数据结构_课件_堆与堆排序
数据结构教程 第九章 排序

9.2.3 希尔排序
3.算法
void ShellSort() { gap=n/2;//初次增量取序列元素个数n的一半为步长 while(gap>0) { for(i=gap+1;i<=n;i++) { j=i-gap; while(j>0) { if(r[j]>r[j+gap]) { x=r[j];r[j]=r[j+gap];r[j+gap]=x; j=j-gap; }//对子序列作直接插入排序 else j=0; } } gap=gap/2;}//每次减半,直至步长为1 上一页 }
上一页
下一页
9.3 快速排序法
9.3.2 快速排序
3【例9-5】对数据序列:70, 75, 69, 32, 88, 18, 16, 58进行快速排序如图9-3所示。 4.算法
void QuickSort(int low, int high)//递归形式的快速排序 { int pivotpos; if(low<high) { pivotpos=Partition(low,high); QuickSort(low,pivotpos-1);//对低子表递归排序 QucikSort(pivotpos+1,high);//对高子表递归排序 } }
9.2 插入排序
9.2.2 二分插入排序
3.算法
void BinsSort() { for(i=2;i<=n;i++) { r[0]=r[i];low=1;high=i-1;//将r[i]暂存到r[0] while(low<=high) //在r[low..high]中折半查找有序插入的位置 { m=(low+high)/2;//折半 if(r[0].key<r[m].key) high=m-1;//插入点在低半区 else low=m+1;//插入点在高半区 } for(j=i-1;j>high+1;--j) r[j+1]=r[j];//记录后移 r[high+1]r[0];//插入 } 上一页 下一页
(2024年)《数据结构》全套课件

30
树形数据结构的查找算法
二叉排序树的查找
从根节点开始,若查找值小于当前节点 值,则在左子树中查找;若大于当前节 点值,则在右子树中查找。
VS
平衡二叉树的查找
在保持二叉排序树特性的基础上,通过旋 转操作使树保持平衡,提高查找效率。
2024/3/26
31
散列表的查找算法
散列函数的设计
将关键字映射为散列表中位置的函数。
过指针来表示。
链式存储的特点
逻辑上相邻的元素在物理位置上 不一定相邻;每个元素都包含数
据域和指针域。
链式存储的优缺点
优点是插入和删除操作不需要移 动元素,只需修改指针;缺点是
存储密度小、空间利用率低。
2024/3/26
11
线性表的基本操作与实现
插入元素
在线性表的指定位 置插入一个元素。
查找元素
在线性表中查找指 定元素并返回其位 置。
自然语言处理的应用
在自然语言处理中,需要处理大量的文本数据,数据结构中的字符 串、链表、树等可以很好地支持文本的处理和分析。
41
数据结构在计算机网络中的应用
2024/3/26
路由算法的实现
计算机网络中的路由算法需要大量的数据结构支持,如最短路径 树、距离向量等。
网络流量的控制
在计算机网络中,需要对网络流量进行控制和管理,数据结构中的 队列、缓冲区等可以很好地支持流量的控制。
37
06
数据结构的应用与拓展
2024/3/26
38
数据结构在算法设计中的应用
01
作为算法设计的基 础
数据结构为算法提供了基本操作 和存储方式,是算法实现的重要 基础。
02
提高算法效率
数据结构第9章 排序

数据结构第9章排序数据结构第9章排序第9章排名本章主要内容:1、插入类排序算法2、交换类排序算法3、选择类排序算法4、归并类排序算法5、基数类排序算法本章重点难点1、希尔排序2、快速排序3、堆排序4.合并排序9.1基本概念1.关键字可以标识数据元素的数据项。
如果一个数据项可以唯一地标识一个数据元素,那么它被称为主关键字;否则,它被称为次要关键字。
2.排序是把一组无序地数据元素按照关键字值递增(或递减)地重新排列。
如果排序依据的是主关键字,排序的结果将是唯一的。
3.排序算法的稳定性如果要排序的记录序列中多个数据元素的关键字值相同,且排序后这些数据元素的相对顺序保持不变,则称排序算法稳定,否则称为不稳定。
4.内部排序与外部排序根据在排序过程中待排序的所有数据元素是否全部被放置在内存中,可将排序方法分为内部排序和外部排序两大类。
内部排序是指在排序的整个过程中,待排序的所有数据元素全部被放置在内存中;外部排序是指由于待排序的数据元素个数太多,不能同时放置在内存,而需要将一部分数据元素放在内存中,另一部分放在外围设备上。
