直线与圆相切.弦长问题(学生)
直线与圆相交的弦长问题

【方法3】联立方程求交点,韦达定理求弦长(此 方法有普适性)
பைடு நூலகம்
直线与圆相交 例1 求直线l:3x+y-6=0被圆C:x2+y22y-4=0截得的弦长.
例2.已知过点(-1,-2)的直线l被圆x2+y2-2x2y+1=0截得的弦长为√2,则直线l的斜率为
问题:圆C:(x-a)2 ( y b)2 r 2 , P( x0 , y0 )为圆内一点, 过P点的弦与圆交于A,B,当CP与AB满足什么条件时 弦AB的长度最小。
直线与圆的位置相交时弦长问题
问题:已知直线Ax+Bx+C=0,与圆(x-a) ( y b) r
2 2
2
交于A,B两点,则弦AB的长度。 (圆心到直线距离用d表示)
求弦长的三种方法: 【方法1】先联立方程求交点,再用两点间的距离公式求弦 长
【方法2】利用弦心距、弦长一半、半径构成的直角三角形 解决
例3:已知直线l: 2mx y 8m 3 0和 圆C:x 2 y 2 6 x 12 y 20 0 (1)m R时,证明l与C总相交 (2)m取何值时,l被C截得的弦长最短,求此弦长
总结:圆的弦长的几种求法
直线与圆的相交问题

a 1
2、(2010.江西.10)直线 y kx 3与圆
( x 2) 2 ( y 3) 2 4 相交于 M、N两点
若 MN 2 3 ,则 k 的取值范围就(B )
3 ( A)[ ,0] 4 2 3 3 ( B)[ , ] (C)[ 3, 3] ( D)[ ,0] 3 3 3
y 3 4 x x 有公共点,则 b 的取值范
2
围是______.
解释:曲线
1 y 3
2
y 3 4 x x 2 3 ( x 2) 2 4
所以原曲线方程化简为
2
( x 2) ( y 3) 4 (1 y 3)
表示的是直线y=3下方的半圆(包括边界)
解释:圆心(2,3)到直线 y kx 3 的距离
2 4 k 2 2 d MN 2 r d 2 4 2 2 3 2 k 1 k 1 3 3 2 3k 1 k 3 3
2k
故选B
还有其他解法吗?
y
3
o
2
x
题型三:由相交求参数
例3、(2010· 湖北,9)若直线 y x b 与曲线
2 2
故选D
还有其他解法吗?
练一练:
1、设直线 ax y 3 0 与圆 ( x 1) ( y 2) 4
2 2
相交于 A、B 两点,且 AB 2 3 ,则
a _____ .
解释:由题知,弦心距
d a1
2 2
2tx y 2 t 0
(t R) 的位置关系为(
)
(A)相离 (B)相切 (C)相交 (D) 以上情况均有可能 2 2 解释:圆方程变为 ( x 1) ( y 2) 9 圆心到直线的距离
弦长问题

圆 C 恒相交,
②求直线 l 被圆C 截得弦长最短长度及
此时的直线方程.
(1)几何法:
如图 1,直线 l 与圆 C 交于 A,B 两点, 设弦心距 d,圆的半径 r,弦长为|AB|,
则有
|
AB 2
|
2
d2
r2
,
C
即 | AB | 2 r2 d 2
知二求一
AD B
课前自主回
求直线与圆相交时弦长的两种方法
(2)代数法:
如图 2,将直线方程与圆的方程联立, 设直线与圆的两交点分别是 A(x1,y1) B(x2,y2),则
的弦长为 4 5 ,求直线 l 的方程.
解 设直线l的方程为:
y+3=k(x+3),即kx-y+3k-3=0.
Q x2 y2 4y 21 0,x2 ( y 2)2 25.
圆心C(0,-2),半径r =5.
dO
M(-3,-3) C
x
由题意知弦心距d 5.
r=5
又C到直线l的距离为
l
d | 2 3k 3 | | 3k 1|
k2 1
所以k 4 所以所求直线方程: y 3 4 (x 3) l
即 4x 3y+321 0
3
综上所述,x=-3或4x+3y+21=0
【变式 2】过点 M (3, 3) 的直线 l 被圆 C : x2 y2 4 y 21 0 所截
(1)求截得的最长弦所在的直线方程; (2)求截得的最短弦所在的直线方程.
k 2 12
k2 1
所求直线方程为:
x 2y 9 0,或2x y 3 0.
关于解决直线与圆的位置关系问题的几种常用方法

关于解决直线与圆的位置关系问题的几种常用方法李志民1 直线与圆的位置关系有三种:相交、相切、相离。
判断直线与圆的位置关系常见的有三种方法:判别式 相交1.1代数法: 相切Δ=b2-4ac 相离1.2 几何法:利用圆心到直线的距离d和圆半径r的大小关系:d<r 相交,d=r 相切,d>r相离(三)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.此法适用于动直线问题。
2 计算直线被圆截得的弦长的常用方法2.1 几何方法运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算。
2.2 代数方法一是直接求出直线与圆的交点坐标,再利用两点间的距离公式得出;二是运用韦达定理及弦长公式|AB|= |x A-x B|=.]4))[(1(22BABAxxxxk-++说明:圆的弦长、弦心距的计算常用几何方法。
3 求过点P(x0,y0)的圆x2+y2=r2的切线方程3.1 若P(x0,y0)在圆x2+y2=r2上, 则以P为切点的圆的切线方程为:x0x+y0y=r23.2 若P(x0,y0)在圆x2+y2=r2外,则过P的切线方程可设为:y-y0=k(x-x0),利用待定系数 法求解。
说明:k为切线斜率,同时应考虑斜率不存在的情况.4 例题选讲:例1. 已知直线l:y=kx+1,圆C:(x-1)2+(y+1)2=12。
(1)试证明:不论k为何实数,直线l和圆C总有两个交点;(2)求直线l被圆C截得的最短弦长。
(1)证明 由消去y得(k2+1)x2-(2-4k)x-7=0,因为Δ=(4k-2)2+28(k2+1)>0,所以不论k为何实数,直线l和圆C总有两个交点.(2)解 设直线与圆交于A(x1,y1)、B(x2,y2)两点,则直线l被圆C截得的弦长|AB|=1+k2|x1-x2|=28-4k+11k21+k2=2 11-4k+31+k2,令t=4k+31+k2,则tk2-4k+(t-3)=0,当t=0时,k=-34,当t≠0时,因为k∈R,所以Δ=16-4t(t-3)≥0,解得-1≤t≤4,且t≠0,故t=4k+31+k2的最大值为4,此时|AB|最小为27。
直线与圆所截弦长公式

直线与圆所截弦长公式全文共四篇示例,供读者参考第一篇示例:直线与圆所截弦长公式是几何学中重要而基础的知识点。
当一个直线与一个圆相交时,构成的弦是直线与圆的一个重要交点。
在几何学中,我们经常需要求解直线与圆所截弦的长度,这就需要运用直线与圆所截弦长公式。
下面我们将详细介绍直线与圆所截弦长公式的推导过程及其应用。
我们需要明确的是在几何学中,有一个重要的定理:当直线与圆相交时,直线与圆所截弦长的乘积等于两条弦分割的线段之积。
即设直线AB与圆O相交于点A、B,则有AO×OB=AO'×OB'。
A、B为直线AB与圆O的交点,O为圆心,而A'、B'则是弦AB分割的两段。
