满足 b1=4,b4=20,且{bn-an}为等 比数列.
(2)由(1)知 bn=3n+2n-1(n=1,2,…). 数列{3n}的前 n 项和为32n(n+1),数列{2n-1}的前 n 项和 为11--22n=2n-1. 所以,数列{bn}的前 n 项和为32n(n+1)+2n-1.
二 裂项相消法求和
【例 2】(2014·广东茂名一模)已知等差数列{an}的前 n 项 和为 Sn.
项和为 Sn,则 Sn 等于( D )
A.2n
B.2n-n
C.2n+1-n
D.2n+1-n-2
解析:依题意可知数列的每一项是由等比数列的和构成 的,设为 Tn,则 Tn=22n--11=2n-1,所以数列是由等比数列 和等差数列构成的,则 Sn=222-n-11-n=2n+1-n-2.
3. 数列 2,212,314,418,…,n+2n1-1,…的前 n 项和为( C )
(3)当 n=2k+1 时, d1+d2+…+dn =(a1+a3+…+an)+(c2+c4+…+cn-1) =(2+6+…+2n)+[1+(12)2+…+(12)n-3-n-2 1] =n+2 12+43[1-(12)n-1]-n-2 1 =n2+2n+2+43[1-(12)n-1].
当 n=2k 时, d1+d2+…+dn =(a1+a3+…+an-1)+(c2+c4+…+cn) =[2+6+…+2(n-1)]+[1+(12)2+…+(12)n-2-n2] =n22+43[1-(12)n]-n2 =n2-2 n+43[1-(12)n].
(1)求数列{an}和{bn}的通项公式; (2)求数列{bn}的前 n 项和.
解析:(1)设等差数列{an}的公差为 d,由题意得 d=a4-3 a1=12- 3 3=3, 所以 an=a1+(n-1)d=3n(n=1,2,…). 设等比数列{bn-an}的公比为 q,由题意得 q3=bb41--aa41=240--132=8,解得 q=2. 所以 bn-an=(b1-a1)qn-1=2n-1. 从而 bn=3n+2n-1(n=1,2,…).
【思路点拨】 (1)利用等差中项的概念,进行转化, 再结合TSnn=A2nn++71,可求出 A 的值;
由(1)求的 A,可令 Sn=kn(n+1),由 S2=6 求出 k,则 Sn 可求,分 n=1 和 n≥2 求得 an.把给出的 cn=g(cn-1)变形, 得到数列{cn+1}是12为公比,以 c1+1=2 为首项的等比数 列,由等比数列的通项公式求出 cn+1,从而得到 cn;
相关文档
最新文档