电控发动机空燃比反馈控制 氧传感器

合集下载

简述空燃比反馈控制的条件

简述空燃比反馈控制的条件

简述空燃比反馈控制的条件空燃比反馈控制是指通过对发动机进气量、进气温度、进气压力、进气湿度、点火提前角等参数的实时监测和控制,使空气与燃油的比例保持在最佳范围内,从而提高发动机的效率和环保性。

进行空燃比反馈控制需要满足以下条件。

第一步,需要有可靠的空燃比检测技术。

目前,常见的空燃比检测技术有广谱氧传感器、氧离子传感器和宽带氧传感器等。

这些传感器可以测量排气中氧气的含量,并根据氧气含量的变化判断出当前的空燃比情况。

第二步,需要有可靠的空燃比控制技术。

空燃比控制系统通常由电脑、传感器、执行器等组成。

电脑负责监测空燃比传感器的反馈信号,并根据反馈信号调整发动机的进气量、进气温度、进气压力等参数,从而控制空燃比在最优化范围内。

执行器则负责执行电脑发出的指令,调整发动机的进气量、进气温度、进气压力等参数。

第三步,需要有适当的控制策略。

空燃比控制系统的控制策略包括基于负载的控制策略和基于速度的控制策略。

基于负载的控制策略是根据发动机负载的大小来控制空燃比的,适用于发动机负载较为稳定的情况,例如在匀速行驶时。

基于速度的控制策略则是根据发动机转速来控制空燃比的,适用于需要频繁变速的情况,例如加速、减速等。

第四步,需要有足够的计算能力和数据储存空间。

空燃比反馈控制系统需要进行实时监测和控制,涉及大量的数据计算和存储,因此需要有足够的计算能力和数据储存空间来支持系统的正常运行。

综上所述,空燃比反馈控制需要满足可靠的空燃比检测技术、可靠的空燃比控制技术、适当的控制策略以及足够的计算能力和数据储存空间等条件。

只有在这些条件的支持下,才能实现对发动机空燃比的实时监测和调整,从而提高发动机的效率和环保性。

带氧传感器反馈控制原理

带氧传感器反馈控制原理

带氧传感器反馈控制原理一、引言随着汽车工业的发展,越来越多的汽车采用了电控系统来控制发动机的运转。

其中,带氧传感器反馈控制系统是发动机电控系统中最为重要的一个部分。

本文将详细介绍带氧传感器反馈控制原理。

二、带氧传感器概述带氧传感器又称为氧气传感器,是一种能够测量排放废气中氧含量的传感器。

在现代汽车发动机中,带氧传感器被广泛应用于燃油喷射系统中,以保证发动机能够在最佳燃烧状态下运行。

三、带氧传感器工作原理带氧传感器主要由两个部分组成:加热元件和测量元件。

1. 加热元件加热元件通常由陶瓷材料制成,其作用是将带氧传感器加热至一定温度(通常为 600-800℃),以保证其正常工作。

在启动发动机时,电子控制单元会向加热元件提供电流,使其迅速升温。

2. 测量元件测量元件通常由氧离子导体材料制成,其作用是测量排放废气中的氧含量。

当排放废气中的氧含量发生变化时,测量元件会产生相应的电信号,并将其传递给电子控制单元。

四、带氧传感器反馈控制原理带氧传感器反馈控制系统是一种通过测量排放废气中的氧含量来调节燃油喷射量的控制系统。

其基本原理如下:1. 检测空燃比在正常工作状态下,带氧传感器会不断地监测排放废气中的氧含量,并将其转换为电信号发送给电子控制单元。

根据这些信号,电子控制单元可以计算出当前发动机的空燃比(即空气与燃料的比例)。

2. 调节燃油喷射量一旦检测到空燃比偏离最佳值,电子控制单元就会向喷油嘴发送指令,调节燃油喷射量以达到最佳空燃比。

这种调节过程是连续不断地进行的,以保证发动机始终处于最佳燃烧状态。

3. 燃油喷射量反馈在调节燃油喷射量的过程中,电子控制单元还会不断地监测带氧传感器的信号,以确保调节后的燃油喷射量能够使空燃比达到最佳值。