根据上述定理,可以推导出直线与圆所截弦长公式。
假设直线AB 与圆O相交于点A、B,圆心为O,弦AB分割为AO'和OB'两段。
设弦长为L,AO的长度为x,OB的长度为y,则有x+y=L。
根据定理可知,AO×OB=AO'×OB',即x×y=(L-x)×(L-y)。
化简上式,可得到x×y=L²-Lx-Ly。
然后通过齐次二次方程的求解方法,可以得到x和y的值。
进而可以求得AO和OB的长度,即直线与圆所截弦的长度。
除了直线与圆所截弦长的求解,直线与圆的位置关系也是几何学中的一个重要问题。
当直线与圆相交时,有六种可能的位置关系:相交两点、内切、相切、外切、相离、内含。
每种情况下,弦的长度和位置都有不同的特点和计算方法。
在实际问题中,直线与圆所截弦长公式的应用是非常广泛的。
数学、物理、工程学等领域的问题中,经常需要计算直线与圆相交时弦长的长度。
在工程设计中,有时需要计算杆件与圆轴相交时的弦长,以便确定杆件的长度和位置;在地理学中,需要计算地球表面上两点之间的最短距离时,也可以利用直线与圆所截弦长公式。
直线与圆所截弦长公式是几何学中的一个重要知识点,涉及到直线与圆的交点、弦的长度、位置关系等内容。
直线与圆的综合(学生版)

直线与圆的综合一、直线与圆的位置关系应用1. 求圆的切线的方法(1)自一点引圆的切线的条数①若点在圆外,则过此点可以作圆的两条切线;②若点在圆上,则过此点只能作圆的一条切线,且此点是切点;③若此点在圆内,则过此点不能作圆的切线.(2)圆的切线方程的求法①求过圆上一点的圆的切线方程:先求切点与圆心的连线的斜率,则由垂直关系知切线的斜率,由点斜式方程可得切线方程.若,则切线方程为;若不存在,则切线方程为.②求过圆外一点的圆的切线方程几何法:设切线方程,即.由圆心到直线的距离等于半径,可得,切线方程即可求出.代数法:设切线方程,即,代入圆的方程,得到一个关于的一元二次方程,由求得,切线方程即可求出.注意:过圆外一点的切线必有两条,无论用几何法还是代数法,当求得值是一个时,另一条切线的斜率一定不存在,可用数形结合法求出.经典例题1.过点与圆所引的切线方程为.2.过点的直线与圆相切,则直线在轴上的截距为().A. B. C. D.3.若过点总可以作两条直线与圆相切,则实数的取值范围是.巩固练习1.过点且与圆相切的直线方程为.A. B.C.D.2.已知圆的半径为,圆心在轴的正半轴上,直线与圆相切,则圆的方程为().2.求圆的切线长求切线长过圆外一点作圆:的切线,其切线长的求法为:先利用两点间距离公式求点到圆心的距离为,再利用勾股定理求出切线长.经典例题A.B.C.D.1.由直线上的点向圆引切线,则切线长的最小值为().(1)(2) 2.已知圆的圆心在第一象限内,圆关于直线对称,与轴相切,被直线截得的弦长为.求圆的方程.若点在直线上运动,过点作圆的两条切线、,切点分别为、点,求四边形面积的最小值.巩固练习A. B.C.D.1.点是直线上的动点,由点向圆作切线,则切线长可能为().A.B. C.D.2.由直线上的一点向圆引切线,则切线长的最小值为().(1)(2)3.已知圆经过点,且圆心为.求圆的标准方程.过点作圆的切线,求该切线的方程及切线长.3. 直线与圆相交的弦长问题设直线的方程,圆的方程为,求弦长有以下几种方法:(1)几何法如图,结合弦心距、弦长的一半及半径构成的直角三角形利用勾股定理来计算.注意:计算圆的弦长时通常情况下采用几何法.(2)代数法①将方程组消元后,由一元二次方程中根与系数的关系可得关于或的关系式,则通常把叫做弦长公式.②直线的方程与圆的方程联立求出交点坐标,由两点间的距离公式求得.经典例题A. B.C.D.1.已知圆的方程为,过该圆内一点的最长弦和最短弦分别为和,则四边形的面积是( ).2.若直线将圆的圆周分成长度之比为的两段弧,则实数的所有可能取值是 .A.B. C.D.3.圆:被直线:截得的弦长的最小值为().4.直线经过点被圆截得的弦长为,求此弦所在直线方程.A. B.C.D.5.若圆与轴、轴均有公共点,则实数的取值范围是().A. B. C. D.6.若圆上至少有三个不同的点到直线的距离为,则直线 的斜率的取值范围是().A. B.C.D.7.已知直线与曲线有两个不同的交点,则实数的取值范围是().巩固练习A. B.C.D.1.已知圆关于轴对称,经过点且被轴分成两段弧长之比为.则圆的方程为().A.或B.或C.或D.2.直线被圆截得的弦长为,则直线的倾斜角为( )3.若过点的直线被圆截得的弦长最短,则直线的方程是 ,此时的弦长为.A.B.或C.或D.或4.过点的直线与圆相交于,两点,且,则直线的方程为().A.B.C.D.5.若圆上至少有三个不同点的直线的距离为,则的取值范围是().A.B.或 C.或D.6.已知直线的方程为,若直线与曲线相交,则直线斜率的取值范围为().4.知识总结(一)圆的切线方程的求法①求过圆上一点的圆的切线方程:先求切点与圆心的连线的斜率,则由垂直关系知切线的斜率,由点斜式方程可得切线方程.若,则切线方程为;若不存在,则切线方程为.②求过圆外一点的圆的切线方程几何法:设切线方程,即.由圆心到直线的距离等于半径,可得,切线方程即可求出.代数法:设切线方程,即,代入圆的方程,得到一个关于的一元二次方程,由求得,切线方程即可求出.(二)求圆的切线长过圆外一点作圆:的切线,其切线长的求法为:先利用两点间距离公式求点到圆心的距离为,再利用勾股定理求出切线长.(三)直线与圆相交的弦长问题设直线的方程,圆的方程为,求弦长有以下几种方法:几何法如图,结合弦心距、弦长的一半及半径构成的直角三角形利用勾股定理来计算.二、圆与圆的位置关系问题1. 圆与圆的位置关系圆与圆的位置关系有三种:(1)两圆相交,有两个公共点;(2)两圆相切,包括外切与内切,只有一个公共点;(3)两圆相离,包括外离与内含,没有公共点.圆与圆位置关系的判断方法一般采用几何法来判断,利用两圆的圆心距进行判断设,则有:圆心距与半径的关系圆与圆的位置关系公切线条数与外离与外切与相交与内切与内含经典例题1.若圆:与圆:相交,则的取值范围为.A.条B.条C.条D.条2.两圆与的公切线有().巩固练习A.外离 B.外切 C.内含D.内切1.已知圆的方程为,圆的方程为,那么这两个圆的位置关系不可能是().A.B. C. D.2.圆与圆的公切线的条数是().2. 两圆的公共弦(1)两圆相交时,公共弦所在的直线方程设圆①圆②①-②得:③方程③表示过两圆交点的直线,即两圆公共弦所在的直线.(2)两圆公共弦长的求法①代数法:将两圆方程联立,求出公共弦所在直线的方程,将所得直线方程与任一圆的方程再联立,解出两交点的坐标,利用两点间的距离公式求公共弦长.②几何法:将两圆的方程联立,求出公共弦所在的直线的方程,由点到直线的距离公式求出弦心距,利用勾股定理解直角三角形,求出弦长.经典例题1.已知圆与圆相交于两点.(1)(2)求两圆的公共弦所在直线的方程.求两圆的公共弦长.A. B.C.D.2.两圆和相交于两点,,则线段的长为().巩固练习(1)(2)1.已知圆,圆.分别写出这两个圆的圆心坐标和半径的长,并求两个圆心的距离.求这两个圆的公共弦的长.A.B.C.D.2.两圆相交于两点和,且两圆圆心都在直线上,则的值是().3. 