分式知识点回顾及考点透视

合集下载

人教版八年级数学上册《分式》知识点复习及典例解析

人教版八年级数学上册《分式》知识点复习及典例解析

人教版八年级数学上册《分式》知识点复习及典例解析《分式》知识点复习及典例解析一、复习目标1.理解并记住分式的乘法法则、除法法则,会进行简单的分式乘除法计算.能解决一些与分式的乘除运算有关的简单的实际问题.2.了解同分母分式的加减法法则,会进行同分母分式的加减运算,理解通分的意义,会通过通分把异分母的分式加减转化为同分母的分式加减.3.能熟练地进行分式的加减乘除混合运算,提高类比的能力和代数化归的能力.4.了解分式方程的概念,掌握解一元一次方程的分式方程的方法,了解产生增根的原因,会检捡一个数是不是分式方程的增根.5.能够列出可化为一元一次方程的分式方程解简单实际问题.二、重点难点重点:分式乘除法、加减法法则的应用. 分式方程的概念,分式方程的解法难点:异分母分式加减法. 解分式方程时,去分母可能会出现增根。

三、知识概要1. 分式的乘除乘法法则:分式乘分式时,分子的积作积的分子,分母的积作积的分母. 除法法则:分式除以分式,把除式的分子和分母颠倒位置后与被除式相乘. 式子表示:.;bcad c d b a d c b a bd ac d c b a =?=÷=? 2. 分式的加减(1)分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分.(2)法则:同分母分式相加减,分母不变,分子相加减.异分母分式相加减,先通分,变为同分母的分式,再加减.式子表示:;c b a c b c a ±=±.bdbc ad bd bc bd ad d c b a ±=±=± 3.分式方程的概念分式是一种表示具体情境中数量的模型,分式方程则是表示这些数量关系之间相等关系的模型,分式方程是分母中含有未知数的方程.4.分式方程的解法分式方程是转化为一元一次方程来求解,它是通过去分母实现转化的.主要步骤:去分母,去括号,移项,合并同类项,系数化为1,检验.因为分式方程可能产生增根,所以解分式方程最后一步“检验”,检查所解整式方程的根到底是不是分式方程的根.5.去分母的技巧解分式方程的基本思路是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.去分母是解分式方程的第一步,也是关键的一步,当分式方程中分式的分母是一次式时,可直接确定最简公分母,方程两边同乘以最简公分母后实现去分母,当各分式的分母中有二次式时,要先进行因式分解,再确定最简公分母,然后再去分母.6.验根的方法因为解分式方程可能出现增根,所以验根是必要的,验根的方法有两种,一种是把求得的未知数的值代入原方程进行检验,这种方法道理简单,而且可以检查解方程时有无计算错误,另一种是把求得的末知数的值代入最简公分母,看分母的值是否为零,这种方法比较简便,但不能检查解方程过程中出现的计算错误.7.列分式方程解决实际问题的方法步骤(1)、审:分析问题,寻找已知、未知及相相等关系,(2)、设:设恰当的未知数(3)、列:根据相等关系列出分式方程(4)、解:求出所列方程的解(5)、验:首先检验所求的解是不是分式方程的解,然后检验所求的解是否与实际符合(6)、答:写出答案.四、典例解析考点一、分式概念的运用例1.若分式||33x x --的值为零,则x 的值等于。

2025年中考数学考点分类专题归纳之分式

2025年中考数学考点分类专题归纳之分式

2025年中考数学考点分类专题归纳分 式要点一、分式的有关概念及性质1.分式一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式,其中A 叫做分子,B 叫做分母. 2.分式的基本性质(M 为不等于0的整式).3.最简分式 分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分. 3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算 a b a b c c c±±= ;同分母的分式相加减,分母不变,把分子相加减. a c ad bc b d bd±±=;异分母的分式相加减,先通分,变为同分母的分式,再加减. (2)乘法运算:a c ac b d bd ⋅=,其中a 、b 、c 、d 是整式,bd ≠0.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算:a c a d ad b d b c bc÷=⋅=,其中a 、b 、c 、d 是整式,bcd ≠0. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算: nn n a a b b ⎛⎫= ⎪⎝⎭分式的乘方,把分子、分母分别乘方。

