数学解题之一题多解与多题一解
“多题同解”与“一题多解”在高中数学教学中的价值研究

y = s i n ( x + i ) 的图象上各点通过怎样的变换,
^ 丌 Biblioteka 、变式 教学 的理论 解 析
得到 y = s i n ( i + i ) 的 图象7. 如何把 y = s i n ( i
耳 1 , |
变式教学在具体 的教学过程 中可 以按 不 同的教学模式与内容 ,划分成三种类 型: 第一 , 定理 与概念型 ; 第 二, 例题 与习题型 ; 第三 ,教学与学法型 而本文所展开论述的 “ 多题 同解”与 “ 一题多解 ”就属于例题与 习题型 ,具体地 说,就是在解题过程 中,在 学生掌握基本解法后,通过采取改变题 目原 条件或题 目所设原情境等方 法,巩固学生对 知识的掌握程度与变通 能力,使学生能够对 问题产生不同方 向、不同层次和不同角度 的 思考 ,从而提 出新 的问题 、发现同题的多种 解法 ,让 思维不再局限在固有不变的模式和 范 围内。 1 . 针对 “ 多题同解 ”与 “ 一题 多解 ”的 界定 解题 是推进数学认知、培养学生 思维 能 力 的关键手段 ,更是数学教学的核心 内容 。 数 学家波利亚 曾说过 , 掌握数学就意味着擅 长解题 。教师 要想提 高学生 的解题 能力,必 须 能够 为他们提供模仿与实践的大量机会 。 高中数 学最常见 的变式 “ 一题多解 ”,指 的 是将原题 目设为 中心点,再 向四方进行拓展 和 深化 ,层层揭示数学的非本质与本质属 性。这类 教学可 以加深学生对 问题 的认知 , 减轻解题 的思维负担 ,并能在一定程度上激 发兴趣 ,开拓解题思路,实现提升发 散性 思 维的 目的,让学生更善于全面观察问题,综 合运用多方知识解题 。另一种从一道题 为出 发点,通过一系 列的逆 向或横 向的思维 改 变,将 原题扩展 为多类题 ,并对 “ 同根题 ” 进行研 究, 找 出共性, 形成完整 的知识 结构; 又或是归纳总结某个解题方法 ,将 其形成具 体技巧用以解 决其他题 目,实现 多题 归一的 目的。 这一种变式即是 “ 多题 同解 ”。 2 .两种教学方式在实践教 学中的现状 在新课改的推广过程 中,各种 变式教学 的理论纷纷涌现, “ 一题多解 ”与 “ 多题 同 解 ”的教 学理念逐渐深入人心 ,得到 了广泛 的认可 。调查结果显示 ,近 几年教师对变式 教学关注度明显上升,多数教师在教学过程 中经常使用 “ 一题多解 ”、 “ 一法 多用”、 “ 图形变式 ”以及 “ 引申教学 ”等方法 ,变 式教学逐渐成为高中主流教学方式 。经教学 实践证 明, 变式 教学作为一种有效 的、科学 的教学方式 ,虽不能为学习提供一条捷径 ,
“一题多解”与“多题一解”在高中数学教学中的价值研究与实践

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践随着中国教育制度的不断改革,无论是教育目的还是方式方法,都是为了让学生拥有更加合理更加有效的学习环境而做出改变。
其中高中数学的教育目标,也不再单是让学生学会如何运用数学公式进行计算,除了针对学生对数学的学习兴趣以外,在实际解题方面,要求培养学生拥有更多更灵活的解题思路和方式,以改变统一性的教学模式。
就高中数学解题中“一题多解”与“多题一解”的解题方式加以分析研究。
高中数学解题方式思维模式学生在进入高中后,改变的不仅仅是学习的内容,学生自身的心智和思维模式也有较大的改变。
学生在思想成长的阶段,会出现种种的问题,这些问题会直接影响学生的学习情况,特别是数学。
因为高中阶段数学的难度将进一步加大,内容增多,因此学生解题的方式应更加的多样化。
因此,高中数学教学,首先要从学生解题过程中的思维模式入手,同时改变课堂教学的方式和内容,以此提高学生的学习成果。
一、“一题多解”在数学教学中的价值与实践(一)价值与实践在未来的社会发展中需求的人才将是多元化、多样化的,统一性思维的教育模式已经不再适用于现代社会。
因此,在高中数学教学中,“一题多解”的教学理念,是以学生学习为主,改变以老师为主导地位的教学模式。