知识总结(一)两圆的位置关系设,则有:圆心距与半径的关系圆与圆的位置关系公切线条数与外离与外切与相交与内切与内含(二)两个圆的公共弦(1)公共弦所在直线设圆①圆②①-②得:③方程③表示过两圆交点的直线,即两圆公共弦所在的直线.(2)公共弦长代数法、几何法三、与圆有关的应用1. 求圆的轨迹方程的方法(1)直接法:直接由题目给出的条件列出方程;(2)定义法:根据圆的定义列方程;(3)几何法:利用圆的几何性质列方程;(4)代入法(即相关点法):找到所求点与已知点的关系,代入已知点满足的关系式.经典例题1.在直角坐标系中,点在圆上移动,动点和定点连线的中点为,求中点的轨迹方程.A. B.C.D.2.已知点和圆:,过点的动直线与圆交于,,则弦的中点的轨迹方程(). 3.已知定点,是圆上一动点,的平分线交于点,求的轨迹方程.巩固练习1.已知直角坐标系中,,动点满足,则点的轨迹方程是 ;轨迹为.2.已知为圆上一动点,定点,求线段中点的轨迹方程.2. 与圆有关的最值问题(1)距离型最值问题:形如形式的最值问题,可转化为动点到定点的距离的平方的最值问题;(2)过圆内一点的最长弦为过此点的直径,最短弦为垂直于此点的圆心连线的弦;(3)直线与圆不相交,圆心到直线的距离为,则圆上一点到直线的最小距离为,最大距离为.经典例题(1)(2)1.已知,,动点满足,设动点的轨迹为.求动点的轨迹方程.点在轨迹上,求最小值.2.已知直线,点是圆上的动点,则点到直线的距离的最小值为.(1)(2)3.在平面直角坐标系中,,动点满足.求点的轨迹方程.设为圆:上的动点,求的最小值.A.B.C.D.4.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:平面内到两个定点,的距离之比为定值的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系中,,,点满足.当,,三点不共线时,面积的最大值为().A.最大值是,最小值是 B.最大值是,最小值是C.最大值是,最小值是D.最大值是,最小值是5.如图所示,在平面直角坐标系中,点,分别在轴和轴非负半轴上,点在第一象限,且,,那么,两点间距离的().巩固练习A.B. C.D.1.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是().2.已知实数,满足,则的取值范围是.3.已知半径为的圆经过点,则其圆心到原点的距离的最大值为 .A.B.C.D.4.若点在圆上运动,,则的最小值为( ).3. 与圆有关的对称问题(1)圆的轴对称性圆关于直径所在的直线对称.(2)圆关于点对称①求已知圆关于某点的对称的圆的方程,只需要确定所求圆的圆心,即可写出标准方程;②两圆关于某点对称,则此点为两圆圆心连线的中点.(3)圆关于直线对称①求已知圆关于某条直线对称的圆的方程,只需确定所求圆的圆心,即可写出标准方程;②两圆关于某条直线对称,则此直线为两圆圆心连线的垂直平分线.经典例题A. B.C. D.1.圆关于直线对称的圆的方程为().A. B.C.D.2.已知圆上两点,关于直线对称,则圆的半径为().A. B.C.D.3.已知圆:关于直线对称的圆为圆:,则直线的方程为().A.B. C. D.4.若圆:关于直线对称,则由点向圆所作的切线长的最小值是().5.在平面直角坐标系中,若圆:()上存在点,且点关于直线的对称点在圆:上,则的取值范围是.6.点,分别为圆与圆上的动点,点在直线上运动,则的最小值为.巩固练习A. B.C.D.1.已知直线过圆的圆心,且与直线垂直,则直线的方程为().A. B. C.D.不存在2.圆:上有两个点和关于直线对称,则().3.圆关于直线对称,则的值是( ).A. B. C. D.4.已知圆:关于直线:对称,则原点到直线的距离为().A. B. C. D.4. 知识总结(1)求圆的轨迹方程的方法直接法、定义法、几何法、代入法(2)与圆有关的最值问题①斜率型最值问题②截距型最值问题③距离型最值问题④过圆内一点的最长弦为过此点的直径,最短弦为垂直于此点的圆心连线的弦、⑤直线与圆不相交,圆心到直线的距离为,则圆上一点到直线的最小距离为,最大距离为.(3)与圆有关的对称问题圆的轴对称性、圆关于点对称、圆关于直线对称思维导图你学会了吗?画出思维导图总结本课所学吧!出门测1.从直线上的点向定圆作切线,则切线长的最小值为().A. B. C. D.2.从圆外一点向圆引两条切线,切点分别为,,则().A. B. C. D.3.若圆与圆相交于,两点,且两圆在点处的切线互相垂直,则线段的长度是().A. B. C. D.。
2024高考数学常考题型 第18讲 直线与圆常考6种题型总结(解析板)

第18讲直线与圆常考6种题型总结【考点分析】考点一:圆的定义:在平面上到定点的距离等于定长的点的轨迹是圆考点二:圆的标准方程设圆心的坐标()C a b ,,半径为r ,则圆的标准方程为:()()222x a y b r -+-=考点三:圆的一般方程圆的一般方程为220x y Dx Ey F ++++=,圆心坐标:()22D E --,,半径:r =注意:①对于F E D 、、的取值要求:2240D E F +->当2240D E F +-=时,方程只有实数解22D E x y =-=-,.它表示一个点()22D E--,当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.②二元二次方程220Ax Bxy Cy Dx Ey F +++++=,表示圆的充要条件是22040A C B D E AF =≠⎧⎪=⎨⎪+->⎩考点四:以1122()()A x y B x y ,,,为直径端点的圆的方程为1212()()()()0x x x x y y y y -⋅-+--=考点五:阿波罗尼斯圆设A B ,为平面上相异两定点,且||2(0)AB a a =>,P 为平面上异于A B ,一动点且||||PA PB λ=(0λ>且1λ≠)则P 点轨迹为圆.考点六:直线与圆的位置关系设圆心到直线的距离d ,圆的半径为r ,则直线与圆的位置关系几何意义代数意义公共点的个数①直线与圆相交r d <0>∆两个②直线与圆相切r d =0=∆一个③直线与圆相离r d >0<∆0个注:代数法:联立直线方程与圆方程,得到关于x 的一元二次方程2Ax Bx C ++=考点七:直线与圆相交的弦长问题法一:设圆心到直线的距离d ,圆的半径为r ,则弦长222d r AB -=法二:联立直线方程与圆方程,得到关于x 的一元二次方程20Ax Bx C ++=,利用韦达定理,弦长公式即可【题型目录】题型一:圆的方程题型二:直线与圆的位置关系题型三:直线与圆的弦长问题题型四:圆中的切线切线长和切点弦问题题型五:圆中最值问题题型六:圆与圆的位置关系问题【典型例题】题型一:圆的方程【例1】AOB 顶点坐标分别为()2,0A ,()0,4B ,()0,0O .则AOB 外接圆的标准方程为______.