飞控系统
飞行控制系统简介

自动飞行控制系统飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担。
深圳市瑞伯达科技有限公司,致力于成为全球无人机飞行器领导品牌,是智能化无人机飞行器及控制系统的研制开发的专业厂商,生产并提供各行业无人机应用的解决方案。
产品线涵盖各种尺寸多旋翼飞行器、专业航拍飞行器、无人机飞行控制系统、无人机地面站控制系统、高清远距离数字图像传输系统、专业级无线遥控器、高精飞行器控制模块及各类飞行器配件飞行器的自动飞行一、问题的提出早在重于空气的飞行器问世时,就有了实现自动控制飞行的设想。
1891年海诺姆.马克西姆设计和建造的飞行器上安装了用于改善飞行器纵向稳定性的飞行系统。
该系统中用陀螺提供反馈信号,用伺服作动器偏转升降舵。
这个设想在基本概念和手段上与现代飞行自动控制系统有惊人的相似,但由于飞机在试飞中失事而未能成为现实。
60年代飞机设计的新思想产生了,即在设计飞机的开始就考虑自动控制系统的作用。
基于这种设计思想的飞机称为随控布局飞行器(Control Configured Vehicle 简称CCV)。
这种飞机有更多的控制面,这些控制面协同偏转可完成一般飞机难以实现的飞行任务,达到较高的飞行性能。
飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。
由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。
最简单的人工飞行控制系统就是机械操纵系统。
不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。
自动驾驶仪是最基本的自动飞行控制系统。
飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。
控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。
第五章典型飞行控制系统工作原理-纵向姿态控制

G等 (S)
L M e (S Z ) S 2 C1d S C2d
❖ 根轨迹如右图所示:
内回路 L ,使短周期
一对复根左移且虚部减小,最
s1
终进入实轴,振荡减小,
阻尼加大。内回路的动态
过程由振荡运动转为按指
z
数规律衰减的单调运动,
s2
L 越大,阻尼作用越强。
j
全系统情况:
图 L 过大时,修正 的过渡过程
要想减弱这一振荡过程,应在控制律中引入 俯仰角速率q,对飞机运动起阻尼作用,也就是 引入微分信号。
(4)一阶微分信号在比例式控制中的作用
t1•
t •
2
t
e
e1 L
e2 L
t
e L L
由图可见,微分作用的物理本质为:
❖
为t1零时,刻当t
在减小但值为正,此时舵e 已
1、比例式自动驾驶仪修正初始俯仰角偏差
(1)稳定过程 0 0 驾驶仪控制律为:
g 0
e L L ( g )
讨论俯仰角稳定过程,认为
e L L
修正 0 的过程:0 0
比例式控制如何减小静差:
❖ 由前面计算可知:
g
Mf Q0Sb Cme
L
❖ ❖
所 要 只以 减 有:小使这b个静, g差就存,可在应使静加静差大差。减L小。Lb2
,所以
❖ 极端情况: b 0(切断硬反馈)就可完全
消除常值干扰下的静差。
2、积分式自动驾驶仪
在舵回路中采用速度反馈或称为软反馈形式的 信号,组成了积分式自动驾驶仪。
1
T s 1
s 2 c1d s c2d
s
内 s
飞机控制系统

飞控系统的发展与展望一、飞控系统的简介所谓飞机控制系统,是指飞行器在飞行过程中,利用自动控制系统,能够对飞行器的构形、飞行姿态和运动参数实施控制的系统。
该系统可用来保证飞行器的稳定性和操纵性、提高完成任务的能力与飞行品质、增强飞行的安全及减轻驾驶员负担。
飞行控制系统的分类从不同角度出发有不同的分类方法。
根据控制指令由驾驶员发出,另一类是自动飞行控制系统,其控制指令是系统本身自动产生的。
飞机的俯仰、滚转和偏航控制,增升和增阻控制,人工配平,直接力控制以及其它改变飞机的构形控制(如改变机翼后掠角、水平安定面安装角等),它是飞机的一个组成部分,故也属于飞行控制系统。
自动飞行控制系统是对飞机实施自动或半自动控制,协助驾驶员工作或自动控制飞机对抗的响应。