4.零指数5.负整数指数1p p a a -=(a ≠0,p 为正整数)6.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.1.(2024•武汉)若分式在实数范围内有意义,则实数x 的取值范围是( )A .x >﹣2B .x <﹣2C .x =﹣2D .x ≠﹣22.(2024•温州)若分式的值为0,则x 的值是( )A .2B .0C .﹣2D .﹣53.(2024•葫芦岛)若分式的值为0,则x 的值为( )A .0B .1C .﹣1D .±14.(2024•莱芜)若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是()A .B .C .D .5.(2024•株洲)下列运算正确的是( )A .2a+3b =5abB .(﹣ab )2=a 2bC .a 2•a 4=a 8D .6.(2024•曲靖)下列计算正确的是( )A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2b D.()37.(2024•河北)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.(2024•淄博)化简的结果为()A.B.a﹣1 C.a D.19.(2024•南充)已知3,则代数式的值是()A.B.C.D.10.(2024•内江)已知:,则的值是()A.B.C.3 D.﹣311.(2024•北京)如果a﹣b=2,那么代数式(b)•的值为()A.B.2C.3D.412.(2024•孝感)已知x+y=4,x﹣y,则式子(x﹣y)(x+y)的值是()A.48 B.12C.16 D.12 13.(2024•沙坪坝区)计算:(π﹣3)0﹣()﹣2=___ _.14.(2024•盐城)要使分式有意义,则x的取值范围是_____.15.(2024•湖州)当x=1时,分式的值是_ .16.(2024•沈阳)化简:.17.(2024•大庆)已知,则实数A=__ _.18.(2024•包头)化简:(1)=_ .19.(2024•昆明)若m3,则m2___.20.(2024•永州)化简:(1)_ _.21.(2024•福建)计算:()0﹣1=___.22.(2024•南通)计算:(1)(﹣2)2(﹣3)0﹣()﹣2;(2).23.(2024•湖北)化简:•.24.(2024•百色)已知a2=19,求的值.25.(2024•山西)计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•.26.(2024•徐州)计算:(1)﹣12+20240﹣()﹣1;(2).27.(2024•益阳)化简:(x﹣y)•.28.(2024•陕西)化简:().29.(2024•十堰)化简:30.(2024•南京)计算(m+2).31.(2024•泸州)化简:(1).32.(2024•黑龙江)先化简,再求值:(a),其中a,b=1.33.(2024•重庆)计算:(1)(x+2y)2﹣(x+y)(x﹣y);(2)(a﹣1)34.(2024•万州区)计算(1)(x+2y)(x﹣2y)+4y(x+y)(2)(y﹣1).35.(2024•铁岭)先化简,再求值:(a+2),其中a.36.(2024•辽阳)先化简,再求值:(),其中a=2cos30°+()﹣1﹣(π﹣3)037.(2024•葫芦岛)先化简,再求值:(),其中a=3﹣1+2sin30°.38.(2024秋•沙坪坝区校级月考)先化简,再求值:(a+1),其中a=2(tan45°﹣cos30°)39.(2024•广元)先化简,再求值:(),其中a2.40.(2024•锦州)先化简,再求值:(2),其中x=3.41.(2024•青海)先化简,再求值:(1),其中m=2.42.(2024•毕节市)先化简,再求值:,其中a是方程a2+a﹣6=0的解.。

分式的相关知识点总结

分式的相关知识点总结

分式的相关知识点总结一、分式的定义和性质1. 分式的定义分式是指两个整数或者两个代数式的比值的表示形式.一般为 a/b 的形式,其中 a 和 b 都是整数,b 不等于 0。