【答案】()()22125x y -+-=【解析】设圆的标准方程为()()222x a y b r -+-=,因为过点()2,0A ,()0,4B ,()0,0O 所以()()()()()()222222222200400a b r a b r a b r ⎧-+-=⎪⎪-+-=⎨⎪-+-=⎪⎩解得2125a b r =⎧⎪=⎨⎪=⎩则圆的标准方程为()()22125x y -+-=故答案为:()()22125x y -+-=【例2】已知圆22(1)(2)4x y +++=关于直线()200,0ax by a b ++=>>对称,则12a b+的最小值为()A .52B .92C .4D .8故选:B【例3】过点(1,1),(3,5)A B -,且圆心在直线220x y ++=上的圆的方程为_______.【例4】设甲:实数3a <;乙:方程2230x y x y a +-++=是圆,则甲是乙的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例5】苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度100AB =米,拱高10OP =米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是()米.(注意:≈3.162)A .6.48B .5.48C .4.48D .3.48【答案】A【解析】以O 为原点,以AB 所在直线为x 轴,以OP 所在直线为y 轴建立平面直角坐标系.设圆心坐标为(0,a ),则P (0,10),A (-50,0).可设圆拱所在圆的方程为()222x y a r +-=,由题意可得:()()222221050a r a r ⎧-=⎪⎨-+=⎪⎩解得:2120,16900a r =-=.所以所求圆的方程为()2212016900x y ++=.将x =-30代入圆方程,得:()290012016900y ++=,因为y >0,所以12040 3.162120 6.48y =≈⨯-=.故选:A.【例6】阿波罗尼斯(约公元前262-190年)证明过这样一个命题:在平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 满足||||PA PB =,则PAB △面积的最大值是()AB .2C.D .4【答案】C【解析】设经过点A ,B 的直线为x 轴,AB的方向为x 轴正方向,线段AB 的垂直平分线为y 轴,线段AB 的中点O 为原点,建立平面直角坐标系.则()1,0A -,()10B ,.设(),P x y,∵PA PB==两边平方并整理得22610x y x +-+=,即()2238x y -+=.要使PAB △的面积最大,只需点P到AB (x 轴)的距离最大时,此时面积为122⨯⨯故选:C.【题型专练】1.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.2.经过三个点00()(02)()0A B C -,,,,的圆的方程为()A .(()2212x y ++=B .(()2212x y +-=C .(()2214x y ++=D .(()2214x y +-=中的三点的一个圆的方程为____________.【答案】22420x y x y +--=或22460x y x y +--=或22814033x y x y +--=或2216162055x y x y +---=(答案不唯一,填其中一个即可)【解析】设圆的方程为220x y Dx Ey F ++++=若圆过(0,0),(4,0),(4,2)三点,则0164020420F D F D E F =⎧⎪++=⎨⎪+++=⎩,解得420D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22420x y x y +--=;若圆过(0,0),(4,0),(1,1)-三点,则0164020F D F D E F =⎧⎪++=⎨⎪-++=⎩,解得460D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22460x y x y +--=;若圆过(0,0),(1,1)-,(4,2)三点,则02020420F D E F D E F =⎧⎪-++=⎨⎪+++=⎩,解得831430D E F ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,故圆的方程为22814033x y x y +--=;若圆过(4,0),(1,1)-,(4,2)三点,则16402020420D F D E F D E F ++=⎧⎪-++=⎨⎪+++=⎩,解得1652165D E F ⎧=-⎪⎪=-⎨⎪⎪=-⎩,故圆的方程为2216162055x y x y +---=.4.已知“m t ≤”是“220x y m ++=”表示圆的必要不充分条件,则实数t 的取值范围是()A .()1,-+∞B .[)1,+∞C .(),1-∞D .(),1-∞-5.若两定点()1,0A ,()4,0B ,动点M 满足2MA MB =,则动点M 的轨迹围成区域的面积为().A .2πB .5πC .3πD .4π6.古希腊著名数学家阿波罗尼斯发现:平面内到两定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A (-2,0),B (4,0),点P 满足PA PB=12.设点P 的轨迹为C ,则下列结论正确的是()A .轨迹C 的方程为(x +4)2+y 2=9B .在x 轴上存在异于A ,B 的两点D ,E 使得PD PE=12C .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线D .在C 上存在点M ,使得2MO MA =【答案】BC【分析】根据阿波罗尼斯圆的定义,结合两点间距离公式逐一判断即可.MA MO,则在O,A,M三点所能构成7.已知动点M与两个定点O(0,0),A(3,0)的距离满足2=的三角形中面积的最大值是()A.1B.2C.3D.4易知90MBO ∠=︒时,MOA S △取得最大值3.故选:C .题型二:直线与圆的位置关系【例1】直线:10l kx y k -+-=与圆223x y +=的位置关系是()A .相交B .相离C .相切D .无法确定【例2】(黑龙江哈尔滨市)若过点()4,3A 的直线l 与曲线()()22231x y -+-=有公共点,则直线l 的斜率的取值范围为()A .⎡⎣B .(C .,33⎡-⎢⎣⎦D .,33⎛⎫- ⎪ ⎪⎝⎭【答案】C【解析】由题意知,直线的斜率存在,设直线的斜率为k ,则直线方程为()43-=-x k y ,即043=-+-k y kx ,圆心为()3,2,半径为1,所以圆心到直线得距离1211433222+≤-⇒≤+-+-=k k k kk d ,解得3333≤≤-k【例3】直线:20l kx y --=与曲线1C x -只有一个公共点,则实数k 范围是()A .(3,)(,3)+∞-∞- B .3,2⎡⎫+∞⎪⎢⎣⎭C .4(2,4]3⎧⎫⎨⎬D .