从莱特兄弟的第一架飞机1903年12月升空至今,已经过去了100多年。
100多年来,飞机从最早的多翼/双翼、直机翼,逐步发展到单翼、后掠翼、三角翼等,从活塞发动机到喷气发动机;从正常式布局到鸭式、无尾式、三翼面布局等等。
与之相伴的,飞机的飞行控制系统也在不断地变化,总体来说,飞机的飞行控制系统经历了如此的八个阶段:机械操纵系统、半助力操纵系统、全助力操纵系统、增稳系统、增稳控制系统、半电传系统、电传系统和光传系统。
目前,电传控制系统已经成为主流;光传控制系统已经有小范围的应用,正在处于发展阶段;而诸如机械传动等等较为老的控制系统虽然已经逐渐退出主流,但由于其可靠性高,造价便宜,技术成熟等特点,仍旧在一些特定场合如备份控制系统等使用。
以下我们将对不同阶段的飞机控制系统进行介绍。
二、飞控系统的发展历史首先是机械操纵系统。
在这种操纵系统中驾驶员通过机械传动装置直接偏转舵面。
舵面上的气动铰链力矩通过机械联系使驾驶员获得力和位移的感觉。
这种系统由两部分组成:位于驾驶舱内的中央操纵机构;构成中央操纵机构和舵面之间机械联系的传动装置。
中央操纵机构由驾驶杆(或驾驶盘)和脚蹬组成。
飞行控制系统的组成

飞行控制系统的组成飞行控制系统是指用于控制飞机飞行的一系列设备和程序。
它是飞机的重要组成部分,直接影响着飞机的操纵性、稳定性和安全性。
飞行控制系统的主要组成包括飞行操纵系统、飞行指示系统、飞行保护系统和自动飞行控制系统。
一、飞行操纵系统飞行操纵系统是飞行控制系统的核心部分,用于操纵飞机的姿态和航向。
它包括操纵杆、脚蹬和相关的机械传动装置。
操纵杆通过机械传动装置将飞行员的操作转化为飞机的姿态变化,从而实现对飞机的操纵。
脚蹬主要用于控制飞机的航向。
飞行操纵系统的设计需要考虑飞行员的操作感受和操作精度,以及飞机的动力特性和气动特性。
二、飞行指示系统飞行指示系统用于向飞行员提供飞机的状态和参数信息,以帮助飞行员准确地掌握飞机的飞行情况。
飞行指示系统包括人机界面设备和显示设备。
人机界面设备包括仪表板、显示器和按钮等,用于向飞行员显示飞机的状态和参数,并接收飞行员的操作指令。
显示设备一般采用液晶显示屏或投影显示技术,能够实时显示飞机的速度、高度、姿态、航向等信息。
飞行指示系统的设计需要考虑信息的清晰度和可读性,以及对飞行员的操作需求和反馈。
三、飞行保护系统飞行保护系统用于提供飞机的保护和安全功能,防止飞机发生失控或危险情况。
飞行保护系统包括防护装置、警告系统和应急措施。
防护装置主要包括防止飞机过载的装置、防止飞机超速的装置和防止飞机失速的装置等,能够保护飞机免受过载、超速和失速等不安全飞行状态的影响。
警告系统主要用于向飞行员提供飞机的警告和提示信息,以帮助飞行员及时发现和解决飞机的异常情况。
应急措施主要包括自动驾驶和自动下降等功能,能够在紧急情况下自动控制飞机的飞行。
四、自动飞行控制系统自动飞行控制系统是飞行控制系统的高级形式,能够实现自动驾驶和飞行管理功能。
自动飞行控制系统主要包括飞行管理计算机、自动驾驶仪和导航系统等。
飞行管理计算机负责计算飞机的飞行参数和航路信息,并根据飞行员的指令进行飞行计划和航线管理。
无人机飞控系统设计与开发

无人机飞控系统设计与开发一、介绍无人机飞控系统无人机(UAV)是一种不需要搭载人员而能够自主飞行的飞行器。
由于其具备覆盖面广、灵活性高等优点,因此在军事、民用、科研等领域都得到了广泛应用。
无人机飞行离不开飞控系统的支持,它掌握着飞机的动力、定位控制和传感数据处理等关键技术,从而实现飞行安全和目标精确控制。
二、无人机飞控系统的概述无人机飞控系统通常包括传感器、处理器、存储器、数据通信模块和作业设备。
其中,传感器用于感知外部环境,包括加速度计、陀螺仪、罗盘等,处理器用于运算和控制,存储器则是数据的缓存和存储。
由于无人机需要与人类进行通信,因而数据通信模块也是必不可少的组成部分。
作业设备则依据无人机的实际用途不同而有所差异,例如军用无人机可能装配炸弹和导弹等武器,而民用无人机则主要用于航拍、作物保护等领域。
三、无人机飞控系统设计与开发的关键技术1、传感器选择和定位传感器是无人机飞控系统必不可少的核心组成部分之一。
传感器的选择直接影响系统的性能和稳定性。
由于无人机搭载传感器需满足体积小、重量轻、性能可靠等要求,因此传感器的选择和定位需要经过仔细的考虑和配合。
比较常用的传感器有加速度计、陀螺仪、罗盘、气压计等。