如果发现调节后的空燃比仍然偏离最佳值,电子控制单元将会再次发送指令进行调节。

五、总结带氧传感器反馈控制系统是现代汽车电控系统中最为重要的一个部分。

通过测量排放废气中的氧含量来调节燃油喷射量,可以使发动机始终处于最佳燃烧状态,从而提高燃油利用率、降低排放污染物。

电控发动机空燃比反馈控制_____氧传感器

电控发动机空燃比反馈控制_____氧传感器
器信号的波动。
判断催化效率:前后两个波形十分接近,MIL灯点亮,说明三元催 化器已失效。
催化器 不正常
控制探测器
监视器探测器
空燃比反馈控制(λ)
下列情况空燃比实行开环控制
• 起动工况,需要浓混合气,以便发动机起动。 • 暖机工况,需要发动机迅速升温。 • 大负荷工况,需要加浓混合气,以便发动机输出最大功率。 • 加速工况,需要发动机输出最大扭矩,以便提高汽车速度。 • 减速工况,需要停止喷油,使发动机转速迅速降低。 • 氧传感器信号失效,ECU将自动进入开环控制状态。 • 此外,氧传感器的温度300℃以下时,反馈控制也不会
热而丧失活性(有最近资料介绍提
高陶瓷载体的耐高温性,可以达到
1200℃能有效工作)
0 0 100 200 300 400 500 600 700 温度 [°C]
(2)转换效率与混合气浓度的关系
为什么混合气浓度 要在理论空燃比附 近才能被同时净化, 且转化效率最高?
NOX在转化器中还原时需要H2、CO和 HC等作为还原剂,混合气过稀时,这 些还原剂首先与氧反应,所以NOX的 还原反应不能进行。而当混合气过浓 时, CO和HC则不能被充分氧化。
2)背压试验 在催化转化器前端排气管的适当位置上打一个孔,接出一个压
力表,启动发动机,在怠速和2500r/min时,分别测量排气背压, 如果排气背压不超过发动机所规定的限值,则表明催化剂载体没有 被阻塞。
如果排气背压超过发动机所规定的限值,则需将催化转化器后端 的排气系统拆掉,重复以上的试验,如果催化转化器阻塞,排气 背压仍将超过发动机所规定的限值。如果排气背压下降,则说明 消声器或催化转化器下游的排气系统出现问题,破碎的催化剂载 体滞留在下游的排气系统中,所以首先进行外观检查确认催化剂 载体完整是非常必要的。对有问题的排气管、消声器和催化转化 器也可通过测量其前后的压力损失来判断。

一、氧传感器简介

一、氧传感器简介

一、氧传感器简介1. 氧传感器燃油反馈控制系统氧传感器是燃油反馈控制系统的重要部件,用汽车示波器观察到的氧传感器的信号电压波形能够反映出发动机的机械部分、燃油供给系统以及发动机电脑控制系统的运行情况,并且,所有汽车的氧传感器信号电压的基本波形都是一样的,利用波形进行故障判断的方法也相似。

2. 氧传感器与三元催化器发动机电脑利用氧传感器的输出信号来控制混合气的空燃比,即令空燃比总是在理论空燃比14.7的上下波动。

这不仅是发动机进行安全燃烧的要求,也是三元催化器中两种主要化学反应(氧化和还原)的需要。

要想优化氧化过程,就必须有足够的氧,也就是三元催化器需要稍稀的混合气;而为了优化还原过程,氧气量又必须少,为此,三元催化器又需要稍浓的混合气。

但混合气不可能同时既是浓的又是稀的,所以,汽车工程师在设计燃油反馈控制系统时将混合气设计成从稍浓至稍稀,再从稍稀至稍浓这样的循环变化,使碳氢化合物(HC)和一氧化碳(CO)氧化反应过程的需要和氮氧化合物(NOx)还原反应过程的需要都能得到满足。

由此可知,为了使燃油反馈控制系统正常工作,氧传感器输出的信号电压必须能够高、低变化。

发动机工作时,发动机电脑根据各种传感器(例如:空气流量计、进气压力传感器、节气门位置传感器等)的输入信号来计算混合气的空燃比并控制喷油器喷油,使空燃比十分接近14.7。