(-由图知,当24k <≤或故选:C【例4】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(),A a b ,则下列说法正确的是()A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相交C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】AD【分析】根据直线与圆的位置关系相应条件判断即可.【题型专练】1.直线():120l kx y k k R -++=∈与圆22:5C x y+=的公共点个数为()A .0个B .1个C .2个D .1个或2个【答案】D【解析】将直线l 变形为()012=+-+y x k ,令⎩⎨⎧=+-=+0102y x ,解得⎩⎨⎧=-=12y x ,所以直线过定点()1,2-P ,因为()51222=+-,所以点P 在圆上,所以直线与圆相切或者相交2.已知关于x 的方程2(3)1k x ++有两个不同的实数根,则实数k 的范围______.当直线与半圆相切时,圆心O 到直线1l 的距离d 解得:13265k -=(舍),或13265k +=当直线过点(2,0)-时,可求得直线2l 的斜率2k =则利用图像得:实数k 的范围为3261,5⎡⎫+⎪⎢⎪⎣⎭故答案为:3261,5⎡⎫+⎪⎢⎪⎣⎭3.(2022全国新高考2卷)设点A (-2,3),B (0(x +3)2+(y +2)2=1有公共点,则a 的取值范围为_______.【答案】13,32⎡⎤⎢⎥⎣⎦【解析】()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=;圆()()22:321C x y +++=,圆心()3,2C --,半径1r =,依题意圆心到直线l 的距离1d =≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦题型三:直线与圆的弦长问题【例1】已知圆C :()()22210x y a a +-=>与直线l :x -y -1=0相交于A ,B 两点,若△ABC 的面积为2,则圆C 的面积为()A .πB .2πC .4πD .6π【答案】C 【解析】如图,由圆C 方程可知圆心()0,1C ,半径为a ,由点到直线的距离公式可知圆心C到直线l 的距离d =又△ABC 的面积为11222S AB d =⋅==,解得AB =2222a ⎛+= ⎝⎭,则a =2,即圆C 的半径为2.则圆C 的面积为24S a ππ==.故选:C.【例2】已知圆22:60M x y x +-=,过点()1,2的直线1l ,2l ,…,()*n l n ∈N 被该圆M 截得的弦长依次为1a ,2a ,…,n a ,若1a ,2a ,…,n a 是公差为13的等差数列,则n 的最大值是()A .10B .11C .12D .13【答案】D【分析】求出弦长的最小和最大值,根据等差数列的关系即可求出n 的最大值此时,直线DE 的解析式为:3y x =-+直线BC 的解析式为:=+1y x 圆心到弦BC 所在直线的距离:AM 连接BM ,由勾股定理得,()22=322=1AB -x y+=交于,A B两点,过,A B分别作l的垂线与x轴交于【例3】已知直线:10l mx y+--=与圆2216,C D两点,则当AB最小时,CD=()A.4B.C.8D.故选:D【例4】(多选题)若直线l 经过点0(3,1)P -,且被圆2282120x y x y +--+=截得的弦长为4,则l 的方程可能是()A .3x =B .3y =C .34130x y --=D .43150x y --=【题型专练】1.直线:l y x m =+与圆224x y +=相交于A ,B 两点,若AB ≥m 的取值范围为()A .[]22-,B .⎡⎣C .[]1,1-D .,22⎡⎤⎢⎥⎣⎦【答案】B【解析】令圆224x y +=的圆心(0,0)O 到直线l 的距离为d ,而圆半径为2r =,弦AB 长满足AB ≥,则有1d =,又d =1≤,解得m ≤≤所以实数m 的取值范围为⎡⎣.故选:B2.在圆22420x y x y +-+=内,过点()1,0E 的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为()A .B .C .D .【答案】D【解析】圆22420x y x y +-+=化简为22(2)(1)5x y -++=可得圆心为(2,1),r -=易知过点()1,0E 的最长弦为直径,即||AC =而最短弦为过()1,0E 与AC 垂直的弦,圆心(2,1)-到()1,0E 的距离:d ==所以弦||BD ==所以四边形ABCD 的面积:12S AC BD =⋅=故选:D.3.若直线1y kx =+与圆221x y +=相交于B A ,两点,且60AOB ∠= (其中O 为原点),则k 的值为()A .3-或3B .3C .D 4.直线l :()()2110m x m y -+-+=与圆C :2260x x y -+=相交于A ,B 两点,则AB 的最小值是()A .B .2C .D .4【答案】D【解析】分别取1,2m m ==,则1010x y -+=⎧⎨-+=⎩,得11x y =⎧⎨=⎩,即直线l 过定点(1,1)P ,将圆C 化为标准方程:22(3)9x y -+=,圆心为(3,0),半径3r =.如图,因为AB =,所以当圆心到直线距离最大时AB 最小.当CP 不垂直直线l 时,总有d CP <,故当CP l ⊥时AB 最小,因为CP =所以AB的最小值为4=.故选:D题型四:圆中的切线切线长和切点弦问题【例1】直线l 过点(2,1)且与圆22:(1)9C x y ++=相切,则直线l 的方程为______________.【例2】已知圆C :228240x y y +--+=,且圆外有一点()0,2P ,过点P 作圆C 的两条切线,且切点分别为A ,B ,则AB =______.【例3】点P 在圆C :()()22334x y -+-=上,()2,0A ,()0,1B ,则PBA ∠最大时,PB =___________.【答案】3【分析】根据题意PBA ∠最大时,直线【详解】点P 在圆C :()23x -+如图将BA 绕点B 沿逆时针方向旋转,当刚好与圆当旋转到与圆相切于点2P 时,∠【例4】过点()2,1P 作圆O :221x y +=的切线,切点分别为,A B ,则下列说法正确的是()A.PA B .四边形PAOB 的外接圆方程为222x y x y +=+C .直线AB 方程为21y x =-+D .三角形PAB 的面积为85【题型专练】1.过点(0,2)作与圆2220x y x +-=相切的直线l ,则直线l 的方程为()A .3480x y -+=B .3480x y +-=C .0x =D .1x =2.