因为每一个学生的受教育情况、性格、思维模式都不相同,因此一个固定性的解题方式不能最有效的适用于每一个学生,所以在数学教学的解题过程中,老师应引导学生多角度的去分析问题,让学生去探究、发现多样化的解题方式。
“一题多解”的根本在于问题本身,老师在创设和选择问题时,首先应考虑到问题自身是否具备多样化的解答模式。
同时,在培养学生多样化解题思维时,应注意调动学生解题的积极性,被动、消极的解题态度很难让学生产生多样化的解题思维。
所以针对这方面数学问题的内容应结合学生平时感兴趣的东西,让学生自觉的参与到多样化的解题中。
如有的学生喜欢足球,老师就把其融入习题中,让学生用原本感到枯燥的公式,运算他喜欢的与足球相关的问题。
七年级上册数学一题多解

七年级上册数学一题多解在数学中,一题多解是非常有价值的学习方法,它不仅能提高学生的解题能力,还能培养学生的思维灵活性和创造性。
七年级上册的数学题目中,很多题目都可以采用多种解法来解答。
以下是对一题多解的简述:一题多解的意义加深理解:通过尝试不同的解题方法,学生可以更加深入地理解数学概念和原理。
培养思维:一题多解有助于培养学生的发散性思维,使他们能够从多个角度看待问题。
提高能力:学生在掌握多种解题方法后,能够更灵活地应对各种数学问题,提高解题效率。
示例:解一元一次方程以解一元一次方程为例,除了常规的移项、合并同类项等方法外,还可以采用以下方法:方法一:直接计算法对于简单的一元一次方程,如 2x=4,可以直接通过除法得到x=2。
方法二:移项法对于形如 3x+2=5x−3 的方程,可以通过移项将未知数集中在方程的一边,然后解出 x 的值。
方法三:合并同类项对于含有多个未知数项的方程,如 2x+3x=5,可以先合并同类项得到 5x=5,然后再解出 x。
方法四:乘除法对于系数不为1的一元一次方程,如 0.5x=2,可以通过乘法将系数化为1,从而解出 x。
实际应用在实际解题过程中,学生可以根据题目的特点和自己的掌握情况,选择最合适的解法。
通过一题多解的训练,学生可以逐渐提高解题的灵活性和准确性,为后续的数学学习打下坚实的基础。
总之,一题多解是数学学习中非常有价值的方法,值得学生在日常学习中多加实践和应用。
在数学中,一题多解是非常有价值的学习方法,它不仅能提高学生的解题能力,还能培养学生的思维灵活性和创造性。
七年级上册的数学题目中,很多题目都可以采用多种解法来解答。
以下是对一题多解的简述:一题多解的意义加深理解:通过尝试不同的解题方法,学生可以更加深入地理解数学概念和原理。
培养思维:一题多解有助于培养学生的发散性思维,使他们能够从多个角度看待问题。
提高能力:学生在掌握多种解题方法后,能够更灵活地应对各种数学问题,提高解题效率。
“一题多解”与“多题一解”在高中数学解题中的应用

“一题多解”与“多题一解”在高中数学解题中的应用作者:李凤悦来源:《儿童大世界·教学研究》 2017年第12期为了提高高中数学教学的有效性,开展数学教学要以学生发展为中心,通过设计和运用符合学生身心特点的教学方法,就能高效地实现教学目标,完成教学任务。
但是在目前的高中数学教学中,面对高考的压力,许多教师仍然采用“题海战术”的方式进行教学,这样不但无助于提高教学有效性,而且增加了学生的负担,使学生失去对数学的学习兴趣。
而“一题多解”与“多题一解”教学方法的运用,能有效提高教学质量,培养学生的数学解题能力。
一、“一题多解”与“多题一解”教学原则和模式(一)教学原则在高中数学教学中,运用“一题多解”与“多题一解”进行教学应坚持以下原则:一是目标导向原则,以教学目标为牵引来选择和使用该教学方法,将渗透新课改的教学理念,就能较好完成教学目标;二是分层教学原则,运用该教学方式,要能满足不同层次学生的学习需要,使所有学生的学习能得到提高;三是选题典型原则,在教学中要发挥每个习题的作用,就要选择具有典型的题目根据学情开展变式教学;四是主体参与原则,运用该方式进行教学,要注重发挥学生的主体作用,让学生在积极的参与过程中提高解题能力;五是探究学习原则,利用该方式进行变式教学,要有利于学生开展自主、合作探究学习,使学生的学习能力得到增强。
(二)教学模式运用“一题多解”与“多题一解”进行教学,应坚持如下基本模式:“设置例题——引导探究——培养思维——变式拓展——变式训练”这样五个基本环节,这几个环节不是简单的递进关系,它是复合交叉,从学情出发,进行分层教学和因材施教的有效教学模式。