随后,发动机电脑又根据氧传感器的信号发出加浓或减稀的命令,这就使三元催化器的效率大大提高,同时又延长了它的使用寿命。

好的氧传感器是非常灵敏的,但其信号也极易受干扰。

若发动机有故障,氧传感器的输出信号一定会有反应。

所以,当氧传感器的信号电压波形正常时就可以断定整个发动机控制系统的工作是正常的或对发动机的修理是成功的。

在汽车示波器上进行氧传感器信号电压波形分析,通常称为氧反馈平衡测试(Oxygen Sensor Feedback Balance),简称O2FB。

二、氧传感器波形分析1. 基本概念:a.上流动系统(Upstream System)上流动系统是指位于氧传感器前的,包括传感器、执行器、发动机电脑的发动机各系统(包括辅助系统),即在氧传感器之前的影响尾气的所有机械部件和电子部件。

氧传感器与空燃比传感器

氧传感器与空燃比传感器

图2.56 氧传感器的安装位置
1—氧传感器(左前) 2—进气管 3—氧传感器(右前) 4—三元催化转化器 5—氧传感器(后) 6—排气管 7—预热式三元催化转换器
氧传感器通常和安装在排气管中段 的三元催化反应器一同使用,以保证混 合气的空燃比处于接近理论空燃比的一 个窄小范围内,从而使三元催化反应器 能充分发挥其净化作用。
氧传感器和空燃比传感器
氧传感器和空燃比传感器都安装在发动 机的排气管上,与排气管中的废气接触,用 来检测排气中氧气分子的浓度,并将其转换 成电压信号。
ECM根据这一信号对喷油量进行调整, 以实现对可燃混合气浓度的精确控制,改善 发动机的燃烧过程,达到即降低排放污染, 又减少燃油消耗的目的。 只能在理论空燃比附近工作的传感器称 为氧传感器,可以在整个稀薄燃烧区范围内 工作的传感器称为空燃比传感器。
(2)测量氧传感器反馈电压。检测方法如下。 ① 将发动机热车至正常工作温度(或起动后 以2 500r/min的转速连续运转2min)。 ② 用电压表的负极测笔接氧传感器线束插头 上的引出线。
③ 让发动机以2 500r/min的转速保持运转, 同时检查电压表的指示值能否在0~1V来回 变动,记下10s内电压变动的次数。在正常 情况下,随着反馈控制的进行,氧传感器的 反馈电压将在0.45V附近不断变化,10s内反 馈电压的变化次数应不少于8次。
1 、 氧传感器的结构与工作原理
氧传感器可以安装在发动机的排气管上 (见图2.56),位于三元催化转化器的前面 或后面。 安装在三元催化转化器前面的氧传感器 的作用是通过检测废气中氧分子的浓度,让 ECM获得可燃混合气浓度的反馈信号,据此 对喷油量的控制进行修正,使混合气的空燃 比更接近于理论空燃比。
图2.57 氧传感器的结构

元催化、氧传感器、空燃比反馈控制

元催化、氧传感器、空燃比反馈控制
氧化锆式氧传感器 结构:
工作原理:
当温度较高时,若陶瓷体内(大气)与陶瓷体外(废气)两侧含氧量不同时,氧气发生电离产生氧离子,氧离子从大气侧向废气侧扩散,在锆管两铂电极间产生电压。
氧化钛式氧传感器
组成:二氧化钛元件、导线、金属外壳和接线端子等。 原理: 废气中的氧浓度高时,二氧化钛的电阻值增大; 废气中氧浓度较低时二氧化钛的电阻值减小。
TWC影片
影响TWC转换效率的因素
氧传感器 Oxygen Sensor (O2S)
【功用】检测排气中的氧浓度,向ECU输送空燃比信号。 【分类】氧化锆(ZrO2)式和氧化钛(TiO2)式两种。 【别名】λ传感器
氧化锆式氧传感器
氧传感器FLASH动画
PART 01
点击此处添加正文,文字是您思想的提炼。
二氧化钛元件
金属外壳
陶瓷绝缘体
接线端子
陶瓷元件
导线
金属保护套
氧传感器电路
两个热型氧传感器 两个普通型氧传感器 氧传感器外部接线: 单线:信号线、外壳接地 双线:信号线、接地线 三线:电源、加热、信号(外壳接地) 四线:电源、加热、信号、接地
丰田LS400轿车氧传感器控制电路
EFI系统的闭环控制过程
在带氧传感器的EFI系统中,并不是所有工况都进行闭环控制。在起动、怠速、暖机、加速、全负荷、加速断油等工况下,发动机不可能以理论空燃比工作,此时仍采用开环控制方式。
改变短
改变长
喷油器
加长
缩短
判定为空燃比稀
判定为空燃比浓
ECU