直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,过点()1,P b --作圆C 的一条切线,切点为Q ,则PQ =()A .5B .4C .3D .2【答案】B【详解】圆222:2250C x y bx by b +---+=的圆心为(,)C b b ,半径为r =因为直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,所以直线40x y +-=经过(,)C b b ,所以40b b +-=,故2b =,由已知()1,2P --,(2,2)C ,||PC ,圆的半径为3,所以4PQ =,故选:B.3.过点(2,2)P 作圆224x y +=的两条切线,切点分别为A 、B ,则直线AB 的方程为_______.【答案】2+-x y 0=【分析】由题知()0,2A 、()2,0B ,进而求解方程即可.【详解】解:方法1:由题知,圆224x y +=的圆心为()0,0,半径为2r =,所以过点(2,2)P 作圆224x y +=的两条切线,切点分别为()0,2A 、()2,0B ,所以1AB k =-,所以直线AB 的方程为2y x =-+,即2+-x y ;方法2:设()11,A x y ,()22,B x y ,则由2211111142.12x y y y x x ⎧+=⎪-⎨=-⎪-⎩,可得112x y +=,同理可得222x y +=,所以直线AB 的方程为2+-x y 0=.故答案为:2+-x y 题型五:圆中最值问题【例1】已知l :4y x =+,分别交x ,y 轴于A ,B 两点,P 在圆C :224x y +=上运动,则PAB △面积的最大值为()A .82-B .1682-C .842+D .162+【答案】C 【解析】如图所示,以AB 为底边,则PAB △面积最大等价于点P 到l 距离最大,而点P 到l 距离最大值等于O 到l 的距离加半径看,O 到l 的距离422d =O 的半径2r =,()4,0A -,()0,4B ,则42AB =PAB △面积的最大值为()14222822⨯=+故选:C【例2】已知点P 是圆()()2241625x y -+-=上的点,点Q 是直线0x y -=上的点,点R 是直线125240x y -+=上的点,则PQ QR +的最小值为()A .7B .335C .6D .295【答案】B【分析】设圆心()1,6C ,记点()6,1E ,作圆()()224:1625C x y -+-=关于直线0x y -=的对称圆()()224:6125E x y -+-=,计算出圆心E 到直线125240x y -+=的距离d ,结合对称性可得出PQ QR +的最小值为25d -,即可得解.【详解】设圆心()1,6C ,记点()6,1E ,作圆()()224:1625C x y -+-=关于直线0x y -=的对称圆()()224:6125E x y -+-=,由对称性可知CQ EQ =,点E 到直线125240x y -+=的距离为()221265247125d ⨯-+==+-,【例3】已知直线:320l x y ++=与x 、轴的交点分别为A 、B ,且直线1:310l mx y m --+=与直线2:310l x my m +--=相交于点P ,则PAB 面积的最大值是()A .103+B .103+C D【例4】已知圆()()22:254C x y -+-=的圆心为C ,T 为直线220x y --=上的动点,过点T 作圆C 的切线,切点为M ,则TM TC ⋅的最小值为()A .10B .16C .18D .20()2TM TC TC CM TC TC CM ⋅=+⋅=+ CM TM ⊥ ,CM CT CM CT ∴⋅=⋅ 24TM TC TC ∴⋅=- ,【例5】已知复数z 满足1i 1z +-=(i 为虚数单位),则z 的最大值为()A .2B 1C 1D .1【答案】B【解析】令i z x y =+,x ,y ∈R ,则()1i 11i 1z x y +-=++-=,即()()22111x y ++-=,表示点(),x y 与点()1,1-距离为1的点集,此时,i z x y =-()()22111x y ++-=上点到原点距离,所以z 的最大值,即为圆上点到原点的距离的最大值,,且半径为1,1.故选:B .【例6】若0x =,则2yx -的取值范围为【答案】11[,]22-【解析】因为0x +=x =-所以()2210x y x +=≤如图,此方程表示的是圆心在原点,半径为1的半圆,2yx -的几何意义是点(),x y 与点()2,0连线的斜率如图,()()0,1,0,1A B -,()2,0P101022PA k -==--,101022PB k --==-所以2y x -的取值范围为11[,]22-故选:D【例】AB 为⊙C :(x -2)2+(y -4)2=25的一条弦,6AB =,若点P 为⊙C 上一动点,则PA PB ⋅的取值范围是()A .[0,100]B .[-12,48]C .[-9,64]D .[-8,72]【答案】D 【解析】【分析】取AB 中点为Q ,利用数量积的运算性质可得2||9PA PB PQ ⋅=- ,再利用圆的性质可得||PQ 取值范围,即求.【详解】取AB 中点为Q ,连接PQ2PA PB PQ ∴+= ,PA PB BA -= 221()()4PA PB PA PB PA PB ⎡⎤∴⋅=+--⎣⎦ 2214||||4PQ BA ⎡⎤=-⎣⎦ ,又||6BA = ,4CQ =2||9PA PB PQ ∴⋅=-,∵点P 为⊙C 上一动点,∴max min ||9,|5|15PQ Q P C Q Q C =+=-==PA PB ∴⋅的取值范围[-8,72].故选:D.【题型专练】1.直线20x y +-=分别与x 轴,y 轴交于,A B 两点,点P 在圆22(2)2x y ++=上,则ABP 面积的取值范围是()A .[]2,6B .[]4,8C .D .⎡⎣2.(多选题)已知点P 在圆O :224x y +=上,直线l :43120x y +-=分别与x 轴,轴交于,A B 两点,则()A .过点B 作圆O 的切线,则切线长为B .满足0PA PB ⋅=的点P 有3个C .点P 到直线l 距离的最大值为225D .PA PB +的最小值是1【答案】ACD【分析】对于A,根据勾股定理求解即可;对于B,0PA PB ⋅=即PA PB ⊥,所以点P 在以AB 为直径的圆上,设AB 的中点为M ,写出圆M 的方程,根据两个圆的交点个数即可判断正误;对于C,根据圆上一点到直线的最大3.已知动点A ,B 分别在圆1C :()2221x y ++=和圆2C :()2244x y -+=上,动点P 在直线10x y -+=上,则PA PB +的最小值是_______【答案】3-##3-+如图,设点()10,2C -关于直线10x y -+=对称的点为()030,C x y ,所以,00002121022y x x y +⎧=-⎪⎪⎨-⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得003,1x y =-=,即()33,1C -,所以,3252C C =所以,32523PA B C P C r R --+=-≥,即PA PB +的最小值是523-.