例1在研究y=A sin(wxx+p)图像的画法时,可启发学生理解该函数图像与y=smx的图像之间的关系,并把该题目设计成“题组”的形式,开展变式解题研究:如,(l)y=sin(x+l)如何是从y=smx的图像变换出来的?( 2)y=2sinx如何是从y=smx的图像变换出来的?(3 )y=sin2x如何是从y=smx的图像变换出来的?(4)y=sin(2x-l)如何是从y=sin2x的图像变换出来的?(5)y=2sin(2x-l)如何是从y=smx的图像变换出来的?通过这样进行“一题多解”就能让学生完整掌握正弦函数的图像变换过程。
“一题多解”与“多题一解”在高中数学教学中的价值研究与实践

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践作者:钱万毅来源:《中学课程辅导·教师教育(上、下)》2017年第02期摘要:经新课标的多次改革,高中数学教学由从前的教师为主导,逐渐演变为教师的作用为指导、引导,而学生为主体的自主多样性课堂,这样的课堂可以帮助学生更加主动地学习,锻炼学生思考、组织、分析、归纳等的能力。
其中“一题多解”和“多题一解”在高中数学教学中有良好的价值,值得实践与推广。
关键词:高中数学;解题方式;思维模式中图分类号:G633.6 文献标识码: A 文章编号:1992-7711(2017)02-057-01学生在进入高中学习后,不仅仅面临着学习内容的改变,学习的难度上了一个更高的台阶,还面临着思想的成熟和思维方式的养成。
在这一阶段,学生要学会用发散思维和提纲挈领的方法处理问题,而数学的学习,对培养学生这些能力都非常有益,其中“一题多解”与“多题一解”正是培养这些能力的关键教学实践方法。
在此阶段,注重数学教学的方式方法,传递给学生正确的思考方式,锻炼学生正确的思考能力,对于学生今后学习能力以及生活能力的提高都尤为重要。
一、“一题多解”在数学教学中的价值研究与实践(一)价值在传统的数学教学模式中,通常是老师在讲台上教授数学公式、概念等内容,学生在下面记笔记。
学生和老师都认为掌握了大量的定理、定义,以及数学公式,就能做好题,做对题,就能够在考试中取得好成绩。
在此背景和环境下,培养学生的发散性思维是很必要的。
老师不应该对数学题目只做生硬的讲解,只讲一种“标准答案”,这样只会禁锢学生的思维。
长久下去,学生只会变成“书呆子”。
教师应该多注重教学的有效性,应在课堂上观察学生的状态,倾听学生的需求,倾听学生的提问与回答,倾听学生的讨论。
这样才能使课堂互动起来。
数学的学习,本来就应该是丰富多彩的。
这样一个锻炼逻辑思维的学科,教师在教授的过程中应当充分发挥学科特点,让学生学习了数学,真正能有所用。
例谈“一题多解”与“多题一解”之争

: , = 一 , = 一 ,0 = 1 2 贝有 : + = , + 6
C× ; 3 A A 一8 ; ‘
方法三 对 同 色 球 不 加 区 别 , 认 为 3 只 红 球 都 是 相 即 同的 , 5只 白球 也 都 是 一 样 的 , 所 有 的 球 一 一 摸 出 排 成 一 把 排, 每种 排 法 作 为 一 个 基 本 事 件 , 基 本 事 件 总 数 为 n= 则
把 所 有 的 球 都 一 一 摸 出 依 次 排 成 一 排 , 一 种 排 法 作 为 一 每
个 基本事件 , 么基本事 件 的总数 为 n= :其 中第 4个球 那 A,
C XA:
内 的球 数 , 根 据 题 意 得 : 则
是红球的排法数为 m c × ; = A, 所以P —_ ÷. = n = -
^
以上四道题 目, 内容各有不 同 , 在 解答 时都采 用 了 虽 但 同 一种 放 法 —— 插 空 法 .
;×A5
^7
詈÷ ・
方 法 四 只 考 虑 第 4次 摸 出 的 球 的 每 一 种 可 能 作 为 基 本 事 件 , 么 基 本 事 件 总数 为 n: 那 3十5=8 而 摸 出 红 球 的基 ,
●
解 题 技 巧 与 方 法
谁
。
鲁
。
.I _ ., .
・
一
题 臆
◎ 马俊 杰 ( 武威 二 中 730 ) 30 0
28 8 0种 排 法 .