稀电动势大Βιβλιοθήκη 电动势小氧浓度增加
氧浓度减少
O2S
发动机
进气
排气
压缩

丰田发动机空燃比传感器工作解析

丰田发动机空燃比传感器工作解析

丰田发动机空燃比传感器工作解析随着人们环保意识的提高,对汽车尾气净化的要求越来越高,对尾气排放控制标准也越来越严格。

氧传感器作为发动机电控系统的主要排放控制部件之一,主要是配合三元催化转换器(TWC)在正常的运转工况时进行有效的尾气排放控制,以降低汽车尾气排放。

传统的两状态型氧传感器在进行燃油反馈控制时,只能识别和判断混合气的浓与稀状态,不能精确判断空燃比大小,故其反馈范围狭窄且变化不稳定。

而如今为了达到更好的燃油控制效果和降低排放,需要进行非理论空燃比的闭环燃油控制,ECM 必须能够瞬间判断当前工况与实际空燃比的大小,以进行快速的燃油反馈调节,故需要使用一种反应非常灵敏并且检测精度高、能连续检测空燃比大小的新型氧传感器。

专家们把该传感器叫空燃比传感器或宽带型、线性型、稀式氧传感器。

1 空燃比传感器工作解析目前丰田 PREVIA、CAMRY 等新车型都采用线性型空燃比传感器,如图 1 所示。

根据其测量的实际空燃比数值大小,ECM 能及时调整实际空燃比,并控制在理论空燃比(14.7:1)位置,且调整速度极快,很大程度上降低了车辆在冷启动、加速、减速等工况下的废气排放。

空燃比传感器的结构如图2 所示。

传感器最基本的部分是ZrO2 固态电解质,其夹在两个铂电极之间,同传统型氧传感器差不多,主要区别于保护罩的部位,空燃比传感器的传感元件多了一个特殊设计的用于限制空气扩散的扩散阻力层和一个封闭的空气腔。

从图 3 可以看出,传统氧传感器空气腔是直通外界大气的。

空燃比传感器是根据氧气泵原理来工作的,ECM 通过内部的一个稳压电路,在空燃比传感器空气腔侧铂电极和尾气侧铂电极分别施加一个 3.3 V 和一个 3.0 V 的固定电压,如图 4 所示。

当废气中 O2 浓度变化时,空燃比传感器从空气腔泵出或泵入O2,产生一个大小、方向不同的泵送电流输入到 ECM 内部的检测电路,产生与废气中 O2 含量相应的电压值。