2. 分式的性质(1) 分式的分子和分母互质:如果分数 a/b 已经约分为最简分数,那么 a 和 b 一定是互质的,即它们的最大公因数是 1。

(2) 分母为 1 的分数:如果分数的分母为 1,那就是一个整数,可以简单地把它看作一个整数。

(3) 分式的相等:分数 a/b 和 c/d 相等,当且仅当 ad = bc。

两个分式相等时,它们表示的比值是相等的。

二、分式的运算1. 分式的加法和减法(1) 加法和减法的分母变换:对于不同分母的分数,需要将它们的分母变为相同的数,然后再进行加法或减法运算。

(2) 加法和减法的运算规则:对于相同的分母,直接将分子相加或相减,分母保持不变。

2. 分式的乘法和除法(1) 乘法法则:两个分式相乘时,分子与分子相乘,分母与分母相乘,即 (a/b) * (c/d) = (a*c)/(b*d)。

(2) 除法法则:两个分式相除时,分子与分母相乘,分母与分子相乘,即 (a/b) / (c/d) = (a*d)/(b*c)。

三、分式的化简1. 分式的约分分式约分是指将分子与分母的公因数约掉,使其成为最简分式.一般采用求最大公因数的方法进行约分。

2. 分式的通分不同分母的分数,通分是指将它们的分母都变为相同的数,通常采用最小公倍数的方法进行通分。

3. 分式的化简原则(1) 分式中的公因式可以约掉;(2) 同等分母的分式相加或相减时,只需对各分子分别进行加减。

四、分式的应用1. 代数方程中的应用在解代数方程时,常常会遇到分式方程,需要对其进行分式的加减乘除,并化简以便求解。

2. 几何问题中的应用在几何中,常常会涉及到对分式的加减乘除和化简操作,特别是在比例、相似三角形、面积等方面的计算中。

3. 物理问题中的应用在物理中,分式广泛应用于密度、速度、功率等问题的计算中,需要进行分式的加减乘除以及化简操作。

分式知识点总结及复习汇总

分式知识点总结及复习汇总

分式知识点总结及复习汇总一、分式的定义和性质:分式是形如$\frac{a}{b}$的数,其中$a$为分子,$b$为分母,$a$和$b$都为整数且$b \neq 0$。

分式可以表示一个数,也可以表示一个运算过程。

分式可以进行四则运算,包括加减乘除。

分式的相反数:$\frac{a}{b}$的相反数为$-\frac{a}{b}$。

分式的倒数:$\frac{a}{b}$的倒数为$\frac{b}{a}$,其中$a、b$不为零。

分式的化简:将分式化简为最简分式,即分子和分母的最大公约数为1的形式。

二、分式的运算法则:1.加法:两个分式相加,分母相同,分子相加。

2.减法:两个分式相减,分母相同,分子相减。

3.乘法:两个分式相乘,分子相乘,分母相乘。

4.除法:一个分式除以另一个分式,被除数乘以除数的倒数。

三、分式的化简方法:1.求最大公约数:分式的分子和分母同时除以它们的最大公约数。

2.因式分解:将分式的分子和分母进行因式分解,然后约去相同的因式。

四、分式与整式的相互转化:1.分式转化为整式:将分式中的分子除以分母,得到的结果为整数。

2.整式转化为分式:将一个整数写成分子,分母为1的形式。

五、分式的应用:1.比例问题:可以利用分式来表示两个比例的关系。

2.部分与整体的关系:可以用分式表示部分与整体的关系。

3.商业问题:例如打折、利润等问题,可以用分式来表示计算。

4.几何问题:例如面积、体积等问题,可以用分式来表示计算。

六、分式的简化步骤:1.因式分解。

2.分子、分母约去最大公约数。

3.整理化简结果。

七、分式的应用举例:1.甲乙两人分别在一段时间内完成一件工作,甲用时5小时完成,乙用时8小时完成,那么甲乙两人一起完成这件工作需要多少小时?解:甲和乙一起完成工作的效率是每小时$\frac{1}{5}$和$\frac{1}{8}$,所以他们一起完成工作的效率是$\frac{1}{5}+\frac{1}{8}=\frac{13}{40}$。