一
插法 , 右端 插入 , 有 A 从 也 种 插 法 , 以 共 有 2×A 所 ×A =
【 要 】 高 中数 学 教 学 中 贯 彻 “ 题 多 解 ” “ 题 一 摘 在 一 与 多
论一题多解与多题一解

论一题多解与多题一解作者:刘建明来源:《科教导刊·电子版》2017年第36期摘要在数学的教学过程中,一题多解与多题一解经常被人提及,所谓一题多解,是通过不同的解题思路,采用不同的解题方法和不同的运算过程去分析求解,而多题一解是对同一类型或者能够采用统一的解题方法的题型,归纳总结出相应一体化的解题方案,达到以不变应万变的解题高度。
前者在于拓宽解题思路,发散思维,培养学生积极思考的解题素质,后者在于培养学生对同类题型进行归纳总结,提高解题能力。
关键词多题一解一题多解发散思维归纳总结中图分类号:G642 文献标识码:A克莱恩说过“数学是一种理性的精神,使人类的思维得以运用到最完善的程度。
”数学的魅力在于它的多样性,一道题目能够有不同的解决方式,即人们常说的一题多解;这两种数学思想对于激发学生的学习兴趣,发展学生的思维能力,进一步提高中学生的数学能力有着极其重要的作用。
1一题多解在中学数学中的运用一题多解是指一道数学题会有不同的解题方法和不同的运算过程去分析求解,这是数学教学中最常用于拓展学生发散思维的一种方法。
它在几何与代数教学中都有体现。
一题多解在几何中运用最广泛的是平面几何内容,例如以下这道题。
在△ABC中,AB=BC,D为AB上一点,E为AC延长线上一点,且BD=CE,DE连线交BC于F,求证:DF=EF证法1:过D做DG平行于AE,通过△DGF≌△ECF,从而得到DF=EF。
证法2:过E做DG平行于AB交BC延长线于G,通过证明△FDB≌△FEG从而得到DF=EF。
证法3:过B做BG平行于AE,过E做EG平行于BC,连接GF,通过证明BG=CE=BD,△BDF=△BGF,∠GEF=∠BFD=∠BFG=∠EGF,得证CF=GF=DF。
证法4:过D做DG平行于BC,过C做CG平行于BD,连接FG,与上面证法类似,得出DF=EF。
证法5:过E做EG平行于BC交AB延长线于G,通过证AG=AE,BG=CE=BD,由平行线等分线段定理得证DF=FE。
初中数学“一题多解与一题多变”教学研究

㊀㊀㊀㊀㊀数学学习与研究㊀2023 08初中数学一题多解与一题多变教学研究初中数学 一题多解与一题多变 教学研究Һ陈㊀斌㊀(昆山市新镇中学,江苏㊀苏州㊀215300)㊀㊀ʌ摘要ɔ 一题多解与一题多变 是数学教师所要关注的重要内容,这两种解题训练模式的构建可以突破原有解题教学的结构,帮助学生更加深入地认识数学习题的解题方法,这对其解题能力的提升与发展有着重要的意义.为了构建 一题多解与一题多变 教学课堂,教师需要对其价值进行分析研究,再从实际教学的开展出发探寻有效教学设计的方法,对初中数学 一题多解与一题多变 教学的开展方法进行探究.ʌ关键词ɔ初中数学;一题多解;一题多变;教学研究数学是初中阶段学生所要学习的重要学科,在中考中占有重要的分数比例,为了帮助学生成功通过中考的考验,教师需要从实际出发进行数学习题的筛选,引领学生进行 一题多解 的研究,带领学生思考解题的多种方法,再通过习题变形设计的研究,来设计变式问题,以此推动学生的解题思考,发展学生的解题能力.在实际教学中,教师可以围绕解析原题结构㊁融合数学思想㊁设置多解训练㊁构建多变训练㊁引领学生归纳五个方面来开展教学.一㊁ 一题多解与一题多变 的价值分析一题多解 是多元解题方法的显现,其可以让学生针对一道习题进行多种解题方法的思考.一般而言,每一种解题方法都印证着一条不同的解题思路.多解题的展示与引导解析,可以帮助学生了解习题的解法与其背后隐含的解题思维,进而开阔学生的解题视野,提升学生的思维灵活度,对学生的发展有着重要的意义.一题多变 是变式思想的显现,在 一题多变 的训练设计中,教师将选取典型的习题作为原式,通过题目条件调整㊁问题新拟㊁题目信息倒置等方法将原本的习题转化为多道表现形式不同的习题.此时,教师就可以从习题的不同特征出发引领学生进行训练,并发展学生的解题能力.在这一类习题的解题中,教师可以引导学生对习题的特征进行归纳,并围绕习题的快速解答进行建模设计,构建合理化的解题模型.