2、信息传输信息传输模块是在飞行途中向地面控制中心传输各种数据的设备。
由于无人机的高速飞行速度和长时间稳定飞行的要求,只有采用高效的数据传输技术,才能保证及时且准确地传递数据。
常用的数据传输技术主要包括无线电波以及蓝牙等短距离无线传输技术。
3、控制器设计控制器是无人机飞控系统的核心部分,其主要特点是强大的运算能力和高度自动化。
控制器可以将传感器探测到的数据进行计算和处理,并产生控制指令,将其传达给飞行器的各项部件。
控制器种类繁多,智能控制器、模糊控制器、PID控制器等都常被应用于无人机飞控系统设计中。
4、程序设计飞控系统的程序设计包括上位机程序和下位机程序两个部分。
上位机程序主要处理PC机或其他设备与飞行器之间的数据传输和控制调度,下位机程序则针对飞机的各项控制任务进行编程,以实现稳定、精准的控制。
飞行控制系统简介

飞行控制系统简介自动飞行控制系统飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担.深圳市瑞伯达科技有限公司,致力于成为全球无人机飞行器领导品牌,是智能化无人机飞行器及控制系统的研制开发的专业厂商,生产并提供各行业无人机应用的解决方案。
产品线涵盖各种尺寸多旋翼飞行器、专业航拍飞行器、无人机飞行控制系统、无人机地面站控制系统、高清远距离数字图像传输系统、专业级无线遥控器、高精飞行器控制模块及各类飞行器配件飞行器的自动飞行一、问题的提出早在重于空气的飞行器问世时,就有了实现自动控制飞行的设想。
1891年海诺姆.马克西姆设计和建造的飞行器上安装了用于改善飞行器纵向稳定性的飞行系统。
该系统中用陀螺提供反馈信号,用伺服作动器偏转升降舵。
这个设想在基本概念和手段上与现代飞行自动控制系统有惊人的相似,但由于飞机在试飞中失事而未能成为现实。
60年代飞机设计的新思想产生了,即在设计飞机的开始就考虑自动控制系统的作用.基于这种设计思想的飞机称为随控布局飞行器(Control Configured Vehicle 简称CCV)。
这种飞机有更多的控制面,这些控制面协同偏转可完成一般飞机难以实现的飞行任务,达到较高的飞行性能.飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。
由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。
最简单的人工飞行控制系统就是机械操纵系统。
不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。
自动驾驶仪是最基本的自动飞行控制系统。
飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。
控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。
飞控基础知识

飞控基础知识嘿,朋友!你有没有想过那些在天空中自由翱翔的飞机、无人机是怎么稳稳地飞在空中的呢?这可就全靠飞控啦。
今天呀,我就来给你唠唠飞控的基础知识,保证让你听得津津有味。
飞控,简单来说,就是飞行控制系统。
就像是飞机或者无人机的大脑一样重要。
我有个朋友小李,他刚开始玩无人机的时候,啥都不懂。
把无人机拿起来就想让它飞,结果那无人机就像个没头的苍蝇一样,乱晃悠。
这就是没有飞控或者飞控没调好的结果。
那飞控到底是怎么工作的呢?这就像我们人走路一样。
我们走路的时候,眼睛会看路,耳朵会听周围的声音,身体会感受平衡。
飞控呢,它也有很多的传感器来获取信息。
比如说,有加速度计。
这加速度计就像是我们身体里的感觉器官,它能感知飞机或者无人机在各个方向上的加速度。
我给你打个比方,如果把飞机比作一辆在天空中行驶的汽车,加速度计就像是汽车里能感受到推背感或者刹车感的那个装置。
还有陀螺仪。
这陀螺仪可神奇了,它能知道飞机的姿态,是倾斜了,还是平着飞呢。
这就好比我们人在黑暗中走路,虽然看不到路,但是我们能感觉到自己的身体是不是站直了。
小李后来就明白了这些道理,他就开始研究他那无人机的飞控。
他发现飞控里的陀螺仪要是出了问题,无人机就没办法保持平稳的飞行姿态,飞起来歪歪扭扭的,就像喝醉了酒的人在走路一样。
飞控还有个重要的部分,那就是控制器。
这控制器就像是飞控这个大脑的指挥中心。