分式及分式方程知识点总结

分式及分式方程知识点总结

分式及分式方程 聚焦考点☆温习理解一、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子B A 就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n ba b a n n n = ;cb ac b c a ±=± bdbc ad d c b a ±=± 二、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。

2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。

它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

名师点睛☆典例分类考点典例一、分式的值【例1】(2015·黑龙江绥化)若代数式6265x 2-+-x x 的值等于0 ,则x=_________.【点睛】分式6265x 2-+-x x 的值为零则有x 2-5x+6为0分母2x-6不为0,从而即可求出x 的值. 【举一反三】1.要使分式x 1x 2+-有意义,则x 的取值应满足( ) A. x 2≠ B. x 1≠- C. x 2= D. x 1=-2.(2015·湖南常德)若分式211x x -+的值为0,则x = 考点典例二、分式的化简【例2】化简:2x x x 1x 1---=( ) A 、0 B 、1 C 、x D 、1x x -【点睛】观察所给式子,能够发现是同分母的分式减法。

分式知识点总结

分式知识点总结

分 式一、知识总结(一)分式及其性质1、分式(1)定义:一般的,如果a ,b 表示两个整式,并且b 中含有字母,那么式子ba 叫做分式;其中a 叫做分式的分子,b 叫做分式的分母。

(2)有理式:整式和分式统称为有理式。

(3)分式=0⇔分子=0,且分母≠0 (分式有意义,则分母≠0)(4)最简分式:分子和分母没有公因式的分式。

2、分式的性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变即:mb m a m b m a b ÷÷=⋅⋅=a (a ,b ,m 都是整式,且0m ≠) 分式的性质是分式化简和运算的依据。

3、约分:把一个式子的分子分母的公因式约去叫做约分。

注:约分的结果应为最简分式或整式。

约分的方法:1)若分子、分母均为单项式:先找分子、分母系数的最大公约数, 再找相同字母最低次幂;2)若分子、分母有多项式:先把多项式因式分解,再找分子、分母的公因式。

(二)分式运算1、分式的乘除1)分式乘法法则:两分式相乘,用分子的积做分子,分母的积做分母;即:bdac d c b =⨯a 2)分式除法法则:两分式相除,将除式的分子、分母颠倒位置后,与被除式相乘;即:bcad c d b a d c b =⨯=÷a3)分式乘方法则:分式的乘方就是分子分母分别乘方。

即:n n n b a b =⎪⎭⎫ ⎝⎛a ,()n n ab b 1a -=⎪⎭⎫ ⎝⎛ 2、分式的加减1)同分母分式加减:分母不变分子相加减;即:bc a b c b ±=±a ()0b ≠ 2)异分母分式加减:先通分,变为同分母的分式相加减,即:bdbc ad bd bc bd ad d c b ±=±=±a ()0b ≠d(三)分式方程1、定义:分母中含有未知数的方程叫做分式方程。