整个排序过程需要在内存和外存之间进行多次数据交换才能得到排序结果。
本章仅讨论常用的内部排序方法。
5.排序的基本方法内部排序主要有5种方法:插入、交换、选择、归并和基数。
6.排序算法的效率评估排序算法的效率主要有两点:第一,在一定数据量的情况下,算法执行所消耗的平均时间。
对于排序操作,时间主要用于关键字之间的比较和数据元素的移动。
因此,我们可以认为一个有效的排序算法应该是尽可能少的比较和数据元素移动;第二个是执行算法所需的辅助存储空间。
辅助存储空间是指在一定数据量的情况下,除了要排序的数据元素所占用的存储空间外,执行算法所需的存储空间。
理想的空间效率是,算法执行期间所需的辅助空间与要排序的数据量无关。
7.待排序记录序列的存储结构待排序记录序列可以用顺序存储结构和和链式存储结构表示。
在本章的讨论中(除基数排序外),我们将待排序的记录序列用顺序存储结构表示,即用一维数组实现。
《数据结构排序》课件

根据实际需求选择时间复杂度和空间 复杂度最优的排序算法,例如快速排 序在平均情况下具有较好的性能,但 最坏情况下其时间复杂度为O(n^2)。
排序算法的适用场景问题
适用场景考虑因素
选择排序算法时需要考虑实际应 用场景的特点,如数据量大小、 数据类型、是否需要稳定排序等 因素。
不同场景适用不同
算法
例如,对于小规模数据,插入排 序可能更合适;对于大规模数据 ,快速排序或归并排序可能更优 。
排序的算法复杂度
时间复杂度
衡量排序算法执行时间随数据量增长而增长的速率。时间复杂度越低,算法效 率越高。常见的时间复杂度有O(n^2)、O(nlogn)、O(n)等。
空间复杂度
衡量排序算法所需额外空间的大小。空间复杂度越低,算法所需额外空间越少 。常见的空间复杂度有O(1)、O(logn)、O(n)等。
在数据库查询中,经常需要对结果进行排序,以便用户能够快速找到所需信息。排序算 法的效率直接影响到查询的响应时间。
索引与排序
数据库索引能够提高查询效率,但同时也需要考虑到排序的需求。合理地设计索引结构 ,可以加速排序操作。
搜索引擎中的排序
相关性排序
搜索引擎的核心功能是根据用户输入的 关键词,返回最相关的网页。排序算法 需要综合考虑网页内容、关键词密度、 链接关系等因素。
VS
广告与排序
搜索引擎中的广告通常会根据关键词的竞 价和相关性进行排序,以达到最佳的广告 效果。
程序中的排序应用
数组排序
在程序中处理数组时,经常需要对其进行排 序。不同的排序算法适用于不同类型的数据 和场景,如快速排序、归并排序等。
数据可视化中的排序
在数据可视化中,需要对数据进行排序以生 成图表。例如,柱状图、饼图等都需要对数 据进行排序处理。
数据结构 排序

2019/9/7
30
10.4.1 简单选择排序
待排记录序列的状态为:
有序序列R[1..i-1] 无序序列 R[i..n]
有序序列中所有记录的关键字均小于无序序列中记 录的关键字,第i趟简单选择排序是从无序序列 R[i..n]的n-i+1记录中选出关键字最小的记录加入 有序序列
2019/9/7
5
排序的类型定义
#define MAXSIZE 20 // 待排序记录的个数
typedef int KeyType;
typedef struct
{ KeyType key;
InfoType otherinfo; ∥记录其它数据域
} RecType;
typedef struct {
RecType r[MAXSIZE+1];
分别进行快速排序:[17] 28 [33] 结束 结束
[51 62] 87 [96] 51 [62] 结束
结束
快速排序后的序列: 17 28 33 51 51 62 87 96
2019/9/7
26
自测题 4 快速排序示例
对下列一组关键字 (46,58,15,45,90,18,10,62) 试写出快速排序的每一趟的排序结果
final↑ ↑first
i=8
[51 51 62 87 96 17 28 33]
final↑ ↑first
2019/9/7
14
希尔(shell )排序
基本思想:从“减小n”和“基本有序”两 方面改进。
将待排序的记录划分成几组,从而减少参 与直接插入排序的数据量,当经过几次分 组排序后,记录的排列已经基本有序,这 个时候再对所有的记录实施直接插入排序。
数据结构ppt课件完整版

针对有序数据集合,每次通过中间元素将 待查找区间缩小为之前的一半,直到找到 元素或区间为空。
哈希查找
树形查找
通过哈希函数将数据映射到哈希表中,实 现快速查找。
如二叉搜索树、平衡树等,通过树形结构实 现高效查找。
排序算法分类及实现原理
插入排序
将待排序元素逐个插入到已排序序列中,直到所有元素均插入完毕。