当λ<1,即浓混合气时,废气中的 O2 很少,HC、CO 未燃烧干净。

空燃比反馈控制系统(OS)资料

空燃比反馈控制系统(OS)资料

5、学习空燃比控制
(1)学习空燃比变 化,不断修正调节空燃比,微调喷油量,进一步 提高空燃比的控制精度。
(2)学习空燃比控制修正范围
一般闭环控制空燃比修正系数为0.80-1.20或1.251.75,在故障诊断仪里显示为±20%或±25%。如果 修正值超出修正范围时,不再修正调节。
(1)喷油器漏油造成混合气过浓。 (2)喷油器堵塞造成混合气过稀。 (3)点火系统缺火或火花塞能量不足造成混合气 (HC和新鲜空气)直接进入三元催化器燃烧,使 得发动机动力性、经济性、排放性下降。 (4)气门正时不对,造成混合气直接进入三元催 化器燃烧。 (5)空气流量计后漏气造成NO2过多。 (6)空气流量计故障造成进气量计量不准。 (7)进气温度传感器或水温传感器故障。 (8)燃油压力调节器失效。
ZrO2陶瓷对氧离子浓度特别敏感,在内外有氧离 子浓度差时,氧离子由高浓度向低浓度扩散时形 成电池。
2、氧化锆式氧传感器的结构
主要由锆管、电极、保护管等组成。
3、氧化锆式氧传感器的工作原理
氧化锆式氧传感器工作原理图
工作原理:
发动机的排气气流从锆管表面的陶瓷层渗入,与 负极接触,内部的正极与大气接触。温度较高时, O2发生电离形成氧离子。若陶瓷层内(大气)、 外(废气)侧氧离子存在浓度差时,使得陶瓷体 内侧(正极)的氧离子向外侧(负极)扩散,锆 管元件形成了一个微电池,扩散的结果造成锆管 正、负极间产生电势差。 浓度差越大,电势差越大。
注意点
通过安装在排气管上的氧传感器送来的 反馈信号,对理论空燃比进行反馈控制。
3、氧传感器对喷油量的控制与修正
(1)前氧传感器对空燃比进行反馈控制。 (2)后氧传感器用于检测三元催化转换器的催化 效率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5、催化转换器的老化 1)过热老化:温度过高,表面活性层烧结、晶体变大、表面缩 小,导致活性丧失。 2)化学毒化:燃油和机油中的一些元素(铅、磷、锰、硫,特 别是铅)和催化器中的活性材料发生反应,造成活性下降,或上 述元素覆盖在活性层表面(称为机械中毒)。 3)自然老化:使用时间的增长,也会丧 失活性,转换效率下降。
3)真空试验 将真空表接到进气歧管,
启动发动机,使其从怠速逐 渐升至2500r/min,观察真空 表的变化,如果这时真空度 下降,则保持发动机转速 2500r/min不变,且此后真空 度读数明显下降,则说明催 化转化器有阻塞。
4、加热法
启动发动机,预热至正常工作温度,将发动机转速维持在2500r/min左右, 将车辆举升,用数字式温度计(接触式或非接触式红外线激光温度计)测量催 化转化器进口和出口的温度,需尽量靠近催化转化器(50mm内)。
4、三元催化转换器转换性能 1)评价指标:转换效率
2)影响三元催化转换器转换效率的因素
(1)转换效率与温度的关系:
三元催化转换器的起燃温度一般为 100
250~270℃左右。 最佳工作温度通常为350℃~800 ℃ 。
转化率 [%]
Light-off-point
5
当温度超过950℃催化转换器会过 0
正常工作的催化转化器,其出口的温度高于进口温度 20~25%。
如果车辆在主催化转化器之前还安装了副 催化转化器,主催化转化器出口温度应高 于进口温度15~20%,如果出口温度值 低于以上的范围,则催化转化器工作不正 常,需更换;
如果出口温度值超过以上范围,则说明 废气中含有异常高浓度的CO和HC,需 对发动机本身做进一步的检查。
道实际面积增大7000倍。中间层内含
有活性促进剂。
贵金属层
中间层:一是增大活性表面,提高 氧化和还原反应能力;二是提高催 化器的储氧能力。(影响催化效率)
Pt
储氧目的:避免空燃比控制过程中,
“λ”波动时所带来转换效率下降趋
Pd
势。
陶瓷层
贵金属 薄膜 Pt
Pd
Rh
Rh 高温