二㊁ 一题多解与一题多变 教学的开展方法(一)解析原题结构,分析习题特征原题的解析与研究是帮助学生进行 一题多解或一题多变 的基础,教师要展示原题,帮助学生认识原题的突出特点,并引领学生深入解析原题.在实际的展示过程中,教师需要利用课前时间进行检索,搜集教学展示所需的习题,并在课上对习题进行展现,重点围绕习题的考查点进行分析,解析相关习题解答需要的条件.如,在实际教学中,教师便可以为学生展示如下原题:例题㊀两个连续奇数的积是323,求出这两个数.分析㊀通过研究可以发现,习题考查的内容为一元二次方程的应用,习题的解题关键是条件中给出的描述语 两个连续奇数的积是323 .学生可以从一元二次方程的不同未知数设列出发得出多种不同的解法.其中,教师可以为学生展示 将较小的奇数设为x 将较大的奇数设为x 将x设为任意整数 将两个连续奇数设为x-1和x+1 ,这四种设列方法可以对应四种不同的解题方法.四种解题方法看似都是对一元二次方程的应用,但其切入思考的角度存在差异.通过这一展示,教师便可以引导学生对题目进行系统的认识与理解,为之后 一题多解和一题多变 的思索研究做好铺垫.为了让学生了解 一题多变 的意义,使其了解相关题目的特点,教师可以选择原题进行调整,构建一些简单的变式题.在变式题的设计上,针对该习题,教师通过调整问法的形式即可生成多个变式,如教师可以将习题改制为 两个连续奇数的积是399,求出这两个数 ,通过调整题干的数字大小来实现对题目的简单变更,让学生进行解答.教师也可以将习题改制为 两个连续偶数的积是440,求出这两个数 ,通过题目条件的对应变更,生成与原题相似的变式题.在完成变式题的设计后,教师可将其展示给学生,让学生就变式题与原题的差别进行分析,使其探析题目发生的变化.(二)融合数学思想,研究解题方法解题方法的掌握与否直接关系到学生解题能力的发展,教师要关注 一题多解 的教学,从解题方法的内涵思想入手进行解析,让学生联系解题方法进行分析,找出方法中隐含的解题理念.在实际教学中, 一题多解 的研究需要教师为学生创建相应空间,帮助学生探寻解答题目的多种解法.在实际教学中,教师要从学生的发展出发选择适于学生进行多解探究的例题,并结合问题的解法分析进行多方面㊀㊀㊀㊀数学学习与研究㊀2023 08展示.如,在实际教学中,教师便可以为学生展示如下习题,引导学生从习题的特点出发来研究相关题目的多种解法:例题㊀某人买13个鸡蛋㊁5个鸭蛋㊁9个鹅蛋,共用去9.25元;若买2个鸡蛋,4个鸭蛋,3个鹅蛋,则会用3.20元,若每种蛋只买一个,需要用多少钱?分析㊀通过简要分析可以得出该题目考查的是三元一次方程组的内容,但由于题目中只提供了两组等量关系,因此若想分别求出三种蛋的单价是不现实的,但题目所求的内容为三种蛋的共价,所以可以通过式子的变形来求解.在明确了这一思路后,学生就可以围绕学过的数学方法选择方向,寻找有效列式解答的方法.方法一㊀凑整法解:设鸡㊁鸭㊁鹅三种蛋的单价分别为x元㊁y元㊁z元,根据题意可以列出一个由两个式子组成的方程组:13x+5y+9z=9.25㊀①2x+4y+3z=3.20㊀②{通过将方程式相加化简的方式可以得到新式子,①+②3:5x+3y+4z=4.15㊀③将②和③相加可以得到7x+7y+7z=7.35,化简可以得到x+y+z=1.05.通过分析可以发现,这一方法应用了化归的数学思想,利用这一思想可以转换与调整题目的条件,让算式简化,从而得出可以计算解答的式子.在讲授这一解题方法时,教师要注意开展数学思想的拓展活动,让学生了解化归思想及其在解题中的实际应用.方法二㊀主元法这一方法是对函数方程思想与化归思想的融合运用,其核心在于将方程的三个未知数进行区别看待,将x,y作为未知数处理,将z视为一个常数,以此对方程变形:通过设列未知数的方式得出方程组:13x+5y+9z=9.25㊀①2x+4y+3z=3.20㊀②{此时视x,y为主未知数,z为常数,使用移项代数的方法可以得到x=0.5-0.5z,y=0.55-0.5z,此时,x+y+z=(0.5-0.5z)+(0.55-0.5z)+z=1.05.通过分析可以发现,主元法实质上是对函数与方程的运用,选择适当的字母作为主元可以起到化难为易的作用.