故答案为:523-4.过直线3450x y +-=上的一点P 向圆()()22344x y -+-=作两条切线12l l ,.设1l 与2l 的夹角为θ,则θ的最大值为______.【答案】π3##60︒【分析】由题可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,根据圆的性质结合条件可得1sin sin22APC θ∠=≤,进而即得.【详解】由()()22344x y -+-=,可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,则2APB APC θ=∠=∠,在Rt APC △中,2AC =,2sin sin 2CA APC CP CPθ∠===又()3,4C 到直线3450x y +-=的距离为223344534⨯+⨯-+所以4CP ≥,1sin sin22APC θ∠=≤,所以APC ∠的最大值为π6,即θ的最大值为π3.故答案为:π3.5.已知圆22:410,+--=M x y x (),P x y 是圆M 上的动点,则3t x =+的最大值为_________;22x y +的最小值为____________.6.18世纪末,挪威测量学家维塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离.已知复数z 满足2z =,则34i z --的最大值为()A .3B .5C .7D .9【答案】C【解析】2z = ,z ∴对应的点(),Z x y 的轨迹为圆224x y +=;34i z -- 的几何意义为点(),Z x y 到点()3,4的距离,max 34i 27z ∴--==.故选:C.题型六:圆与圆的位置关系问题【例1】已知圆221:1C x y +=与圆222:(3)(4)4C x y -+-=,则圆1C 与2C 的位置关系是()A .内含B .相交C .外切D .相离【例2】已知点P 在圆O :224x y +=上,点()30A -,,()0,4B ,满足AP BP ⊥的点P 的个数为()A .3B .2C .1D .0【答案】B【解析】【分析】设(,)P x y ,轨迹AP BP ⊥ 可得点P 的轨迹方程,即可判断该轨迹与圆的交点个数.设点(,)P x y ,则224x y +=,且(3,)(,4)AP x y BP x y =+=- ,,由AP BP ⊥,得22(3)(4)340AP BP x x y y x y x y ⋅=++-=++-= ,即22325()(2)24x y ++-=,故点P 的轨迹为一个圆心为3(,2)2-、半径为52的圆,则两圆的圆心距为52,半径和为59222+=,半径差为51222-=,有159222<<,所以两圆相交,满足这样的点P 有2个.故选:B.【例3】圆221:22260O x y x y +---=与圆222:820O x y y +--=的公共弦长为()A .B .C .D .【例4】已知圆C :()()22681x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为()A .12B .11C .10D .9【答案】B【分析】由题意得P 点轨迹,转化为有交点问题【详解】90APB ∠=︒,记AB 中点为O ,则||OP m =,故P 点的轨迹是以原点为圆心,m 为半径的圆,又P 在圆C 上,所以两圆有交点,则|1|||1m OC m -≤≤+,而||10OC =,得911m ≤≤.故选:B【题型专练】1.写出与圆221x y +=和圆()2264x y -+=都相切的一条直线的方程______.2.(2022全国新高考1卷)写出与圆x 2+y 2=1和(x -3)2+(y -4)2=16都相切的一条直线的方程_______.【答案】3544y x =-+或7252424y x =-或1x =-【解析】【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l 的距离1d ==,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意14⎧=⎪⎪=,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为1x =-,故答案为:3544y x =-+或7252424y x =-或1x =-.3.(多选题)圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有()A .公共弦AB 所在直线的方程为0x y -=B .公共弦AB 所在直线的方程为10x y +-=C .公共弦ABD .P 为圆1O 上一动点,则P 到直线AB 14.已知点()()2,3,5,1A B -,则满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数有()A .1B .2C .3D .4【答案】D【解析】【分析】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,将所求转化为求圆A 与圆B 的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,如图所示,由题意,满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数即为圆A 与圆B 的公切线条数,因为513AB ==>+,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线l 有4条.故选:D5.已知圆()()221:111C x y -++=,圆()()222:459C x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM -的最大值是()A .4B .9C .7D .2【答案】B【解析】【分析】分析可知()21max 4PN PM PC PC -=-+,设点()24,5C 关于x 轴的对称点为()24,5C '-,可得出22PC PC '=,求出21PC PC '-的最大值,即可得解.【详解】圆()()221:111C x y -++=的圆心为()11,1C -,半径为1,圆()()222:459C x y -+-=的圆心为()24,5C ,半径为3.()max min max PN PM PN PM -=- ,又2max 3PN PC =+,1min 1PMPC =-,()()()2121max 314PN PM PC PC PC PC ∴-=+--=-+.点()24,5C 关于x 轴的对称点为()24,5C '-,2121125PC PC PC PC C C ''-=-≤==,所以,()max 549PN PM -=+=,故选:B .。
直线与圆相交求弦长

直线与圆相交求弦长
【典型例题】
1、直线m经过点P (5,5)且和圆C:x2 + y2 = 25 相交,截得弦长l为 4 5 , 求m的方程.