2、解法:1)基本思路:分式方程−−→−转化整式方程 2)转化方法:方程两边都乘以各个分式最简公分母,约去分母。

中考数学复习指导:分式中考常见考点透视

中考数学复习指导:分式中考常见考点透视

所以当 m = −10 或 m = −4 时,原分式方程会产生增根。 考点七:列分式方程解应用题 列分式方程解应用题与列一元一次方程解应用题类似,解题的关键是,认真审题,找 出题中的等量关系。 列分式方程解应用题时必须验根, 一是检验求出的根是不是原分式方程 的 根;二是检验求出的根是否符合实际问题。 例 7 为了营造出“城在林中,道在绿中,房在园中,人在景中”的城市景象,市园林局 计划在一定时间内完成 100 万亩绿化任务。 现为配合东部城区打开发的需要, 市政俯在调研 后将原定计划调整为:绿化面积在原计划的基础上增加 20%,并需提前 1 年完成,园林局 经测算知,要完成新的计划,平均每年的绿化面积必须比原计划平均每年多 10 万亩,求原 计划平均每年的绿化面积。 解:设原计划平均每年完成绿化面积 x 万亩,根据题意得
分式中考常见 分式中考常见考点透视 中考常见考点透视
分式是初中数学的重要基础,也是中考的必考内容。牢固掌握分式的基础知识,了解 分式在考试中的考点,掌握常见题型的解答技巧,联系生活实际,提高运用分式知识分析问 题,解决问题的能力,是学好这部分知识的关键。下面对分式考点进行透视,供同学们复习 参考。 考点一:判断分式有意义、无 意义、分式的值为零的条件 分式的分母是一个含有字母的式子, 分母的值随着式子中字母取值不同而变化, 字母 所取的值很可能使分母的值为零, 这时分式就无意义了, 所以分式有意义的条件是分母不等 于零;分式的值为零的条件是分子为零并且分母不等于零。 例 1 使分式
[ 来源:Z.xx. k. Com]
解:方程两边都乘以 ( x + 1)( x − + 1) = m, x = −
m+7 3
当 x = 1 或 x = −1 时,此方程有增根, 当−