它根据传感器传来的信息,做出决策,然后控制飞机或者无人机的各个部件,像电机、舵机之类的。
这就好比一个乐队的指挥,根据乐谱和乐手们的表现,指挥大家什么时候该大声演奏,什么时候该小声演奏。
我记得有一次,我们一群朋友在讨论飞控。
小王说:“这飞控的传感器这么多,要是有一个坏了,那飞机不就完了?”我就跟他解释说:“这飞控可没那么脆弱。
现在的飞控系统都有冗余设计。
就好比我们有两只眼睛,要是一只眼睛暂时看不见了,另一只眼睛还能让我们大致看清周围的情况。
飞控里的传感器也是这样,一个有点小毛病,其他的还能继续工作,保证飞机不会一下子就掉下来。
简述飞控系统的部件组成

简述飞控系统的部件组成
飞控系统是指用于控制飞机飞行的系统,它包含了多个部件,这些部件包括: 1. 控制器:控制器是飞控系统的核心部件,负责接收飞机传感器的输入,并根据预先编写的程序和飞行规则对飞机进行控制。
控制器可以是单个计算机或一组计算机,具体取决于飞控系统的规模。
2. 传感器:传感器用于检测飞机的状态和参数,例如飞行速度、高度、方向、坡度等。
传感器可以是风速传感器、高度计、陀螺仪、磁力计等。
3. 执行器:执行器用于控制飞机的运动,例如油门、刹车、襟翼、机翼等。
执行器通常是电机或液压泵,它们通过控制油液或气体的流动来执行飞控系统的命令。
4. 通信系统:飞控系统需要与其他系统进行通信,例如导航设备、气象设备、其他飞控系统等。
通信系统通常包括无线电、激光通信和卫星通信等。
5. 电源系统:飞控系统需要稳定的电源供应,以便为传感器、执行器和通信系统提供电能。
电源系统通常包括发电机、电池和充电系统。
6. 故障诊断系统:飞控系统需要对故障进行诊断和检测,以便在故障发生时及时采取措施。
故障诊断系统通常包括传感器读数分析、程序校验和故障诊断软件等。
7. 数据管理系统:飞控系统需要对飞机的状态和参数进行记录和存储,以便进行数据分析和故障诊断。
数据管理系统通常包括飞行数据记录器、传感器数据记录器和数据服务器等。
飞控系统的部件组成非常复杂,这些部件相互协作,才能实现飞机的自动控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.升降舵载荷感觉定中机构的特点?P246
升降舵一般采用动压载荷感觉装置,该装置除了具有弹簧式感觉定中机构的特性外,还可以将空速的信号引进感觉定中机构中,即随着飞行速度的增加,驾驶员的感觉力也会增加,这样就更加真实地模拟舵面的铰链力矩,使驾驶员在不同的空速情况下,准确控制飞机。
2.为什么采用非线性传动机构操纵系统?P230
操纵系统中,如果没有特殊的机构来改变传动系数,舵偏角随杆行程的变化近似成直线关系,即线性关系。
飞行速度的不同要求操纵系统的传动系数也不同,同一架飞机上不可能安装多套传动系数各异的操作系统,因此在操作系统中设置了专门的非线性传动机构,即杆行程与舵面偏角之间成曲线关系。
3.什么是马赫配平?P247
马赫配平装置是一套自动控制装置,当飞行马赫数达到产生下俯现象的数值时,马赫配平装置自动操纵升降舵向上偏转一个角度,从而避免自动下俯。
4.水平安定面操作方式以及它们的权限?
人工操作(安定面配平手轮)
电动配平(安定面配平电门)
自动驾驶操纵
优先权:手动操纵的优先权最大,自动驾驶仪的优先权最小。
5.升降舵压差感觉电门如何工作?
压差电门监控两路升降舵动压感觉机构提供的与空速成正比的计量液压压力,当两个计量压力相差超过25%时,压差电门工作,压差指示灯亮。
6.四余度系统的组成和功能,3个要求及特点?P231 ?
表决和监控、故障隔离、双故障保护
表决和监控:判断输入信号中有无故障信号,
选择器选择正确的无故障信号
故障隔离:如果任何一个信号被检查出是故障信号后,监控器自动隔离这个故障信号,不使它再输入到后面的舵回路中
双故障保护:如果某一输入信号出现故障,切换器自动切除与助力器的联系,将正确信号接入系统。
7.电传系统优缺点?(P232)
优点:
(1)减轻了操纵系统的重量、体积,节省操纵系统设计和安装时间。
(2)消除了机械操纵系统中的摩擦、间隙、非线性因素以及飞机结构变形的影响。
(3)简化了主操纵系统与自动驾驶仪的组合
(4)可采用小侧杆操纵机构。
(5)飞机操稳特性不仅得到根本改善,且可以发生质的变化。
缺点:
(1)电传操纵系统成本较高。
(2)系统易受雷击和电磁脉冲波干扰影响。
8.飞机的重要操纵面,各操纵什么运动?