由n(n>=0)个具有相同类型 的数据元素(结点)a1,a2,
...,an组成的有序序列。
同一性
每个元素必须是同一类型的数 据。
有序性
元素之间具有一对一的前驱和 后继关系,即除首尾元素外, 每个元素都有一个前驱和一个 后继。
可变性
线性表的长度可变,即可以插 入或删除元素。
顺序存储结构与链式存储结构比较
定义
用一段连续的存储单元依次存储线性 表的数据元素。
优点
可以随机存取表中任一元素,且存取 时间复杂度为O(1)。
顺序存储结构与链式存储结构比较
• 缺点:插入和删除操作需要移动大量元素,时间 复杂度高;需要预先分配存储空间,容易造成空 间浪费。
顺序存储结构与链式存储结构比较
定义
用一组任意的存储单元存储线性 表的数据元素(这组存储单元可 以是连续的,也可以是不连续的
查找操作
查找指定元素的位置。
遍历操作
访问线性表中的每个元素。
销毁操作
释放线性表占用的存储空间。
03
栈和队列
栈定义及特点
栈(Stack)是一种特殊的线性数据结构,其数据的存 取遵循后进先出(LIFO, Last In First Out)的原则。 栈的特点
具有记忆功能,能保存数据的状态。
栈的基本操作包括入栈(push)、出栈(pop)、查 看栈顶元素(top)等。 只能在栈顶进行数据的插入和删除操作。
数据结构(c言版)课件_第八章_排序_(严蔚敏、吴伟民编_清华大学出版社)

算法描述
算法评价
时间复杂度
记录移动次数
最好情况:0
最坏情况:3(n-1)
比较次数: n1 (n i) 1 (n2 n)
i 1
2
T(n)=O(n²)
空间复杂度:S(n)=O(1)
Ch8_6.c
堆排序
堆的定义:n个元素的序列(k1,k2,……kn),当且仅当 满足下列关系时,称之为堆
增量序列取法 无除1以外的公因子 最后一个增量值必须为1
8.2 交换排序
冒泡排序
排序过程
将第一个记录的关键字与第二个记录的关键字进行比较,若 为逆序r[1].key>r[2].key,则交换;然后比较第二个记录与第 三个记录;依次类推,直至第n-1个记录和第n个记录比较为 止——第一趟冒泡排序,结果关键字最大的记录被安置在最 后一个记录上
二趟排序:13 4 48 38 27 49 55 65 97 76
Ch8_3.c
希尔排序特点
子序列的构成不是简单的“逐段分割”,而是将相隔某个增 量的记录组成一个子序列
希尔排序可提高排序速度,因为 分组后n值减小,n²更小,而T(n)=O(n²),所以T(n)从总体 上看是减小了
关键字较小的记录跳跃式前移,在进行最后一趟增量为1 的插入排序时,序列已基本有序
9776
7163
6257 13
4390 27
3308
38
9173 76
7267 13
6350 27
49 30
49
927 13
7360 27
65 30
65
9370 76
2977 30 76
3初0 9第7 第 第 第 第 第 始一二三四五六 关趟趟趟趟趟趟 键 字
最新信息学奥赛一本通-第3章--第3节-堆及其应用(C++版)精品ppt课件精选全文

for(i = 1 ; i <= n ; i++) {
cin >> x; put(x); } for(i = 1 ; i < n ; i++) { x = get(); y = get(); ans += x + y; put(x + y); } cout << ans << endl; }
//建堆,其实直接将数组排序也是建堆方法之一
即:
get和put操作的复杂度均为log2n。所以建堆复杂度为nlog2n。合 并果子时,每次需要从堆中取出两个数,然后再加入一个数,因此一 次合并的复杂度为3log2n,共n-1次。所以整道题目的复杂度是nlog2n。
【参考程序】
#include <iostream> #include <cstdio> using namespace std; int heap_size, n; int heap[30001]; void swap(int &a, int &b) //加&后变量可修改 {
if(heap[now] >= heap[next]) break;
swap(heap[now], heap[next]);
now = next;
}
}
使用C++标准模板库STL(需要头文件<algorithm>):
void put(int d)
{
heap[++heap_size] = d;
//push_heap(heap + 1, heap + heap_size + 1);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程为“筛选”