分式主要知识点总结

分式主要知识点总结

分式主要知识点总结一、分式的定义分式是指一个整体被分成若干个相等的部分,其中的一部分就是分式。

分式通常写成a/b的形式,其中a为分子,b 为分母,b≠0,a和b都是整数。

例如,1/2 就是一个分式,表示整体被分成两个相等的部分,其中一个部分为1。

分式中的a和b都是有一定的含义,a表示被分的份数,b表示整体被分成的份数。

二、分式的化简对于分式a/b,如果a和b有公因数,那么可以对分式进行约分。

化简分式的目的是为了使得分式变得更简单,更易于处理。

例如,对于分式6/8,可以约分得到3/4。

当然,有时候还需要对分式进行扩分。

化简分式的过程就是一个约分和扩分的过程。

三、分式的加减乘除1. 分式的加减:对于分式a/b和c/d,要将它们相加或相减,需要找到它们的公共分母,并且将它们的分子进行操作。

具体来说,如果a/b和c/d的分母不同,就需要找到它们的最小公倍数,然后将分子分别乘以对方的分母,再进行操作。

例如,对于分式1/2 + 1/3,找到它们的最小公倍数为6,然后乘上对方的分母,得到3/6 + 2/6 = 5/6。

2. 分式的乘法:对于分式a/b和c/d,它们的乘积可以直接相乘得到ac/bd。

3. 分式的除法:对于分式a/b和c/d,它们的除法可以变成乘法,即a/b ÷ c/d = a/b × d/c。

四、分式方程的求解分式方程是指方程中含有分式的方程。

它的解法与一般方程类似,但是需要更多的化简和约分操作。

对于一些特殊的分式方程,有时候需要进行分式更相等的变形,或者加减乘除操作。

例如,对于分式方程1/(x+1) = 1/(x-1),可以将等式两边同时乘以(x+1)(x-1),并观察出一元二次方程的形式,再进行解方程的操作。

五、分式在实际问题中的应用分式在实际问题中有着广泛的应用。

它可以用来表示比率关系、部分到整体的比例关系,例如表示打折时的折扣率、比赛中的获胜概率等。

分式也可以用来表示关系式、方程式,例如用来表示质量分数、比热容、密度等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式知识点回顾及考点透视
一、知识总览
分式的概念,分式的基本性质,分式的约分、通分,分式的运算(包括乘除、乘方、
加减运算),分式方程等内容,分式是两个整式相除的结果,且除式中含有字母,它类似于小学学过的分数,分式的内容在初中数学中占有重要地位,特别是利用分式方程解决实际问题,是重要的应用数学模型,在中考中,有关分式的内容所占比例较大,应重视知识的学习.
二、考点解读
考点1:分式的意义
例1.(1)当x 时,分式1
1+x 有意义. 分析:要使分式有意义,只要分母不为0即可
当x ≠-1时,分式1
1+x 有意义. (2)(2006年浙江省义乌市)已知分式
1
1+-x x 的值是零,那么x 的值是( ) A .-1 B .0 C .1 D . 1±
分析:讨论分式的值为零需要同时考虑两点:(1)分子为零;(2)分母不为零,当x=1时,分子等于零,分母不为0,所以,当x=1时,原分式的值等于零,故应选C . 评注:在分式的定义中,各地中考主要考查分式
A B
在什么情况下有意义、无意义和值为0的问题。

当B ≠0时,分式A B 有意义;当B=0时,分式A B
无意义;当A=0且B ≠0时,分式A B 的值为0 考点2:分式的变形
例2.下列各式与x y x y
-+相等的是( ) (A )()5()5x y x y -+++(B )22x y x y
-+(C )222()()x y x y x y -≠-(D )2222x y x y -+ 解析:正确理解分式的基本性质是分式变形的前提,本例选项(C )为原分式的分子、分母都乘以同一个不等于0的整式(x-y )所得,故分式的值不变.
考点3:分式的化简
分式的约分与通分是进行分式化简的基础,特别是在化简过程中的运算顺序、符号、运算律的应用等也必须注意的一个重要方面
例2.(2006年临安市)化简:x -1x ÷(x -1x
). 分析:本题要先解决括号里面的,然后再进行计算
解:原式x x x x 112-÷-=)1)(1(1-+⨯-=x x x x x 1
1+=x 评注:分式的乘除法运算,就是将除法转化为乘法再进行约分即可.
考点4:分式的求值
例4先化简代数式:22121111x x x x x -⎛⎫+÷ ⎪+--⎝⎭
,然后选取一个使原式有意义的x 的值代入求值.
分析:本题先要将复杂的分式进行化简,然后再取一个你喜欢的值代入(但你取的值必
须使分式有意义).
解:化简得:21x +,取x=0时,原式=1;
评注:本题化简的结果是一个整式,如果不注意的话,学生很容易选1或-1代入,这
是不行的,因为它们不能使分式有意义.
考点5:解分式方程
例5/解分式方程:22
322=--+x x x 分析:解分式方程的关键是去分母转化为整式方程 解:)4(2)2(3)2(22-=+--x x x x ,82634222-=---x x x x , 27-=-x
72=x ,经检验:72=x 是原方程的解,∴原方程的解为7
2=x 点评:解分式方程能考查学生的运算能力、合情推理等综合能力,解分式方程要注意检
验,否则容易产生增根而致误!
考点6:分式方程的应用
例6. A 城市每立方米水的水费是B 城市的1.25倍,同样交水费20元,在B 城市比
在A 城市可多用2立方米水,那么A 、B 两城市每立方米水的水费各是多少元?
分析:本题只要抓住两城市的水相差2立方米的等量关系列方程即可
解:设B 城市每立方米水的水费为x 元,则A 城市为1.25x 元
,25.120220x
x =- 解得x = 2经检验x = 2是原方程的解。