副翼操纵飞机产生绕纵轴转动的系统;升降舵操纵飞机绕横轴转动的系统;方向舵操作飞机产生绕立轴转动的系统。
9.飞机操纵系统包括哪几部分?P218
中央操控系统:用于产生操作指令,包括手操纵机构和脚操纵机构
传动机构:用于传递操作指令
驱动机构:用于驱动舵面运动
10.传动系统摩擦力大的原因?P256
活动连接接头表面不清洁或润滑不良,造成锈蚀,造成接头摩擦力增大;
活动连接接头装配过紧;
传动机构和飞机其他部分发生摩擦;
传动机构本身摩擦力过大。
11.电传操纵系统,选择器,监控器,切换器的作用?
参考第6题
12.flap旁通活门作用?
当采用备用方式工作时,应通过备用襟翼电门操纵襟翼收放。
首先,应使旁通活门处在旁通位,防止在传动过程中液压马达产生液压锁紧,该操作通过将备用襟翼电门操纵到“ARM”位实现;然后,操纵备用机翼电门到“DOWN”位,电机转动,驱动输出扭力管转动,从而驱动襟翼放下。
13.地面扰流板作用?(P252)
地面扰流板只能在地面上起减速的作用。
14.后缘襟翼有几种操纵方式?(P248)
襟翼控制手柄操纵襟翼控制活门,使后缘襟翼放出。
采用备用方式即电动马达驱动收放后缘襟翼。
15.自动缝翼作用?
缝翼位于伸出位时,当飞机即将发生失速,自动缝翼功能将前缘装置全伸出,增大升力,使得飞机机头朝下,避免迎角过大。
16.升降舵有几种输入形式?(P245)
驾驶杆的前后移动,操纵升降舵。
自动驾驶仪接通时,可自动操纵升降舵。
马赫配平机构输入
水平安定面的配平会带动升降舵
17.方向舵有几种操纵方式?(P247)
踏方向舵脚蹬。
方向舵操纵系统中的偏航阻尼器根据飞机姿态变化操纵方向舵,防止荷兰滚18.飞行扰流板工作原理及作用?
飞行扰流板即可在地面使用,也可在空中使用,其作用既可减速,也可以协助副翼完成横滚操纵。
一般采用液压伺服系统,当驾驶盘转动角度较小时,飞行扰流板不放出;当驾驶盘转动超过一定角度时,扰流板才放出,并配合副翼操作飞机进行轴向转动。
飞机减速时通过操作减速手柄实现的,减速手柄位于中央操作台左侧。
在地面时,所有扰流板放出;在空中时,飞行扰流板放出。
同时还可以辅助副翼进行横滚操纵。
减速手柄的信号和配合副翼横侧操纵的信号都输送到混合器,混合器将两种信号叠加,然后输送到飞行扰流板。
19.什么是弹性间隙?影响弹性间隙的因素?P224
由于操作系统的弹性形变而产生的“间隙”通常称为弹性间隙。
温度、张力、磨损
20.协调转弯的原理?(P248)
协调转弯即是飞机平稳转弯且高度不变
为了平衡飞机转弯时产生的离心侧滑力,应使飞机横向倾侧一定角度,利用机翼升力在水平方向的分量提供向心力,以平衡转弯离心力。
而由于飞机倾侧,升力在垂直方向上的分量会减小,造成飞机高度下降。
为了抵消飞机下降趋势,在转弯时应向后轻拉驾驶盘,使飞机迎角增加。
21.偏航阻尼器的作用?(P248)
及时根据飞机姿态的变化操纵方向舵,防止产生荷兰滚。
偏航阻尼器驱动方向舵的偏转角小于方向舵脚蹬操纵的方向舵偏转角。
22.液压助力器的原理?(P235)
液压助力器是一种以液压作为工作能源的执行操纵指令的机械液压位置伺服功率放大装置,助力器输出的机械位移,与输入指令的机械位移量成正比。
典型的液压助力器基本组成部分为外筒、传动活塞和配油柱塞。
液压助力器工作时,传动活塞运动的方向、速度、位移,都是随着配油柱塞的运动而变化的。
配油柱塞停止运动,传动活塞也停止。
因此液压助力器是一种液压随动装置,驾驶员只要很小的力,通过驾驶杆带动配油柱塞控制油路,即可利用液压克服很大的舵面载荷,操纵舵面偏转。
舵面偏转的方向、角度、角速度,都随着驾驶杆的运动而改变。