焊接点
中间层 (Wash Coat)
报废的三元催化转换器
注意:一定要使用无铅汽油及加注符 合规定的机油。
6、三元催化转换器检测
1)外观检查 检查催化转化器在行驶中是否受到损伤以
及是否过热。
将车辆升起之后,观察催化转化器表面是否有凹 陷,如有明显的凹痕和刮擦,则说明催化转化器 的载体可能受到损伤。
观察催化转化器外壳上是否有严重的褪色斑点或 略有成青色和紫色的痕迹,
(3)载体:承载催化活性层。
整体式载体:陶瓷载体(应用广泛)
陶瓷载体结构:蜂窝状,有成千上万个通道(60/cm),蜂窝 状提供巨大的催化表面。
陶瓷载体特点:易加工、成本低,可以烧结 成圆柱形、椭圆形或多边形截面。
(4)催化活性层),具 有多孔性且极其疏松,表面粗糙使通 陶瓷层
空燃比反馈控制与氧传感器
提出问题(考查学生知识储备) 1、什么是空燃比?空燃比与空气过量系数是否同一个概念?
2、混合气过浓、过稀对发动机有哪些影响? 3、你知道发动机不同工况对混合气浓度的要求? 4、ECU判断混合气浓稀程度的依据是什么?
动动脑
好大的烟 雾哟!
HC、CO、NO
三元催化转换器
1、功能:
对排气中CO、HC和NO这 三种有害物质进行净化处理。 2、构造:
金属外壳、隔热减振衬垫、载 体、涂在载体上催化活性层。
(1)壳体
安装位置:在排气消声器前。
壳体一般由不锈钢制成,以防因氧化皮脱落而造成催化剂的堵塞。
(2)减震层
减震层一般由膨胀挚片和钢丝网两种,起到减震、缓解热应力、 保温和密封的作用。
活性层表面上涂覆一层主要有贵金属Pt、Ph催化活性物质。 Pt 加速HC、CO氧化, Ph 加速NO还原,可用Pd替代Pt(昂贵)。
3、三元催化转换器转换原理
氧化
+
氧化
减低
+
小知识:铂和钯是氧化催化剂, 当HC和CO与布满铂、钯的热表 面接触时,HC和CO就会分别与 氧气化合成水和二氧化碳。铑 是还原催化剂,当NOX与灼热的 铑接触时,NOX就会脱去氧,还 原为N。
在催化转化器防护罩的中央是否有非常明显的暗灰斑点,如有则说明催化转化器 曾处于过热状态,需做进一步的检查。
用拳头敲击并晃动催化转化器,如果听到有物体移动的声音,则说明其内部催化 剂载体破碎,需要更换催化转化器。同时要检查催化转化器是否有裂纹,各连接 是否牢固,各类导管是否有泄漏,如有则应及时加以处理。
空燃比反馈控制
控制目标:理论空燃 比(14.7:1)附近
信号反馈:氧传感器
空燃比反馈控制
二个氧传感器 前(主)氧传感器作用:空燃比控制的反馈信号。 后(副)氧传感器作用:将信号输入给ECU测试催化净化的效率。
判断催化效率:后氧传感器 信号比前氧信号平缓, MIL灯 催化器正常 不亮,说明正常。
因为催化剂转换碳氢化 合物和一氧化碳时消耗 了氧,减少了后氧传感
2)背压试验 在催化转化器前端排气管的适当位置上打一个孔,接出一个压
力表,启动发动机,在怠速和2500r/min时,分别测量排气背压, 如果排气背压不超过发动机所规定的限值,则表明催化剂载体没有 被阻塞。
如果排气背压超过发动机所规定的限值,则需将催化转化器后端 的排气系统拆掉,重复以上的试验,如果催化转化器阻塞,排气 背压仍将超过发动机所规定的限值。如果排气背压下降,则说明 消声器或催化转化器下游的排气系统出现问题,破碎的催化剂载 体滞留在下游的排气系统中,所以首先进行外观检查确认催化剂 载体完整是非常必要的。对有问题的排气管、消声器和催化转化 器也可通过测量其前后的压力损失来判断。
热而丧失活性(有最近资料介绍提
高陶瓷载体的耐高温性,可以达到
1200℃能有效工作)
0 0 100 200 300 400 500 600 700 温度 [°C]
(2)转换效率与混合气浓度的关系
为什么混合气浓度 要在理论空燃比附 近才能被同时净化, 且转化效率最高?
NOX在转化器中还原时需要H2、CO和 HC等作为还原剂,混合气过稀时,这 些还原剂首先与氧反应,所以NOX的 还原反应不能进行。而当混合气过浓 时, CO和HC则不能被充分氧化。
相关文档
最新文档