在上述习题解答中所使用的主元法,其特征是将未知数进行区别看待,形成一个特殊的数学关系,符合方程思想的构成要求,即从问题中的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程(组)㊁不等式(组)㊁或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解.在实际教学中,教师要为学生解读函数方程思想的构成,并展现函数方程思想在常见问题中的运用实例.方法三㊀参数法通过设列未知数的方式得出方程组:13x+5y+9z=9.25㊀①2x+4y+3z=3.20㊀②{再设x+y+z=k,此时可以得到新的方程组:13x+5y+9z=9.25㊀①2x+4y+3z=3.20㊀②x+y+z=k㊀③ìîíïïï观察式子之间的关系,得①-②ˑ3可以消去z,再化简可得x-y=-0.05㊀④③ˑ3-②可以得到x-y=3k-3.20㊀⑤此时通过式子④和⑤可以得到3k-3.20=-0.05,所以k=1.05,此时可以得到x+y+z=1.05.解析㊀上述三种方法对应了三种解题思路,而每一种解题思路还可以延伸出新的解题方法,限于篇幅此处不再赘述,教师在进行解析教学时,可以让学生尝试着寻找额外的习题解答方法.参数法是指在解题过程中通过引入一些与题目研究的数学对象发生联系的新变量(参数),再进行分析和综合,从而解决问题的方法.这一方法从数学思想的角度来看,其同样运用了化归的数学思想,通过参数的引入,用参数代指一部分数学量,从而将算式转换为有利于解答的形式,从而实现有效解答.通过上述三种解题方法与其对应数学思想的解读,学生就可以在不同解法的研究中认识数学思想的拓展应用价值,获得解题意识和认知的提升.为了发展学生的解题能力,让 一题多解 真正发挥作用,教师还需要为学生设计针对性的练习,用练习推动学生解题能力的提高与发展.(三)设置多解训练,推动学生探究一题多解 的训练其目的在于帮助学生认识多种解题方法,从解题方法的探究入手,带领学生认识数学习题解答的多种思想.在实际教学中,教师要考虑学生的发展情况,选取难度合理且解法较多的习题进行展示,构建有效的多解训练,帮助学生学习解答问题的多种解法.如,在实际教学中,教师便可以给学生展示如下习题:练习题1㊀已知a,b满足ab=1,那么1a2+1+1b2+1=.练习题2㊀已知x+y=1,求x3+y3+3xy的值.㊀㊀㊀㊀㊀数学学习与研究㊀2023 08练习题3㊀甲㊁乙㊁丙三种货物,若甲3件㊁乙7件㊁丙1件共需3.15元;若甲4件㊁乙10件㊁丙1件共需4.20元.请问:买甲㊁乙㊁丙各一件需要多少钱?在展示了上述练习题后,教师需要引导学生解答题目,并要求每名学生至少找出两种解法.在这一环节,为了渗透分层理念,教师可以要求发展较好的学生最少找出3种解题方法,并要求其对解题方法的思路进行整理分析,以便在班级中进行汇报与展示.在学生实际解题过程中,教师要关注学生的解题情况,分析学生的思维拓展能力发展情况,并借助引导性的语言对学生进行点拨,推动学生主动思考.(四)构建多变训练,促进学生拓展一题多变 的训练需要教师秉持 万变不离其宗 的核心思想,对习题的题干信息㊁提问方式㊁条件构成进行调整,并从学生的实际解答出发来引领学生分析相关的变式题组.在学生解答前,教师需要围绕解题模型的建立与公共解题思路的明确来提出问题,引导学生在解答问题的同时进行思考.为确保变式题具有较高的质量,教师在设计变式题时要从原式的各个角度思考延伸,选择不同的方向来设置对应的题目.如,在实际教学中,教师便可以展示如下习题:原式㊀依次连接任意四边形各边中点所得的四边形可称为中点四边形.求证平行四边形的中点四边形是平行四边形.变式一㊀按照原式所给条件,求证矩形的中点四边形是菱形.变式二㊀按照原式所给条件,求证正方形的中点四边形是正方形.变式三㊀一个四边形的中点四边形是平行四边形,请问这个四边形可能是什么图形?原式㊀一个宽为50cm的长方形图案由10个相同的小正方形拼成,试求出每个小正方形的边长.变式一㊀一个宽为50cm的长方形图案由20个相同的小正方形拼成,试求出每个小正方形的边长.变式二㊀一个宽为100cm的长方形图案由10个相同的小正方形拼成,试求出每个小正方形的边长.