97 13 27 38 49 97 76 65 97 27 49
输出根并以最后一个元素代 替之;
49 97
比较其左右孩子值的大小, 并与其中较小者交换; 小根堆
13
堆调整与数组变化的关系
加入元素时向上调整 删除元素时向下调整
加入元素
Fig. 27-2 The steps in adding 85 to the maxheap of Figure 27-1a
创建堆
时间复杂度
该方法创建堆的时间复杂度为O (n log n)
第二种方法:自底向上创建堆
可以看出: 对一个无序序列反复“筛选”就可以得到一个堆
即:从一个无序序列建堆的过程就是一个反复“筛选”
的过程。
那么:怎样判断一个序列是一个堆?或者说,建堆操
作从哪儿着手?
显然:
单结点的二叉树是堆;在完全二叉树中所有以叶子
Adding an Entry----代码见课本203
Algorithm for adding new entry to a heap
Algorithm add(newEntry) if (the array heap is full) Double the size of the array newIndex = index of next available array location parentIndex = newIndex/2 // index of parent of available location while (newEntry > heap[parentIndex]) { heap[newIndex] = heap[parentIndex] // move parent to available location // update indices newIndex = parentIndex parentIndex = newIndex/2 } // end while
Adding an Entry
Begin at next available position for a leaf
Follow path from this leaf toward root until
find correct position for new entry As this is done
Analysis
We visualize the worst-case time of a downheap with a proxy path that
goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path) Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is O(n) Thus, bottom-up heap construction runs in O(n) time Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort
删除元素
Fig. 27-5 The steps to remove the entry in the root of the maxheap of Fig. 27-3d
Removing the Root
Fig. 27-6 The steps that transform a semiheap into a heap without swaps.
Move entries from parent to child Makes room for new entry
Adding an Entry
Fig. 27-3 A revision of steps shown in Fig. 27-2 to avoid swaps.
Adding an Entry
Fig. 27-4 An array representation of the steps in Fig. 27-3 … continued →
Adding an Entry
Fig. 27-4 (ctd.) An array representation of the steps in Fig. 27-3.
Heapsort
Fig. 27-9 A trace of heapsort (d – f)
Heapsort
Fig. 27-9 A trace of heapsort (g – i)
Heapsort
Fig. 27-9 A trace of heapsort (j – l)
堆排序算法实现
课本290页
有序序列,这个过程称之为堆排序。
实现堆排序需解决两个问题:
1、如何由一个无序序列建成一个堆?
2、如何在输出堆顶元素后,调整剩余元素为一个新
的堆?