1.25x = 2.5(元) 答:B 城市每立方米水费2元,A 城市每立方米2.5元。

点评:收缴水、电费的问题是贴近生活的热点问题,是老百姓最关心的问题之一,体现
了数学的实用性的理念
考点7:综合决策
例7.(2006年日照市)在我市南沿海公路改建工程中,某段工程拟在30天内(含30
天)完成.现有甲、乙两个工程队,从这两个工程队资质材料可知:若两队合做24天恰好完成;若两队合做18天后,甲工程队再单独做10天,也恰好完成.请问:
(1)甲、乙两个工程队单独完成该工程各需多少天?
(2)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35
万元,要使该工程的施工费用最低,甲、乙两队各做多少天(同时施工即为合做)?最低施工费用
解:(1)设:甲、乙两个工程队单独完成该工程各需x 天、y 天,
由题意得方程组:24241,1818101x y x y x
⎧+=⎪⎪⎨⎪++=⎪⎩, 解之得:x =40,y =60.
(2)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,根据题意,要使工程在规定时间内完成且施工费用最低,只要使乙工程队施工30天,其余工程由甲工程队完成. 由(1)知,乙工程队30天完成工程的
301602=, ∴甲工程队需施工12÷140
=20(天).最低施工费用为0.6×20+0.35×30=2.25(万元). 答:(1)甲、乙两个工程队单独完成该工程各需40天和60天;
(2)要使该工程的施工费最低,甲、乙两队各做20天和30天,最低施工费用是2.25 万元.
评析:这道考题把对二元一次方程组知识的考察放到贴近生活的热点话题的背景下,易
激活学生的数学思维.
三、易错点剖析
1.符号错误
例1.不改变分式的值,使分式
b a b a --+-的分子、分母第一项的符号为正. 错解:b
a b a b a b a -+=--+- 诊断:此题错误的原因是把分子、分母首项的符号当成了分子、分母的符号. 正解:
b a b a b a b a b a b a +-=+---=--+-)()(. 2.运算顺序错误
例2.计算:
)3(3
234422+•+-÷++-a a a a a a 错解:原式=342)2(34)2(222++=-÷++-a a a a a a . 诊断:分式的乘除混合运算是同一级运算,运算顺序应从左至右.
正解:原式=1)3(2)3(2
334422-+=+•-+•++-a a a a a a a a . 3.错用分式基本性质
例3.不改变分式的值,把分式b a b a +-3
2232的分子、分母各项系数都化为整数. 错解:原式=b a b a b a b a 32343)3
2(2)232(+-=⨯+⨯-. 诊断:应用分式的基本性质时,分式的分子、分母必须同乘以同一个不为0的整式,分
式的值不变,而此题分子乘以2,分母乘以3,分式的值改变了.
正解:原式=b a b a b a b a 649126)3
2(6)232(+-=⨯+⨯-. 4.约分中的错误
例4.约分:2222b
ab a ab a +++. 错解:原式=22322111b
b +=+++. 诊断:约分的根据是分式的基本性质,将分子、分母的公因式约去,若分子、分母是多项式,须先分解因式,再约去公因式.
正解:原式=b a a b a b a a +=++2)
()(. 5.结果不是最简分式
例5.计算:2
222223223y x y x y x y x y x y x --+-+--+. 错解:原式=
222222)32()2()3(y x y x y x y x y x y x --=--++-+. 诊断:分式运算的结果必须化为最简分式,而上面所得结果中分子、分母还有公因式,必须进一步约分化简.
正解:原式=y x y x y x y x y
x y x y x y x y x y x +=-+-=--=--++-+2))(()(222)32()2()3(2222. 6.误用分配律
例6.计算:)2
22(422-+-+÷-+m m m m m . 错解:原式=
)2(2321)2(2122)2(22)2()2(22--=--=-+÷-+-+÷-+m m m m m m m m m m . 诊断:乘法对加法有分配律,而除法对加法没有分配律.
正解:原式=)
3(21)3)(2(2)2(2226)2(222-=-+-•-+=---÷-+m m m m m m m m m m m . 7.忽略分数线的括号作用
例7.计算:11
23
----x x x x . 错解:原式=1
121)1)(1(111122323--=------=----x x x x x x x x x x x x .
诊断:此题错误在于添加分数线时,忽略了分数线的括号作用.
正解:原式=1
11111)1)(1(1111332323-=----=-++---=++--x x x x x x x x x x x x x x x。

相关文档
最新文档