变式三㊀一个宽为50cm㊁长为100cm的长方形图案由8个相同的小正方形拼成,试求出每个小正方形的边长.在实际教学中,教师在给出变式练习后,要引导学生对相关的题目进行分析㊁求解.在学生解答的过程中,教师要关注学生的解题情况,并予以帮助与引导,让学生总结各个变式题与原题的不同之处.对于学生给出的答案,教师要认真判定,并引导学生回顾与整理.在学生完成变式题的解答后,教师可以引导学生进行拓展思考,让其尝试着对原式进行变形,然后采用同桌互换的方式来完成相关习题的解答.在这一过程中,学生的思维会变得更为开阔,其创造能力也能得到培养与发展.(五)引领学生归纳,培养模型意识模型意识与能力是数学核心素养的关键构成,新课标强调对学生数学核心素养的培养.模型意识与能力的培养关系到学生解题能力的发展,具有较强建模能力的学生可以更好地实现一类习题的解答.为了培养学生的模型意识与能力,教师可以引导学生对一题多变习题进行分析思考,让其对比原式与变式题,逐一分析其差异,对相关习题进行二次分类.在分类完成后,教师可以引导学生对一类习题的解题方法进行系统总结与整理,构建解答相关题目的有效数学模型.如,在实际教学中,教师便可以依托一题多变教学的进行,引领学生对数学一题多变习题的原式与变式题进行归纳,从公共解答思路中总结出解题的通用方法,建立解题模型.在这一过程中,为了发挥学生群体的主动性,让其进行协作探究,教师可以从学生发展入手划分学生小组,并布置针对性的探究任务,让其合作完成整理探究任务.学生在探究思考中,其能力可以得到逐步的提升与发展.结㊀语综上所述, 一题多解与一题多变 是开展数学解题教学的一种有效模式.通过解题教学的进行,教师可以帮助学生实现解题理念的发展,有效地推动其解题能力水平的提升.在实际的教学中,教师需要进行习题的解析研究,从解题方法的多元介绍与习题的变式展示两个方面进行系统构建,帮助学生认识并掌握相关习题的有效解答方法.在学生了解了相关的内容后,教师还要依托教学的进行,推动学生进行归纳,发展并培养其模型意识.ʌ参考文献ɔ[1]黄跃惠.一题多解与一题多变在初中数学教学中的运用[J].试题与研究,2019(28):145.[2]王茁力.初中数学 一题多解 的教学价值[J].中学数学教学参考,2018(Z3):99-100.[3]罗春梅. 一题多解 与 一题多变 在初中数学教学中的应用 以‘人教版九年级上册第二十四章圆中两道习题“为例[J].散文百家,2019(01):162.[4]秦小刚.初中数学一题多解教学策略分析[J].数学大世界(中旬),2021(01):21.[5]张秀霞.一题多解与 一题多变 在人教版初中数学教学中的应用[J].智力,2020(10):50-51.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学解题之一题多解与
多题一解
The manuscript was revised on the evening of 2021
浅谈一题多解培养学生发散思维
摘要
本文意在明确一题多解中学生思维能力的发展,从而使教师在数学解题教学过程中更加重视解题方法对学生思维和发散思维的培养。
本文通过两道典型例题对一题多解型的讲解,通过不同的例题可以达到对学生思维能力的训练培养的目的。
通过一题多解,可以开阔学生思路、发散学生思维,让学生学会多角度分析和解决问题;对一题多解灵活运用,对培养学生发散思维,启发学生独立思考具有较好的指导意义。
关键词:一题多解发散思维思维能力
一题多解对学生思维能力的培养
同一数学问题用不同的数学方法可以达到异曲同工之效,我们称之为“一题多解”。
其特点就是对同一个问题从不同的角度、不同的结构形式、不同的思维方式去解答同一个问题。
一题多解能快速整合所学知识,重要的是培养学生细致的观察力、丰富的联想力和独立思考、解决问题的能力。
(一)提高分析、解决问题的能力
一题多解,能够使学生开阔思维,把学过的知识和方法融合在一起,提高学生分析问题和解决问题的能力,培养学生独立思考的能力。
例1.
甲乙两地相距450千米。
客车和货车同时从两地相向而行,客车行完全程需10小时,货车行完全程需15小时,相遇时两车各行多少千米?