下面先讨论第二个问题:
7.5.2 堆和堆排序
一、堆和堆排序的概念 ☞ 二、堆的调整 三、建堆 四、堆排序
如何在输出堆顶元素后,调整剩余元素为一个新 的堆? 解决方法: 输出堆顶元素之后,以堆中最后一个元素替代 之;然后将根结点值与左、右子树的根结点值进行比 较,并与其中小者进行交换;重复上述操作,直至叶 子结点,将得到新的堆,称这个从堆顶至叶子的调整
二叉树中任一非叶子结点均小于(大于)它的孩子结点
例: 下面序列为堆,对应的完全二叉树分别为:
98 14
98
77 48
98
35 35
62 62
55
14
35 35
48 77
14
55 98
14
35 35
77
77
55 14 55
35
35
35 62
48
48
55 98 55
62
62
14
35
77
62
98
35
3
时间复杂度分析
该方法创建堆的时间复杂度为O( n ) 证明过程请看教材页290页
堆排序的时间主要耗费在建初始堆和调整建新堆时
进行的反复“筛选”上。
堆排序在最坏情况下,其时间复杂度也为O(nlog2n), 这是堆排序的最大优点。 另外,堆排序仅需一个记录大小供交换用的辅助存储 空间。
然而堆排序是一种不稳定的排序方法, 它不适用于
堆与堆排序
软件学院 王建文
7.5.2 堆和堆排序
☞ 一、堆和堆排序的概念 二、堆的调整 三、建堆 四、堆排序
堆的定义:
若n个元素的序列{a1 a2 … an} 满足
ai ≤ a2i 或 ai ≥ a2i
ai ≤ a2i+1
ai ≥ a2i+1
则分别称该序列{a1 a2 … an}为小根堆 和大根堆。 从堆的定义可以看出,堆实质是满足如下性质的完 全二叉树:
待排序记录个数n较少的情况,但对于n较大的文件还是 很有效的。
然后,将以序号为n/2-1的结点 为根的二叉树调整为堆;
再将以序号为n/2-2的结点为根 的二叉树调整为堆;
再将以序号为n/2-3的结点为根 的二叉树调整为堆;
0
1
2 3
4
5
6 7
8
13 38 27 49 76 65 49 49 49 49 13 97 65 13 27 97
Heapsort
Fig. 27-9 A trace of heapsort (a – c)
例:有关键字为49,38,65,97,76,13,27,
49的一组记录,将其按关键字调整为一个小根堆。
49 38 97 49 76 13 65 27
首先, 调整从第n/2个元素开始
13 49 38 97 49 97 49 76 13 65
将以该元素为根的二叉树调整为堆
27 13 49 65
27 49
你能画出删除堆顶元素时相应数组的变化吗? 删除元素代码见课本204
7.5.2 堆和堆排序
一、堆和堆排序的概念 二、堆的调整 ☞ 三、建堆 四、堆排序
第一种方法:
把一个数组看成两部分,左边是堆,右边是还 没加入堆的元素,步骤如下: 1、数组里的第一个元素自然地是一个堆 2、然后从第二个元素开始,一个个地加入左 边的堆,当然,每加入一个元素就破坏了左边 元素堆的性质,得重新把它调整为堆
48
(a) 一个大根堆 (a) 一个大根堆
77
(b) 一个小根堆 (b) 一个小根堆
堆的应用------优先级队列
服务排队------见课本200, 例5.1 堆排序
堆排序 若在输出堆顶的最小值(最大值)后,使得剩余 n-1个元素的序列重又建成一个堆,则得到n个元素 的次小值(次大值)……如此反复,便能得到一个
结点(序号i > n/2)为根的子树是堆。
这样,我们只需依次将以序号为n/2,n/2-1,……,
1的结点为根的子树均调整为堆即可。
即:对应由n个元ቤተ መጻሕፍቲ ባይዱ组成的无序序列,“筛选”只需
从第n/2个元素开始。
由于堆实质上是一个完全二叉树,那么我们可以 下面以一个实例介绍建一个小根堆的过程。
顺序存储一个堆。