解:设圆心到直线m的距离为 d,由于圆的半径
r
=
5,弦长的一半
l 2
2
5,
所以由勾股定理,得:d
2
52 2 5
5,
所以设直线方程为y – 5 = k (x – 5) 即
故a 5或a 5,所以直线AB方程是
2 x 5 y 25 0 或 2 x 5 y 25 0 ;
直线与圆相交求弦长
【变形训练】
(2)连接MB,MQ,设 P(x,y),Q(a,0),由点M, P,Q在一直线上,得 2 y 2,(A)
a x
由 |M B|2|M P||M Q|,即 x2(y2)2 a241,(B ) 把(A)及(B)消去a,并注意到y<2 ,可得
x2(y7)21(y2). 4 16
2 k 1k2 1k2 1 0(1k2)11k21k22, 即k2=3,故k=± 3 . 答案:A
直线与圆相交求弦长
【变形训练】
2、如图,已知⊙M:x2+(y-2)2=1,
Q是x轴上的动点,QA,QB分别切
⊙M于A,B两点,(1)如果| A B | 4 2
求直线MQ的方程;
的方程为
y + 3 = k (x + 3), 即k x – y + 3k –3 = 0.
根据点到直线的距离公式,得到圆心到直线l的
距离 2 3k 3 因此 2 3k 3
d
.
5,
k2 1
k2 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆相切.弦长问题(学生)
直线与圆的位置关系(复习)
复习要求 1. 会用代数法或几何法判定点、直线与圆的位置关系;2. 掌握圆的几何
性质,通过数形结合法解决圆的切线、直线被圆截得的弦长等直线与圆的综合问题,体会
用代数法处理几何问题的思想.
直线与圆的位置关系:设直线l :Ax +By +C =0 (A2+B 2≠0) ,圆:(x-a) 2
+(y-b) 2=r 2 (r>0), d 为圆心(a,b) 到直线l 的距离,联立直线和圆的方程,消
元后得到的一元二次方程的判别式为Δ.
[难点正本疑点清源]
1.直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几
何法”是从不同的方面和思路来判断的. 2.计算直线被圆截得的弦长的常用方法
几何方法:运用弦心距(即圆心到直线的距离) 、弦长的一半及半径构成直角三角形
计算.
1. .若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围为
__________.
2.从圆x 2-2x +y 2-2y +1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为________.
3.(2019·重庆) 过原点的直线与圆x 2+y 2-2x -4y +4=0相交所得弦的长为2,则该直线的方程为____________
题型一直线与圆的位置关系
例1 已知直线l :y =kx +1,圆C :(x-1) 2+(y+1) 2=12.
(1)试证明:不论k 为何实数,直线l 和圆C 总有两个交点; (2)求直线l 被圆C
截得的最短弦长.
(2019·安徽改编) 若直线x -y +1=0与圆(x-a) 2+y 2=2有公共点,则实数a 的取值范围是__________.
题型二圆的切线问题
例2 已知点M(3,1),直线ax -y +4=0及圆(x-1) 2+(y-2) 2=4.
(1)求过M 点的圆的切线方程;(2)若直线ax -y +4=0与圆相切,求a 的值; (3)若直线ax -y +4=0与圆相交于A ,B 两点,且弦AB 的长为3,求a 的值.
探究提高求过一点的圆的切线方程,首先要判断此点是否在圆上.若在圆上,该点
为切点;若不在圆上,切线应该有两条,设切线的点斜式方程,用待定系数法求解.注意,需考虑无斜率的情况.求弦长问题,要充分运用圆的几何性质.
已知点A(1,a) ,圆x 2+y 2=4. (a>0)若过点A 的圆的切线只有一条,
求a 的值及切线方程;
方法与技巧
1.过圆上一点(x0,y 0) 的圆的切线方程的求法
1
先求切点与圆心连线的斜率k ,由垂直关系知切线斜率为-,由点斜式方程可求切线方
k 程.若切线斜率不存在,则由图形写出切线方程x =x 0. 2.过圆外一点(x0,y 0) 的圆的切线方程的求法
(1)几何方法:当斜率存在时,设为k ,切线方程为y -y 0=k(x-x 0) ,即kx -y +y 0-kx 0=0. 由圆心到直线的距离等于半径,即可得出切线方程.
(2)代数方法:设切线方程为y -y 0=k(x-x 0) ,即y =kx -kx 0+y 0,代入
圆方程,得一个关于x 的一元二次方程,由Δ=0,求得k ,切线方程即可求出. 3.圆的弦长的求法
l 222
(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎛⎝2=r -d . (2)代数法:设直线与圆相交于A(x1,y 1) ,B(x2,y 2) 两点, 两点间距离公式。
失误与防范
1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.
2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若
仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.
基础训练
1.若过点A(a,a) 可作圆x 2+y 2-2ax +a 2+2a -3=0的两条切线,则实数a 的取值范围为______________.
2.若直线y =x +4与圆(x-a) 2+(y-3) 2=8相切,则a =___________.
3.设m ,n ∈R ,若直线(m+1)x +(n+1)y -2=0与圆(x-1) 2+(y-1) 2=1相切,则m +n 的取值范围是____________.
4.过原点且倾斜角为60°的直线被圆x 2+y 2-4y =0所截得的弦长为________.
5.设直线ax -y +3=0与圆(x-1) 2+(y-2) 2=4相交于A 、B 两点,且弦AB 的长为23,则a =________.
6.直线y =kx +3与圆(x-2) 2+(y-3) 2=4相交于M ,N 两点,若MN ≥23,则k 的取值范围是______________.。