解法一:用路程问题的解法。
根据速度=路程÷时间可以求出客车的速度为450÷10=45(千米/小时),货车的速度为450÷15=30(千米/小时)。
(1)几小时后两车相遇:450÷(45+30)=6(小时)
(2)相遇时客车行了多少千米:45×6=270(千米)
(3)相遇时货车行了多少千米:30×6=180(千米)
解法二:用比例分配的方法。
两车所需的时间之比是:10:15,根据距离一定,速度与时间成反比例关系进行解答。
(1)两车所需的时间之比是:10:15=2:3
所以两车速度之比是:3:2
(2)两车运行时间相同,所以路程与速度成正比例,即两车行驶路程之比是:3:2
(3)相遇时客车行了多少千米:450×(3
5
)=270(千米)
(4)相遇时货车行了多少千米:450×(2
5
)=180(千米)答:相遇时客车行了270千米,货车行了180千米。
解法三:工程问题的方法解决
客车行完全程要10小时,每小时行全程的1/10
货车行完全程需15小时,每小时行全程的1/15
相遇时间为:1÷(1/10+1/15)=6(小时)
6小时客车行了全程的:6×1/10=3/5
所以客车行了:450×3/5=270(千米)
所以货车行了:450-270=180(千米)...
解法一:求出两车相遇时间,进而求出相遇时两车各自的行驶路程,这种方法是处理类似行问题最为一般的方法,也是最为普遍的解决方法,是解决更为复杂的工程问题的基础。
而解法二是通过对公式路程=速度×时间的灵活运用,只需求出两车的速度之比,进而运用比例对两车各自的行程进行分配,可以说是对公式的升华。
解法三用工程问题来解决,直接把路程看做1,通过效率来解决问题。
(二)提高多角度分析能力
一题多解可以培养学生灵活、敏捷的思维能力,让学生学会对问题进行多角度、多层次的分析,达到对问题的全面理解,进而迅速准确的解决问题。
例2.
6人站成一排,若甲不能站排头,乙不能站排尾,则不同的站法有多少种? 解法二:甲在尾55A =120
甲不在未(自然也不在头) 14
C 14C 44A =4⨯4⨯24=384 共:55A +14C 14C 44A =120+384=504
解法二:分析:设6人为ABCDEF
甲不在A处,如甲占F位,则乙可在ABCDE,5处任占一位,其它4人可在余下的4处各占一位,即:5⨯4⨯3⨯2⨯1=120;如甲在BC DE,4处任占一位,则乙只能在BCDE除去一位或A共4处任占一位,其它4人可在余下的4处各占一位,即:4⨯4⨯4⨯3⨯2⨯1=38 4;所以一共有120+384=504(种)站法。
5⨯4⨯3⨯2⨯1+4⨯4⨯4⨯3⨯2⨯1=504
答:共有504种站法。
解法三:(1)甲站排尾,乙有5种站法
(2)甲站中间的4个空有4种站法,乙除了甲站的空和排尾还有的空还有4种站法,共4⨯4=16种
(3)甲乙共有5+16=21种站法
(4)剩余4人共有4⨯3⨯2⨯1=24种站法
(5)所以共有21⨯24=504种站法
解法四:所有可能的排法有:6
A =6!=720
6
再考虑特殊情况.
甲在排头,乙在排尾的可能减去即可.
(1)甲在排头,乙不在排尾有4⨯4
A=4⨯4!=96
4
(2)甲不在排头,乙在排尾有4⨯4
A=4⨯4!=96
4
(3)甲在排头,乙在排尾有4
A=4!=24
4
所以甲不能站排头,乙不能站排尾排法有720-96-96-24=504
6!-5!-5!+4!=504
性。
这种多知识点的解法,让学生真正体会到了数学的魅力,更深刻的理解了“条条大路通罗马”的寓意,对培养学生的发散思维能力起到了积极的影响作用。
参考文献:
王平,组织一题多解,培养学生发散思维,雁北十分学院学报,2001年第17卷第6期.
2、贾凤梅,中学数学教学要注重培养学生的数学思维能力,教育理论与实践,2009年第29卷.
3、杨玉东,徐文彬,数学解题中划归过程的心理学分析,浙江师范大学学报,2003年第26卷第3期.
4、张宏,从一道试题的多解性看思维的探究策略,中学数学研究,2 004年第2期.
5、董雪君,一题多解与发散性思维,滨州师专学报,1993年第9卷第2,4期.
6、张水芳,运用一题多解教学法发展学生创造性思维能力,宜春学院学报, 2008年第30卷.
7、彭家寅,卿利,深入数学本质培养发散思维,内江师范学院学报, 2002年第17卷第2期.。